1)宁波大学医学部生理与病理生理学科,宁波 315211;2)福建师范大学体育科学学院体育教育训练学科,福州 350117
浙江省自然科学基金(LY23H090004),浙江省省属高校基本科研业务费专项资金(SJLY2023008),宁波市自然科学基金(2023J068,2022J035),宁波市教育科学规划课题重点项目(2025YZD004),宁波大学教研项目(JYXM2025027),浙江省大学生科技创新活动计划(新苗人才计划)项目(2024R405A069,2025R405A076),浙江省级大学生创新创业训练计划项目(S202511646004)和宁波大学大学生科技创新计划(SRIP)项目(2025SRIP1931,2025SRIP1909)资助。
1)Department of Physiology and Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China;2)Discipline of Physical Education and Training, College of Sports Science, Fujian Normal University, Fuzhou 350117, China
This work was supported by grants from Natural Science Foundation of Zhejiang Province (LY23H090004), the Fundamental Research Funds for the Provincial Universities of Zhejiang (SJLY2023008), the Natural Science Foundation of Ningbo (2023J068, 2022J035), Ningbo Education Science Planning Project (2025YZD004), Ningbo University Teaching and Research Project (JYXM2025027), College Students’ Scientific and Technological Innovation Project (Xin Miao Talent Plan) of Zhejiang Province (2024R405A069, 2025R405A076), Zhejiang Provincial College Students’ Innovation and Entrepreneurship Training Program Project (S202511646004), and the Student Research, Innovation Program (SRIP) of Ningbo University (2025SRIP1931, 2025SRIP1909).
阿尔茨海默病 (Alzheimer’s disease, AD) 是一种常见的中枢神经系统慢性退行性疾病, 具有复杂的病理生理学特征,临床表现为记忆、思维和行为能力障碍。铁死亡是一种由铁依赖性脂质过氧化物积累引发的新型非凋亡性程序性细胞死亡。铁代谢紊乱可抑制胱氨酸/谷氨酸逆向转运蛋白(System Xc-)和谷胱甘肽过氧化物酶4(GPX4)活性,导致细胞内抗氧化能力降低和脂质过氧化物异常积累,触发细胞铁死亡。铁紊乱引起的细胞死亡与其他类型的细胞死亡在形态学和生物化学特征上存在显著差异。铁死亡通过多种机制参与AD的病理机制,与AD的发生发展密切相关。铁过载影响早期淀粉样前体蛋白加工,加速β淀粉样蛋白的产生及斑块沉积,也可降低Tau蛋白溶解度,诱导Tau异常磷酸化并聚集成神经原纤维缠结。基于干预铁死亡的治疗策略,如给予去铁胺等铁螯合剂治疗,可降低游离铁水平,抑制芬顿反应驱动的氧化损伤;补充α生育酚等抗氧化剂,可中和活性氧类并清除脂质自由基,减缓氧化应激反应;补充硒制剂或Nrf2-SLC7A11-GPX4通路和SIRT1/Nrf2信号通路激活剂,恢复谷胱甘肽-GPX4轴功能,可阻断脂质过氧化进程。这些策略通过靶向调节铁代谢、增强抗氧化防御能力及抑制脂质过氧化过程,从而有效阻断铁依赖性的细胞死亡途径。近年来,铁死亡在AD发病机制中的作用已成为研究热点。本文旨在系统梳理铁死亡的分子机制及其在AD中的病理作用,并总结当前针对铁死亡的潜在干预策略,以期为探索基于调控铁死亡的AD治疗方法提供新的思路和理论支持。
Alzheimer’s disease (AD) is a common chronic neurodegenerative disorder of the central nervous system characterized by progressive impairments in memory, cognition, and behavior, eventually leading to severe dementia and loss of self-care ability. Despite decades of investigation, the precise molecular mechanisms underlying AD remain incompletely understood, and effective disease-modifying treatments are still lacking. The traditional pathological hallmarks of AD including amyloid β-protein (Aβ) plaques and neurofibrillary tangles (NFTs) composed of hyperphosphorylated Tau fail to account for the complex biochemical and cellular alterations observed in AD brains. Ferroptosis, a distinct iron-dependent form of non-apoptotic programmed cell death, is increasingly recognized as a contributor to AD pathogenesis. Ferroptosis is driven by excessive accumulation of lipid peroxides and reactive oxygen species (ROS), leading to oxidative destruction of cellular membranes. Unlike apoptosis or necrosis, ferroptosis is morphologically characterized by shrunken mitochondria with condensed membrane densities and biochemically defined by the loss of glutathione peroxidase 4 (GPX4) activity. Disruption of iron homeostasis, a central hallmark of ferroptosis, triggers a cascade that inhibits the cystine/glutamate antiporter (System Xc-), suppresses glutathione (GSH) synthesis, and impairs GPX4-mediated detoxification of lipid peroxides, leading to uncontrolled lipid peroxidation and oxidative stress that ultimately trigger ferroptotic cell death. This iron-driven cell death exhibits distinct morphological and biochemical characteristics compared with other forms of cell death. Ferroptosis contributes to AD pathogenesis through multiple mechanisms and is closely associated with disease onset and progression. Iron overload can affect early amyloid precursor protein processing, accelerate Aβ production and plaque deposition, reduce Tau protein solubility, and promote Tau hyperphosphorylation and aggregation into NFTs. Therapeutic strategies targeting ferroptosis—such as iron chelation with deferoxamine to reduce labile iron levels and inhibit Fenton reaction-driven oxidative damage, supplementation with antioxidants such as α-tocopherol or α-lipoic acid to neutralize ROS and scavenge lipid radicals, and administration of selenium or activators of the Nrf2-SLC7A11-GPX4 axis and the SIRT1/Nrf2 signaling pathway to restore glutathione-GPX4 function—can effectively block lipid peroxidation and suppress iron-dependent cell death. By modulating iron metabolism, enhancing antioxidant defenses, and inhibiting lipid peroxidation, these approaches hold promise for mitigating ferroptosis-related neuronal injury. These interventions collectively aim to modulate iron metabolism, strengthen antioxidant defenses, and suppress lipid peroxidation, thereby mitigating neuronal injury and delaying cognitive deterioration. Ferroptosis represents a pivotal intersection of iron metabolism, oxidative stress, and neurodegeneration in AD. Exploring ferroptotic mechanisms not only deepens our understanding of AD pathophysiology but also opens new avenues for therapeutic intervention. This review aims to comprehensively summarize the molecular basis of ferroptosis, elucidate its pathological roles in AD, and propose ferroptosis-centered therapeutic strategies, thereby providing a theoretical framework for future research and drug development in AD.
雷斌,应佳芹,陈是燏,林志成,李婉怡,刘志涛,黄渝涵,叶志涛,陈露艺,周晨萱,蒋一,陈慧,杨梓钰,李丽萍.铁死亡在阿尔茨海默病中的作用:潜在机制和干预治疗[J].生物化学与生物物理进展,2026,53(1):30-47
复制

扫码关注 生物化学与生物物理进展 ® 2026 网站版权 ICP:京ICP备05023138号-1 京公网安备 11010502031771号
