MCC950靶向抑制TXNIP-NLRP3轴介导的足细胞焦亡在糖尿病肾病中的作用
CSTR:
作者:
作者单位:

1.广西壮族自治区桂东人民医院;2.桂林医科大学

作者简介:

魏兵 Tel:13517731981,E-mail:231351289@qq.comWEI Bing. Tel: 86-13517731981, E-mail:231351289@qq.com

通讯作者:

中图分类号:

基金项目:

广西壮族自治区桂东人民医院横向科研合作项目项目(2025GDHX02)、广西糖尿病系统医学重点实验室开放课题(GKLCDSM-20230101-03)、广西糖尿病系统医学重点实验室开放课题(GKLCDSM-KF2025-08)、广西医疗卫生重点学科建设项目(桂卫科教发[2021]8号)、广西医疗卫生重点培育学科建设项目(桂卫科教发[2023]1号)、广西高校中青年教师科研基础能力提升项目(2025KY0509)、广西中医药适宜技术开发与推广项目(GZSY2025082)和广西医疗卫生适宜技术开发与推广应用项目(S2023108)资助。


MCC950 Targeted Inhibition of TXNIP-NLRP3 Axis-Mediated Podocyte Pyroptosis in Diabetic Nephropathy
Author:
Affiliation:

1.Guidong People’s Hospital of Guangxi Zhuang Autonomous Region;2.Guilin Medical University

Fund Project:

This work was supported by a grant from Horizontal Collaborative Research Project of Guidong People's Hospital of Guangxi Zhuang Autonomous Region (2025GDHX02) ,the Open Project Program of Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University (GKLCDSM-20230101-03) ,the Open Project Program of Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University (GKLCDSM-KF2025-08) ,Guangxi Medical and Health Key Discipline Construction Project ( Gui Wei Ke Jiao Fa [2021] No. 8), Guangxi Medical and Health Key Cultivation Discipline Construction Project ( Gui Wei Ke Jiao Fa [2023] No. 1), ,Basic Scientific Research Ability Enhancement Program for Young and Middle-aged Teachers in Guangxi Universities (2025KY0509) ,Guangxi Traditional Chinese Medicine Appropriate Technology Development and Promotion Program (GZSY2025082) ,Guangxi Medical and Health Appropriate Technology Development, Popularization and Application Program (S2023108)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    糖尿病肾病是终末期肾病的首要病因,足细胞损伤为其核心病理环节,而传统治疗难以逆转疾病进展。近年研究证实高糖诱导的足细胞焦亡是疾病进展的关键驱动因素,其核心分子机制依赖TXNIP-NLRP3炎症小体轴激活。高糖环境通过活性氧生成及甲基乙二醛修饰促使硫氧还蛋白互作蛋白与硫氧还蛋白解离,转位后结合NOD样受体家族pyrin结构域包含蛋白3并促进炎症小体组装,激活半胱氨酸天冬氨酸蛋白酶1剪切Gasdermin D蛋白形成膜孔,引发细胞破裂及白细胞介素-1β、白细胞介素-18释放,放大炎症反应并加速肾小球硬化。MCC950作为高选择性NLRP3抑制剂,可通过嵌入核苷酸结合寡聚化结构域阻断三磷酸腺苷水解,锁定NLRP3非活化构象,同时干扰TXNIP-NLRP3相互作用并调控线粒体稳态。临床前研究显示其在链脲佐菌素诱导及db/db糖尿病模型中能剂量依赖性降低蛋白尿,恢复nephrin蛋白和Wilms 瘤1蛋白表达,减轻足突融合及肾小球硬化,但在不同模型中存在疗效争议,其可能与发病机制和给药方案相关。尽管MCC950存在口服生物利用度低、靶向性不足及潜在安全性问题,但其通过阻断足细胞焦亡的独特作用机制仍具转化价值。未来通过纳米载体靶向递送、精准患者分层及联合钠-葡萄糖协同转运蛋白2抑制剂等策略,有望突破临床转化瓶颈,为糖尿病肾病提供新型精准抗炎治疗方案。

    Abstract:

    Diabetic Nephropathy (DN) is the leading cause of End-Stage Renal Disease (ESRD) globally, representing a major global health burden with limited disease-modifying therapies. Podocyte injury serves as the core pathological hallmark of DN, and conventional treatments targeting metabolic disorders or hemodynamic abnormalities fail to reverse the progressive decline of renal function. Accumulating evidence over the past decade has established that high glucose-induced podocyte pyroptosis—a pro-inflammatory form of programmed cell death—is a key driving force in DN progression, whose core molecular mechanism hinges on the activation of the TXNIP-NLRP3 inflammasome axis. Under sustained hyperglycemic conditions, excessive Reactive Oxygen Species (ROS) are generated via pathways including the polyol pathway, advanced glycation end products (AGEs) accumulation, and mitochondrial dysfunction; concurrently, methylglyoxal (a glucose metabolite) mediates post-translational modification of Thioredoxin-Interacting Protein (TXNIP). These events collectively trigger the dissociation of TXNIP from Thioredoxin (TRX), a redox-regulating protein. The free TXNIP then translocates to the mitochondria, where it binds to NOD-Like Receptor Family Pyrin Domain-Containing Protein 3 (NLRP3) and promotes inflammasome assembly. This assembly activates Cysteine-Aspartic Acid Protease 1 (caspase-1), which cleaves Gasdermin D (GSDMD) to generate its N-terminal fragment (GSDMD-NT). GSDMD-NT oligomerizes to form membrane pores, leading to podocyte swelling, rupture, and the release of pro-inflammatory cytokines Interleukin-1β(IL-1β) and Interleukin-18 (IL-18). These cytokines amplify local inflammatory responses, induce mesangial cell proliferation, and accelerate extracellular matrix deposition, ultimately exacerbating glomerulosclerosis.MCC950, a highly selective NLRP3 inhibitor, exerts its therapeutic effects through a multi-layered mechanism: it binds to the NACHT domain (NAIP, CIITA, HET-E and TP1 Domain) of NLRP3 with nanomolar affinity, forming hydrogen bonds with key residues (Lys-42 and Asp-166) within the ATP-hydrolysis pocket to block ATP hydrolysis, thereby locking NLRP3 in an inactive conformational state. Additionally, MCC950 interferes with the protein-protein interaction between TXNIP and NLRP3, and regulates mitochondrial homeostasis to reduce ROS production. Preclinical studies have demonstrated that MCC950 dose-dependently reduces proteinuria, restores the expression of podocyte-specific markers (Nephrin Protein and Wilms Tumor 1 Protein, WT1), and alleviates podocyte foot process fusion and glomerulosclerosis in both Streptozotocin (STZ)-induced type 1 diabetic models (characterized by absolute insulin deficiency) and db/db type 2 diabetic models (driven by insulin resistance). However, discrepancies in therapeutic outcomes exist across different models—some studies report exacerbated renal inflammation and fibrosis in STZ-induced models—which may stem from differences in disease pathogenesis, intervention timing (early vs. mid-stage disease), and dosing duration.Despite its promising preclinical efficacy, MCC950 faces significant translational challenges, including low oral bioavailability, insufficient podocyte targeting, potential hepatotoxicity, and drug-drug interactions with statins (commonly prescribed to diabetic patients for cardiovascular risk management). Furthermore, off-target effects such as the inhibition of carbonic anhydrase 2 have been identified, raising concerns about its safety profile. Nevertheless, its unique mechanism of action—directly blocking podocyte pyroptosis by targeting the TXNIP-NLRP3 axis—endows it with substantial translational value.In the future, strategies to overcome these barriers are expected to advance its clinical application: targeted delivery via nanocarriers (e.g., PLGA-PEG nanoparticles or nephrin antibody-conjugated systems) to enhance renal accumulation and podocyte specificity; precise patient stratification based on biomarkers such as serum IL-18 and renal TXNIP/NLRP3 expression to identify "inflammation-phenotype" DN patients most likely to benefit; and combination therapy with Sodium-Glucose Cotransporter 2 (SGLT2) inhibitors—whose metabolic benefits synergize with MCC950’s anti-inflammatory effects. These approaches hold great potential to break through clinical translation bottlenecks, offering a novel precise anti-inflammatory treatment option for DN and addressing an unmet clinical need for therapies targeting the inflammatory underpinnings of the disease.

    参考文献
    相似文献
    引证文献
引用本文

郑宏,莫中成,刘航,潘习彰,魏兵. MCC950靶向抑制TXNIP-NLRP3轴介导的足细胞焦亡在糖尿病肾病中的作用[J].生物化学与生物物理进展,,():

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-08-22
  • 最后修改日期:2025-12-09
  • 录用日期:2025-12-13
  • 在线发布日期:
  • 出版日期:
文章二维码