病毒膜融合蛋白构象转变机制与稳定策略
CSTR:
作者:
作者单位:

1)鲁东大学生命科学学院,烟台 264025;2)鲁东大学烟台市动物病原微生物与免疫学重点实验室,烟台 264025

作者简介:

通讯作者:

中图分类号:

基金项目:

烟台市校地融合发展项目(2022)资助。


The Mechanism of Conformational Transition and Stabilisation Strategies of Viral Membrane Fusion Proteins
Author:
Affiliation:

1)School of Life Sciences, Ludong University, Yantai 264025, China;2)Yantai Key Laboratory of Animal Pathogenic Microbiology and Immunology, Ludong University, Yantai 264025, China

Fund Project:

This work was supported by a grant from Yantai City School-Community Integration Development Project (2022).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    病毒膜融合蛋白通过从预融合构象转变成融合后构象,介导病毒与宿主细胞膜融合,并进一步使病毒的核酸转移到细胞内部。其预融合构象是疫苗设计和抗病毒药物开发的理想靶标构象。研究这类蛋白质的构象转变机制及如何稳定其预融合构象,一直是具有挑战性的课题。本文总结了三类膜融合蛋白在结构和功能上的差异:I类蛋白质以α螺旋为主,形成三聚体,依赖受体结合或低pH触发融合肽释放;II类蛋白质(如登革病毒E蛋白)以β折叠为主,二聚体向三聚体重排,融合环由低pH激活;III类蛋白质(如单纯疱疹病毒糖蛋白B)融合α螺旋和β折叠,机制涉及内部融合环插入和膜重塑。并通过深入理解病毒的膜融合机制,介绍了几种目前能够有效地稳定病毒膜融合蛋白预融合构象的方法,包括二硫键连接稳定结构域间相互作用、疏水空腔填充增强疏水核心稳定性、脯氨酸限制铰链区域的结构转变、多聚体结构域稳定三聚体构象。本文所总结讨论的稳定化策略已经在多种病毒膜融合蛋白的研究中得到验证,并进一步应用于疫苗抗原设计。另外,本文介绍时间分辨冷冻电镜等新型技术在捕捉构象中间态和解析动态转变过程中的应用潜力。本文为开发稳定的病毒膜融合蛋白提供了理论参考,为理解病毒膜融合机制和下一代疫苗和抗病毒药物的开发提供了重要基础。

    Abstract:

    Viral membrane fusion proteins facilitate the fusion of viral and host cell membranes by undergoing a transition from a prefusion conformation to a post-fusion conformation, thereby enabling the transfer of viral nucleic acids into the cell interior. This transition process is characterized by peptide exposure, membrane insertion, and structural refolding. The prefusion configuration represents an optimal target for vaccine formulation and antiviral pharmacotherapy. However, the metastable nature of the prefusion conformation makes it prone to spontaneous conversion into the stable post-fusion conformation, thereby complicating structural analysis and vaccine design. Investigating the mechanisms of conformational change in these proteins and developing methods to stabilize their prefusion state remain challenging research topics. This review summarizes the structural and functional differences among three classes of membrane fusion proteins: class I proteins, which are predominantly composed of α-helices, form trimers, and rely on receptor binding or low pH to trigger fusion peptide release; class II proteins, which are mainly β-sheet-rich, rearrange from dimers to trimers and activate fusion loops via low pH; and class III proteins, which combine α-helices and β-structures, with mechanisms involving internal fusion loop insertion and membrane remodeling. It is evident that a comprehensive understanding of the mechanisms underlying viral membrane fusion is crucial for developing effective stabilization strategies for the prefusion conformation of these proteins. This paper presents several such methods that have been successfully employed in this endeavor, including: disulfide bond formation to stabilize domain-domain interactions; hydrophobic cavity filling to enhance core stability; proline substitution to restrict structural transitions in hinge regions; and multimer domains stabilizing the trimeric conformation. The stabilization strategies summarized and discussed herein have been validated in studies of multiple viral membrane fusion proteins and further applied in the design of vaccine antigens. Moreover, this paper highlights the potential applications of novel techniques, such as time-resolved cryo-EM, in capturing conformational intermediates and resolving dynamic transition processes. Such stabilization efforts, informed by structural insights, have yielded promising outcomes—for instance, prefusion-stabilized RSV F antigens that elicit potent neutralizing antibodies in clinical trials. Looking ahead, integrating computational modeling, such as AlphaFold predictions, with experimental data will further refine these approaches. Ultimately, these innovations promise to enable structure-guided therapeutics to combat emerging viral threats. This review provides a theoretical foundation for developing stable viral membrane fusion proteins, offering crucial insights for understanding viral membrane fusion mechanisms and advancing next-generation vaccines and antiviral drugs.

    参考文献
    相似文献
    引证文献
引用本文

解宸一,董翔歌,战久宇,朱洪伟,于馨,刘洋,于佳玉,张兴晓.病毒膜融合蛋白构象转变机制与稳定策略[J].生物化学与生物物理进展,2026,53(1):5-18

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-06-11
  • 最后修改日期:2025-11-25
  • 录用日期:2025-10-28
  • 在线发布日期: 2025-10-31
  • 出版日期: 2026-01-28
文章二维码