线粒体AAA+蛋白酶的结构与功能及其在神经系统疾病中的作用
CSTR:
作者:
作者单位:

1)西南医科大学基础医学院,泸州 646000;2)中国科学院生物物理研究所,认知科学与心理健康全国重点实验室,北京 100101;3)中国科学院生物物理研究所,生物大分子全国重点实验室,北京 100101;4)中国科学院大学生命科学学院,北京 100049

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(32271200)资助项目。


Structure and Function of Mitochondrial AAA+ Proteases and Their Roles in Neurological Disorders
Author:
Affiliation:

1)School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China;2)State Key Laboratory of Cognitive Science and Mental Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China;3)State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China;4)College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Fund Project:

This work was supported by a grant from The National Natural Science Foundation of China (32271200).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    线粒体是真核细胞中最重要的能量产生细胞器,在物质代谢、细胞信号转导、氧化应激,以及多种形式的细胞死亡途径中发挥关键的调控作用。线粒体拥有独立于细胞核基因组的DNA——线粒体DNA(mtDNA),但是只编码13条多肽链、22个转运RNA(tRNA)和2个核糖体RNA(rRNA)。线粒体内的其他蛋白质都是由核基因(nDNA)编码的,这两个基因组协同工作,维持细胞的正常功能和稳态。已鉴定的人类细胞线粒体蛋白质组含有超过1 158种蛋白质,它们分别定位于线粒体外膜、膜间隙、内膜和基质中,参与氧化磷酸化、三羧酸循环、分裂-融合动力学,以及维持线粒体稳态等重要功能。线粒体稳态和线粒体功能的正常发挥与线粒体蛋白酶密切相关,这些线粒体蛋白酶通过调节线粒体蛋白的活性,去除受损的或不必要的蛋白质,从而维持线粒体稳态并确保细胞存活。其中一组功能依赖于ATP结合和水解的线粒体AAA+蛋白酶(ATPases associated with diverse cellular activities,AAA+ proteases),不仅执行降解错误折叠蛋白质的功能,还在线粒体融合蛋白的加工成熟、呼吸链复合物组装、mtDNA复制/转录等过程中发挥关键作用。研究发现,这些线粒体AAA+蛋白酶的基因突变或者表达异常导致其酶活性改变,严重损害线粒体结构和功能的完整性,并导致多种神经系统疾病的发生。本文主要以Lon蛋白酶1(Lon peptidase 1,LONP1)、酵母线粒体逃逸基因1样蛋白1(yeast mitochondrial escape 1 like 1,YME1L1)和ATP酶家族基因3样蛋白2(ATPase family gene 3-like 2,AFG3L2)等3种线粒体AAA+蛋白酶为例,详细阐述了它们的序列相似性和结构特点,以及在线粒体中的不同定位与功能。通过总结这3种蛋白酶基因突变与神经系统疾病的关系,发现已报道的疾病相关突变主要位于ATPase结构域和水解酶或肽酶结构域。因此,解析这些蛋白酶关键结构域的结构和突变导致的功能变化及其对线粒体乃至细胞稳态的影响,将为理解疾病机制和研发靶向干预策略提供参考。

    Abstract:

    Mitochondria are the most crucial energy-generating organelles in eukaryotic cells and serve as signaling hubs that orchestrate metabolism, redox balance, cell-fate decision and multiple forms of cell death. Mitochondria possess their own DNA (mtDNA), which is independent of the nuclear genome, yet encodes only 13 polypeptides, 22 tRNAs, and 2 rRNAs. The remaining >1 150 mitochondrial proteins are encoded by nuclear genes (nDNA), and the two genomes cooperate to preserve cellular homeostasis and proper function. Mitochondrial proteins are localized to the outer mitochondrial membrane (OMM), intermembrane space (IMS), inner mitochondrial membrane (IMM) or matrix, participating in oxidative phosphorylation (OXPHOS), the tricarboxylic acid (TCA) cycle, fission-fusion dynamics, and other processes indispensable for mitochondrial integrity. Mitochondrial quality control (MQC) is exerted largely by mitochondrial proteases, which selectively modulate protein activity and degrade misfolded or superfluous proteins. Among them, a group of mitochondrial ATPases associated with diverse cellular activities (AAA+ proteases) couple ATP binding and hydrolysis to protein unfolding and proteolysis, thereby regulating fusion protein maturation, respiratory-chain assembly, and mtDNA replication/transcription. Mutations or aberrant expression of these mitochondrial AAA+ proteases cripple mitochondrial architecture and function, precipitating a spectrum of severe neurological disorders. This review summarizes current knowledge on three paradigmatic mitochondrial AAA+ proteases, LONP1, YME1L1, and AFG3L2. We highlight their conserved Walker A/B motifs in the ATPase domain and hexameric architecture, yet emphasize divergent sub-mitochondrial topologies: LONP1 is soluble in the matrix, whereas YME1L1 and AFG3L2 are embedded in the IMM with catalytic domains facing IMS and matrix, respectively. These positional differences translate into distinct substrates and proteolytic strategies, enabling a division of labor and mutual complementation that cooperatively safeguards mitochondrial proteostasis. Pathogenic mutations linked to neurological disorders are mapped predominantly to the ATPase and the hydrolase/peptidase domains. Substitutions of the amino acid within these core domains can directly abolish ATP hydrolysis, substrate engagement or peptide cleavage, thereby crippling local MQC networks. Additional variants may disturb transcriptional, translational or post-translational regulation, altering protease stoichiometry and impairing compartmental balance. The subsequent cascade, mtDNA instability, respiratory-chain dysfunction, and aberrant mitochondrial dynamics, propagates stress signals that culminate in neuronal dysfunction and/or neurodegeneration. The mutational and clinical heterogeneity observed across cell types, developmental stages, and genetic backgrounds underscores the context-dependent fine-tuning of these AAA+ proteases. Deciphering how disease-associated variants rewire domain structure, catalytic cycle, and network-level crosstalk will therefore illuminate pathophysiologic mechanisms and guide precision therapeutic strategies.

    参考文献
    相似文献
    引证文献
引用本文

李茹茹,张叶,卫涛涛,朱笠.线粒体AAA+蛋白酶的结构与功能及其在神经系统疾病中的作用[J].生物化学与生物物理进展,2025,52(11):2729-2748

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-08-03
  • 最后修改日期:2025-11-05
  • 录用日期:2025-09-15
  • 在线发布日期: 2025-09-18
  • 出版日期: 2025-11-28
文章二维码