工程化TGF-β1仿生血小板纳米颗粒靶向治疗缺血性脑卒中
DOI:
CSTR:
作者:
作者单位:

1.中国科学院深圳先进技术研究院 深圳;2.广东医科大学药学院 东莞

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金,深圳市医学研究专项,国家重点研发计划,广东省自然科学基金,广东省科技计划


TGF-β1-Engineered biomimetic Platelet Nanoparticles for Targeted Therapy of Ischemic Stroke
Author:
Affiliation:

1.Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences;2.Pharmacy School,Guangdong Medical University

Fund Project:

The National Natural Science Foundation of China, the Shenzhen Medical Research Fund, the National Key Research and Development Program of China, the Natural Science Foundation of Guangdong Province, Guangdong Province Science and Technology Program

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 缺血性脑卒中后,急性炎症反应和持续性免疫微环境失衡会加剧神经损伤,严重限制神经功能恢复。针对这一关键病理过程,本研究旨在构建并系统评价一种兼具病灶靶向递送与免疫微环境重塑功能的仿生纳米体系——TGF-β1 工程化血小板膜包被脂质纳米颗粒(PLP)。通过验证其在缺血病灶的精准富集、炎症调控及神经保护作用,解决缺血性脑卒中治疗中“如何实现病灶定向、免疫调节与神经功能恢复的协同一体化干预”这一关键科学问题。方法 采用动态光散射、Zeta电位测定、蛋白免疫印迹与电子显微镜对PLP的粒径、表面电荷、膜蛋白保留及形貌进行表征。在体外利用LPS诱导的RAW264.7 M1极化模型和 SH-SY5Y 细胞氧糖剥夺/再灌注(Oxygen Glucose Deprivation/Reperfusion, OGD/R)模型,评价 PLP 对巨噬细胞M1型极化和神经元凋亡的调控作用。建立小鼠短暂性大脑中动脉闭塞(tMCAO)模型以模拟脑缺血-再灌注损伤,通过活体荧光成像监测 PLP 在脑内的时空分布,并结合TTC 染色、GFAP 免疫荧光以及体重变化和神经功能缺损评分(NSS),综合评估 PLP 的脑靶向富集能力、炎症与胶质反应调控作用以及对神经功能的改善效果。结果 PLP 为粒径均一、形貌规整且表面带负电的稳定纳米颗粒,并成功保留多种血小板膜黏附与免疫调节相关蛋白,显示出良好的仿生特性,并通过OGD/R诱导BV2细胞评估了最佳给药浓度。PLP能够在体外显著抑制 RAW264.7 细胞向 M1 促炎表型极化,并使缺氧/复氧条件下神经元凋亡减少。在tMCAO小鼠中,PLP 可在给药早期靶向富集于缺血半球,并在7天内维持高水平脑内滞留。与对照组相比,PLP 治疗显著减轻脑梗死范围,降低星形胶质细胞的激活程度,并促进神经功能评分恢复。结论 本研究构建了一种基于血小板膜仿生修饰的 TGF-β1 递送纳米平台,实现了“血小板膜-缺血内皮黏附分子”介导的主动靶向与 TGF-β1 的免疫抑炎、抗氧化和神经保护作用的有机整合。PLP 不仅能快速定向归巢和长效滞留于脑缺血区域,还能通过抑制炎症型细胞活化、减轻神经元凋亡和限制星形胶质细胞过度激活,从而从多层面协同调控脑卒中后的炎症微环境,显著降低组织损伤并改善行为学功能。本研究表明,利用血小板膜仿生技术实现“缺血灶靶向+免疫调控”的联合干预策略具有明显的逆转炎症微环境和改善神经功能的效果,为开发兼具靶向与免疫调节能力的新型脑卒中干预方案提供了坚实的实验基础。

    Abstract:

    Objective Post-ischemic acute inflammation and persistent dysregulated immune microenvironment exacerbate neuronal injury and severely limit functional recovery in ischemic stroke. To address this critical challenge, this study aims to engineer and systematically evaluate a biomimetic nanosystem composed of TGF-β1-loaded platelet membrane-camouflaged lipid nanoparticles (PLP), designed for dual lesion-targeted delivery and immune microenvironment remodeling. By verifying its precise accumulation, inflammatory modulation, and neuroprotective effects, we seek to resolve the key scientific challenge of achieving a synergistic, integrated intervention for lesion targeting, immune regulation, and functional recovery. Methods Physicochemical properties of PLP, including particle size, zeta potential, and morphology, were characterized via dynamic light scattering, zeta analysis, and electron microscopy, while membrane protein retention was verified by Western blotting. In vitro functional activities were seperately evaluated in LPS-induced M1-polarized RAW264.7 macrophages and an oxygen-glucose deprivation/reoxygenation (OGD/R) model in BV2 and SH-SY5Y cells. In vivo, a mouse transient middle cerebral artery occlusion (tMCAO) model was utilized to simulate ischemia-reperfusion injury. Spatiotemporal brain distribution of PLP was monitored via live fluorescence imaging, and therapeutic outcomes were comprehensively assessed using TTC staining, GFAP immunofluorescence, body weight monitoring, and neurological severity scores (NSS). Result PLP nanoparticles exhibited uniform morphology, negative surface charge, and effective retention of key platelet membrane adhesion and immunomodulatory proteins, demonstrating excellent biomimetic properties. We evaluate the optimal concentration in OGD/R-induced BV2 cells. In vitro, PLP significantly suppressed the polarization of RAW264.7 cells toward the pro-inflammatory M1 phenotype and reduced neuronal apoptosis under OGD/R conditions. In tMCAO mice, PLP rapidly accumulated in the ischemic hemisphere and sustained high-level retention for up to 7 days. Compared with controls, PLP treatment significantly reduced infarct volume, suppressed reactive astrogliosis, and accelerated the recovery of neurological function. Conclusion This study establishes a biomimetic nanoplatform that organically integrates active targeting mediated by platelet membrane-endothelial interactions with the anti-inflammatory, antioxidative, and neuroprotective functions of TGF-β1. PLP achieves rapid lesion homing and prolonged retention while synergistically modulating the post-stroke inflammatory microenvironment by inhibiting pro-inflammatory cell activation, reducing neuronal apoptosis, and limiting excessive astrocyte activation. These findings demonstrate that this combined "targeted delivery plus immune regulation" strategy effectively reverses the inflammatory microenvironment and improves neurological outcomes, providing a robust experimental basis for next-generation ischemic stroke therapeutics.

    参考文献
    相似文献
    引证文献
引用本文

陈丽琦,亢天放,黄国俊,尹 婷,马爱青,蔡林涛,潘宏.工程化TGF-β1仿生血小板纳米颗粒靶向治疗缺血性脑卒中[J].生物化学与生物物理进展,,():

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-12-09
  • 最后修改日期:2026-02-06
  • 录用日期:2026-02-06
  • 在线发布日期:
  • 出版日期:
文章二维码