-
1 蛋白质S-谷胱甘肽化的反应机制
-
1.1 蛋白质S-谷胱甘肽化修饰的反应机制
迄今所提出的S-谷胱甘肽化修饰的机制是基于含有巯基的蛋白质或GSH的氧化还原反
应[2,3,4,9] ,通常这些反应可以由ROS或RNS所引发. S-谷胱甘肽化修饰的各种发生方式[2,3,4,10,11,12,13] 具体见图1. S-谷胱甘肽化修饰的反应机制主要是:基于含有巯基的蛋白质和氧化型谷胱甘肽(GSSG)之间所发生的硫醇-二硫化物交换(图1a);细胞内的ROS和/或RNS诱导产生蛋白次磺酸(P-SOH)或谷胱甘肽次磺酸(GSOH)中间体,从而发生修饰(图1b,c);次磺酰胺中间体介导的S-谷胱甘肽化修饰(图1d); ROS和/或RNS诱导产生硫自由基,进而通过自由基重组或与硫醇盐反应发生修饰(图1e,f);硫代亚磺酸酯与硫醇发生反应生成二硫键和水,从而发生修饰(图1g,h);与次磺酸类似,ROS和/或RNS可诱导产生亚硝基谷胱甘肽(GSNO)或亚硝基蛋白(P-SNO)中间体, 从而发生修饰(图1i,j);谷氧还蛋白催化的S-谷胱甘肽化修饰(图1k). -
1.2 谷氧还蛋白(Grx)催化谷胱甘肽化修饰的反应机制
Grx催化的修饰过程,可能依赖于细胞内的氧化还原环
境[3] . 当细胞受到氧化应激刺激后,Grx可以催化蛋白质发生谷胱甘肽化(图1 k);但当细胞内的氧化信号减弱时,Grx也可以催化蛋白质的去谷胱甘肽化[3,14] . 例如,Grx1通过催化内皮细胞一氧化氮合酶的去谷胱甘肽化,从而调节炎症细胞内的信号转导[14] . 此外,Grx1介导的白介素1β半胱氨酸残基的去谷胱甘肽化还可以抑制白介素1β的活性[5] . O’Brien等[15] 证实,小鼠线粒体内的丙酮酸脱氢酶的谷胱甘肽化修饰可被Grx2所逆转;类似的是,小鼠线粒体α-酮戊二酸脱氢酶的去谷胱甘肽化修饰也是由Grx2催化[16] .Grx可以催化蛋白质发生谷胱甘肽化修
饰[1,3] ,其过程主要是Grx与GSH形成酶-二硫化物中间体(Grx-SSG),然后该中间产物与含有巯基的蛋白质(PSH)发生反应,从而发生谷胱甘肽化修饰(图1k). 如图2所示,蛋白质-SSG二硫化物的去谷胱甘肽化也可由Grx催化,并划分为单巯基催化机制(仅需要1个Cys活性位点)或双巯基催化机制(需要2个Cys活性位点). 在上述过程中,双巯基催化机制涉及到酶活性位点上形成分子内二硫化物的副反应[3] . 与双巯基催化机制相比,单巯基机制更为普遍[3] . -
2 S-谷胱甘肽化修饰的主要检测方法
-
2.1 35S-Cys放射性标记法
Eaton
等[17] 研究报道,组织细胞用含有35 S的半胱氨酸培养,在代谢过程中使得含有半胱氨酸残基的蛋白质被标记.为了检测蛋白质S-谷胱甘肽化,首先需要分离出具有放射性标记的蛋白质,分离过程通常使用非还原性的SDS-PAGE,然后通过放射自显影等技术来检测. 该方法可用于检测总蛋白质的S-谷胱甘肽化,但并不适用于被标记蛋白质的鉴定. 在实际应用中,35 S-Cys放射性标记法还可以与蛋白质组学方法相结合,以此获得更多被修饰蛋白质的信息,包括具体的修饰位点[18] . -
2.2 生物素标记法
生物素标记法是一种应用比较广泛的检测S-谷胱甘肽化修饰的方法. 首先,生物素与GSH分子的游离氨基连接,使得GSH被生物素
化[19] . 生物素氨基己酸3-磺基-N-羟基琥珀酰亚胺酯与还原型谷胱甘肽、氧化型谷胱甘肽或谷胱甘肽乙酯反应,生成生物素化的谷胱甘肽乙酯(BioGEE),然后经SDS-PAGE分离,转移到PVDF膜;进一步将PVDF膜在结合有链霉抗生物素的辣根过氧化物酶中孵育,最后使用ECL蛋白质印迹检测试剂显色,以此检测蛋白质谷胱甘肽化. 该过程采用亲和纯化,确保仅存在被修饰的蛋白质,有助于排除假阳性实验结果. 另外,此实验必须在没有还原剂的实验条件下进行. -
2.3 蛋白质组学法
近年来,蛋白质组学的方法被不断应用于谷胱甘肽化蛋白质的检测. 最新的研究证明,基质辅助激光解吸电离飞行时间质谱(matrix-assisted laser desorption/ionization time of flight mass spectrometry, MALDI-TOF-MS)法可用于检测S-谷胱甘肽化修饰的蛋白
质[20,21,22] . -
2.4 通过伊红标记的氧化型谷胱甘肽和SDS-PAGE检测蛋白质S-谷胱甘肽化
Coppo
等[23] 研究证明,伊红标记的氧化型谷胱甘肽(eosin-glutathione disulfide,E-GSSG)也可以研究蛋白质的S-谷胱甘肽化修饰. 由于自发猝灭荧光,E-GSSG以二硫化物形式存在时几乎没有荧光,经谷氧还蛋白偶联介导S-谷胱甘肽化后,通过波长520 nm的光激发,形成伊红标记的还原型谷胱甘肽(eosin glutathione,E-GSH),E-GSH可以在波长545 nm处发射易被检测的荧光. 不同浓度的伊红-谷胱甘肽化的牛血清白蛋白(eosin-glutathionylated albumin,E-GS-BSA)和单独牛血清白蛋白(BSA)经520 nm光激发后,E-GS-BSA形成E-GS-H,而BSA不发生变化.在非还原SDS-PAGE的条件下证明,E-GSH浓度与信号强度呈正相关,而BSA的则不显示任何信号. 由于E-GSSG与GSSG的反应性是类似的,因此可以利用E-GSSG的这一特性检测蛋白质的S-谷胱甘肽化修饰. -
2.5 抗体法检测S-谷胱甘肽化
S-谷胱甘肽化修饰也可使用抗谷胱甘肽抗体检
测[24] . 由于在检测过程中不需要预处理,因此抗谷胱甘肽抗体可以检测在各种生理条件下的S-谷胱甘肽化修饰蛋白. 由于抗谷胱甘肽抗体表现出较低的灵敏度,因此极大地限制了S-谷胱甘肽化检测的准确性. 在检测过程中,这种局限性可以通过纯化蛋白质或富集靶蛋白来避免. 目前,这种方法仅适用于分析某种已知的S-谷胱甘肽化修饰蛋白. -
2.6 基于点击反应和蛋白质组学的方法检测S-谷胱甘肽化
针对鉴定S-谷胱甘肽化修饰的蛋白质,Feng
等[25] 开发了一种基于“Clickable”探针和蛋白质组学结合的新方法. 该研究设计了一种“Clickable”探针:Alkynyl-containing GSH probe. 从细胞或组织中提取并富集的蛋白质经过一系列反应后,与“Clickable”探针发生点击反应,其产物用于LC-MS/MS分析,对LC-MS/MS的数据进行蛋白质组学分析,进而鉴定出发生S-谷胱甘肽化修饰的蛋白质. 在实验过程中,阳性对照采用过氧化氢预处理,阴性对照则用二硫苏糖醇预处理. -
3 S-谷胱甘肽化修饰的研究进展
S-谷胱甘肽化修饰可以通过调节蛋白质功能或活性来调控细胞内多种生理或生化过
程[2,4,14,26,27] ,它还可以作为含有巯基的蛋白质(特别是以巯基为活性基团的酶类)免受不可逆损伤的保护机制[5,20,28] . 例如,S-谷胱甘肽化参与线粒体及柠檬酸循环过程中蛋白质翻译后修饰,进而调控能量代谢[29] . S-谷胱甘肽化修饰还可以提高组织细胞对药物毒性的耐性. 研究证明,谷氨酸半胱氨酸连接酶的S-谷胱甘肽化修饰提高了小鼠对扑热息痛诱导的肝毒性耐性[30] .最初的研究认为S-谷胱甘肽化只在氧化应激过程中发挥作用. 随着研究的深入,发现该修饰在正常生理状态下也发挥重要的作
用[31] . 已经知道,S-谷胱甘肽化修饰是细胞内蛋白质参与氧化还原信号转导的一种关键调节方式[17,32] . 在哺乳动物细胞中,尽管相对于整个蛋白质组来讲,发生谷胱甘肽化的蛋白质的数量并不大,但已有研究证实了动物细胞中存在不少谷胱甘肽化的蛋白质. Ullevig等[33] 在小鼠巨噬细胞内检测到大约130个发生谷胱甘肽化修饰的蛋白质,涉及多种细胞功能:代谢、转录和翻译、蛋白质折叠、自由基清除、细胞运动以及细胞凋亡. 例如,3-磷酸甘油醛脱氢酶(glyceraldehyde-3-phosphate dehydrogenase,GAPDH)活性位点上的半胱氨酸残基发生S-谷胱甘肽化修饰,导致其酶活性被抑制[20] ,且保护了GAPDH免受不可逆的氧化损伤. 在患有坏死性小肠结肠炎的小鼠内皮细胞内,其一氧化氮合酶的谷胱甘肽化修饰则抑制了一氧化氮的合成[14] . 白介素1β半胱氨酸残基的谷胱甘肽化修饰保护了白介素1β免受ROS介导的不可逆氧化损伤[5] . S-谷胱甘肽化可能取决于细胞内的ROS水平[34] . 在低ROS水平的微环境,Grx催化蛋白激酶发生S-谷胱甘肽化修饰,从而激活蛋白激酶[34] . 另外,小鼠线粒体内α-酮戊二酸脱氢酶的谷胱甘肽化修饰的研究证明,其修饰提高了酶活性. 细胞系及动物体内蛋白质谷胱甘肽化修饰的研究结果总结于表1.在植物中,蛋白质谷胱甘肽化修饰的研究也取得一定的进展, 具体结果如表. 2其中,硫氧还原蛋白f(TRX f)是早期发现能够进行谷胱甘肽化修饰的植物蛋
白[35] ,它是叶绿体碳固定中氧化还原调节的关键组分. 在氧化胁迫下,谷胱甘肽化可保护硫氧还原蛋白免受ROS诱导的不可逆氧化[35] . Ito等[19] 的研究结果显示,在拟南芥中大约有20个谷胱甘肽化的蛋白质,其中磷酸丙糖异构酶和醛缩酶两个已被明确鉴定. 另外,Lee等[36] 通过分离拟南芥的总蛋白质,并结合蛋白质组学技术鉴定了具有二硫键的蛋白质,但S-谷胱甘肽化的蛋白质数量较少. Dixon等[37] 研究鉴定出拟南芥中大约70种谷胱甘肽化的蛋白质,但不清楚其修饰的功能及其修饰位点.在微生物中,蛋白质谷胱甘肽化修饰的研究也已经取得了初步的进展. 其中,在酵
母[31,38] 和细菌[39] 中存在S-谷胱甘肽化修饰的蛋白质. 大规模蛋白质组学的研究数据也证明,在蓝藻中大约350个蛋白质发生了谷胱甘肽化修饰,并鉴定了125个修饰位点[40] . Prinarakis等[41] 研究证实了S-谷胱甘肽化作为一种翻译后修饰参与控制了与病毒感染相关的细胞信号传导途径;在基孔肯雅病毒感染的细胞内,病毒诱导产生的氧化应激可以导致蛋白质发生谷胱甘肽化修饰,从而影响了病毒蛋白的功能[27] . 关于植物和微生物蛋白谷胱甘肽化修饰的研究结果具体见表2.表1 细胞系及动物体内谷胱甘肽化蛋白的鉴定结果
Table 1 Identified results of S-glutathionylated proteins in cell lines and animals
实验材料 靶蛋白 修饰蛋白的功能 修饰位点 参考文献 鸡(Gallus gallus) Cu, Zn超氧化物歧化酶 保护四氧嘧啶介导的b细胞免于死亡 C110,153 [42] 人(Homo sapiens) Cu, Zn超氧化物歧化酶 阻止四氧嘧啶介导的b细胞死亡 C111 [43] 鼠(Mus musculus) 苹果酸脱氢酶 降低苹果酸脱氢酶活性 / [44] 鼠(Mus musculus) 肌酸激酶 降低肌酸激酶活性 C283 [45] 兔(Oryctolagus cuniculus) 肌动蛋白 影响聚合速率及结合原肌球蛋白的协调性 C374 [46] 人(Homo sapiens) 钙结合蛋白 保护胰腺钙b细胞免于死亡 C187 [43] 鼠(Mus musculus) 组织蛋白酶K 提高组织蛋白酶K活性 C25 [47] 人(Homo sapiens) 脂肪酸结合蛋白 提高脂肪酸结合蛋白的水平 / [48] 人(Homo sapiens) 热休克蛋白60 下调热休克蛋白60水平 / [48] 人(Homo sapiens) 细胞凋亡蛋白酶3 调控β-细胞凋亡信号 C22 [49] 鼠(Mus musculus) 磷酸甘油醛脱氢酶 抑制磷酸甘油醛脱氢酶活性 C149 [50] 人(Homo sapiens) 血红蛋白 谷胱甘肽化蛋白含量升高 C93 [51] 鼠(Mus musculus) 肌动蛋白 降低聚合速率及结合原肌球蛋白的协调性 C374 [52] 兔(Oryctolagus cuniculus) 钙释放通道受体蛋白 提高钙离子释放速率,减少钙离子流失 C3635 [53] 鼠(Mus musculus) 线粒体酶复合体Ⅰ 提高线粒体内超氧化物的形成 C85,C86 [54] 牛(Bos taurus) 线粒体酶复合体Ⅰ 下调线粒体酶复合体Ⅰ的活性 / [55] 鼠(Mus musculus) 线粒体酶复合体Ⅱ 提高电子转运效率,减少电子流失 C90 [56] 兔(Oryctolagus cuniculus) 内质网钙ATP酶 提高肌内质网钙三磷酸腺苷酶活性 C674 [57] 鼠(Mus musculus) α-酮戊二酸脱氢酶 抑制α-酮戊二酸脱氢酶活性 / [58,59] 鼠(Mus musculus) Ras蛋白 提高蛋白质的合成 / [57] 鼠(Mus musculus) Ras蛋白 提高Ras和Raf的结合以及提高蛋白激酶(ERK)
活性
C118 [60] 牛(Bos taurus) Ras蛋白 提高Ras的酶活性 C118 [61] 牛(Bos taurus) Ras蛋白 提高ERK和Akt的瞬时磷酸化 C118 [62] 鼠(Mus musculus) 蛋白质酪氨酸磷酸化酶1B 抑制蛋白质酪氨酸磷酸化酶活性 / [63] 兔(Oryctolagus cuniculus) 3-磷酸甘油醛脱氢酶 酶活性被抑制 C150,
C154
[20] 鼠(Mus musculus) 一氧化氮合酶 抑制一氧化氮合酶活性 / [14] 鼠(Mus musculus) 白介素1β 维持了生物体内白介素1β的生物活性 C188 [5] 表1 细胞系及动物体内谷胱甘肽化蛋白的鉴定结果
Table 1 Identified results of S-glutathionylated proteins in cell lines and animals
鼠(Mus musculus) 丙酮酸脱氢酶 提高丙酮酸脱氢酶活性 / [15] 鼠(Mus musculus) 肌钙蛋白 提高对钙离子的敏感性 C134 [64] 鼠(Mus musculus) 腺苷酸活化蛋白激酶 激活蛋白激酶活性 / [34] 鼠(Mus musculus) α-酮戊二酸脱氢酶 提高α-酮戊二酸脱氢酶活性 / [16] 鼠(Mus musculus) Keap1蛋白 激活Nrf2并提高谷胱甘肽s-转移酶基因的表达 / [65] 人(Homo sapiens) L-丝束蛋白 影响细胞吞噬作用 C460 [66] 人(Homo sapiens) 胱硫醚-β-合酶 提高胱硫醚-β-合酶活性 C346 [67] 鼠(Mus musculus)
有丝分裂原/细胞外信号
调节激酶激酶1
抑制了激酶的催化活性
C1238
[68]
鼠(Mus musculus) 丙酮酸脱氢酶 提高丙酮酸脱氢酶活性 / [15] 鼠(Mus musculus) 肌钙蛋白 提高对钙离子的敏感性 C134 [64] 鼠(Mus musculus) 腺苷酸活化蛋白激酶 激活蛋白激酶活性 / [34] 鼠(Mus musculus) α-酮戊二酸脱氢酶 提高α-酮戊二酸脱氢酶活性 / [16] 鼠(Mus musculus) Keap1蛋白 激活Nrf2并提高谷胱甘肽s-转移酶基因的表达 / [65] 人(Homo sapiens) L-丝束蛋白 影响细胞吞噬作用 C460 [66] 人(Homo sapiens) 胱硫醚-β-合酶 提高胱硫醚-β-合酶活性 C346 [67] 鼠(Mus musculus)
有丝分裂原/细胞外信号
调节激酶激酶1
抑制了激酶的催化活性
C1238
[68]
注:/:无研究数据
表2 植物、微生物以及病毒谷胱甘肽化蛋白的鉴定
Table 2 Identification of S-glutathionylated proteins in plants,microorganism and virus
物种 蛋白质名称 修饰的功能 修饰位点 参考文献 拟南芥
(Arabidopsis thaliana)
磷酸丙糖异构酶
抑制了磷酸丙糖异构酶的活性
/
[19]
拟南芥
(Arabidopsis thaliana)
醛缩酶
/
/
[19]
拟南芥
(Arabidopsis thaliana)
脱氢抗坏血酸还原酶
抑制了脱氢抗坏血酸还原酶的活性
C6
[69]
拟南芥
(Arabidopsis thaliana)
硫氧还原蛋白f1
降低了磷酸烯醇式丙酮酸羧化酶和
磷酸甘油醛脱氢酶的活性
C60
[35]
大豆(Glycine max) 蛋白质酪氨酸磷酸酶 抑制了蛋白质酪氨酸磷酸酶的活性 C78,C176 [70] 蓝藻 (Cyanobacteria) 过氧化物酶 / / [40] 蓝藻 (Cyanobacteria) 3-磷酸甘油酸脱氢酶 / / [40] 基孔肯雅病毒
(Chikungunya fever)
非结构蛋白2(nsP2)
提高非结构蛋白2活性
C175,C214, C313,C462, C698,C755 [25]
HEK293细胞
干扰素调节因子3
调控IRF3-CBP相互作用,
同时激活IFN β信号通路
C222,C347
C289,C371
[41]
注:/:无研究数据
-
4 蛋白质S-谷胱甘肽化修饰的生理作用
-
4.1 S-谷胱甘肽化修饰在信号转导中的作用
许多生长、分化和凋亡所依赖的信号分子和转录因子都可能受到S-谷胱甘肽化修饰的调控. 已经知道,在应对氧化应激时,S-谷胱甘肽化修饰在调节蛋白质酪氨酸磷酸化酶1B (protein-tyrosine phosphatase 1B,PTP1B
)[63] 和有丝分裂原/细胞外信号调节激酶激酶1 [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase kinase 1,MEKK1][68] 活性方面起到关键作用. 例如,在大鼠肺泡巨噬细胞NR8383的细胞系中,ROS诱导PTP1B和GSH之间形成二硫键而发生谷胱甘肽化修饰,并进一步影响下游信号[63] . 甲萘醌介导的氧化应激所引发的S-谷胱甘肽化修饰还干扰了MEKK1亚结构域的功能,进而抑制了激酶的催化活性[68] . 在内质网应激反应过程中,一些关键蛋白质的S-谷胱甘肽化修饰还能将氧化还原信号的转导与调控未折叠蛋白的应答过程相联系[71] . S-谷胱甘肽化修饰还能参与调控与病毒感染相关的细胞信号传导[41] . 干扰素调节因子3(IRF3)在非感染细胞中是谷胱甘肽化的,但在病毒感染后,IRF3经历由Grx催化的去谷胱甘肽化,从而参与了IRF3与CBP的相互作用的过程,这种相互作用可以激活干扰素基因的转录[41] . 大豆蛋白质酪氨酸磷酸化酶(protein tyrosine phosphatases,PTPs)活性可被GSSG诱导的S-谷胱甘肽化修饰抑制,其发生修饰的位点是其两个半胱氨酸残基[70] . 上述研究提示S-谷胱甘肽化修饰可能代表一种通用的信号转导调节机制. -
4.2 蛋白质的谷胱甘肽化修饰调控氧化还原稳态
在非洲寄生虫中,氧化胁迫诱发的S-谷胱甘肽化维持了细胞内氧化还原稳态,属于一种可逆的保护机
制[28] . 大肠杆菌Grx-4在体外被GSSG氧化生成分子内二硫化物和谷胱甘肽[72] ,这一过程有助于维持细胞内环境的氧化还原稳态. 拟南芥和衣藻的叶绿体f-型硫氧还原蛋白能够在体外进行S-谷胱甘肽化[35] ,其发生蛋白质修饰的靶标是两个不同活性位点的半胱氨酸残基. 由于f-型硫氧还原蛋白特异性参与了碳固定酶的光调节,其谷胱甘肽化修饰维持了氧化应激条件下光合代谢内环境的氧化还原稳态[35] . 杨树线粒体的硫氧还原蛋白在经过GSSG处理后,其在体外发生S-谷胱甘肽化修饰[73] . 上述研究表明,蛋白质的谷胱甘肽化修饰调控氧化还原稳态. -
4.3 S-谷胱甘肽化修饰与S-亚硝基化修饰的相互作用
S-亚硝基化和S-谷胱甘肽化主要作为ROS和RNS介导的信号转导机制,也是细胞应对氧化和/或亚硝化胁迫的一种保护机
制[74] . 在细胞受到氧化或亚硝化应激后,S-谷胱甘肽化和S-亚硝基化可能同时参与了氧化还原信号的转导过程[2,4,74] . 两种修饰对蛋白质活性的影响可能均表现为激活或抑制[2,4,74] . 此外,S-谷胱甘肽化和S-亚硝基化也可能发挥相反的作用,并通过竞争性的修饰某些特定半胱氨酸残基位点来实现[64] .S-谷胱甘肽化和S-亚硝基化之间也可以发生相互作用,从而形成混合的二硫化物,这种相互作用可用于将氧化和亚硝基化刺激转化成各种水平的细胞信号传导的功能反
应[7] . 由于具有同时引发S-谷胱甘肽化和S-亚硝基化两种蛋白质修饰的功能,亚硝基谷胱甘肽(GSNO)受到了广泛的关注[7] . 在短期氧化/亚硝化胁迫中,S-谷胱甘肽化/去谷胱甘肽化和S-亚硝基化/去亚硝基化之间的协同作用的意义,在于它们可以产生细胞生存所需的代谢变化.为了进一步解析氧化/亚硝基化介导的蛋白质修饰的生物学功能,可以结合蛋白质的特异性修饰后对细胞或组织代谢组变化的影响来研究. -
5 展 望
尽管现有的研究初步揭示了S-谷胱甘肽化修饰的发生机制,但是不清楚生物体是如何精确调节上述修饰的. 同时在S-谷胱甘肽化修饰过程中,参与修饰的半胱氨酸残基的反应敏感性存在一定的差异,且诱导谷胱甘肽化修饰的因素也存在争
议[75] . 由于S-谷胱甘肽化和S-亚硝基化还可竞争性地结合共同的修饰位点,如何进一步提高和改善检测的敏感度和特异性,减少假阳性也是S-谷胱甘肽化修饰研究的重要方向.值得注意的是,S-谷胱甘肽化修饰的生理意义以及靶标仍然是今后重要的研究方向. 虽然大多数体外实验研究已经证实了S-谷胱甘肽化蛋白的功能,但其最有说服性的数据必须通过研究细胞自身环境中的谷胱甘肽化蛋白的功能来获
得[2,4] . 因此,结合遗传学的研究将能进一步阐明S-谷胱甘肽化修饰的生物学功能. 必须指出的是,尽管半胱氨酸点突变将有助于研究谷胱甘肽化修饰对靶蛋白功能的影响,但是该方法不能解决同一蛋白质中多个半胱氨酸残基所发生的重叠修饰问题[2,76] ,因此构建不同半胱氨酸位点的组合突变将是一个要注意的问题. 相信随着新的S-谷胱甘肽化靶标以及作用机制的解析,不仅有助于我们对S-谷胱甘肽化修饰的认知,而且也可以为动物和人类疾病的治疗以及提高植物耐/抗逆性提供理论依据.Tel: 025-84396542, E-mail: wbshenh@njau.edu.cn
-
参 考 文 献
-
1
Sánchez-Gómez F J, Espinosa-Díez C, Dubey M, et al. S-glutathionylation: relevance in diabetes and potential role as a biomarker. Biol Chem, 2013, 394(10): 1263-1280
-
2
Dalle-Donne I, Rossi R, Colombo G, et al. Protein S-glutathionylation: a regulatory device from bacteria to humans. Trends Biochem Sci, 2009, 34(2): 85-96
-
3
Mieyal J J, Gallogly M M, Qanungo S, et al. Molecular mechanisms and clinical implications of reversible protein S-glutathionylation. Antioxid Redox Signal, 2008, 10(11): 1941-1988
-
4
Dalle-Donne I, Rossi R, Giustarini D, et al. S-glutathionylation in protein redox regulation. Free Radic Biol Med, 2007, 43(6): 883-898
-
5
Zhang X, Liu P, Zhang C, et al. Positive regulation of interleukin-1β bioactivity by physiological ROS-mediated cysteine S-glutathionylation. Cell Rep, 2017, 20(1): 224-235
-
6
Zhao X, Ning Q, Ai M, et al. Identification of S-glutathionylation sites in species-specific proteins by incorporating five sequence-derived features into the general pseudo-amino acid composition. J Theor Biol, 2016, 398: 96-102
-
7
Hill B G, Bhatnagar A. Protein S-glutathiolation: redox-sensitive regulation of protein function. J Mol Cell Cardiol, 2012, 52(3): 559-567
-
8
Malvezzi A, Higa P M, T-do Amaral A, et al. The cysteine-rich protein thimet oligopeptidase as a model of the structural requirements for S-glutathiolation and oxidative oligomerization. Plos One, 2012, 7(6): e39408
-
9
Martínez-Ruiz A, Cadenas S, Lamas S. Nitric oxide signaling: classical, less classical, and nonclassical mechanisms. Free Radic Biol Med, 2011, 51(1): 17-29
-
10
Gupta V, Carroll K S. Sulfenic acid chemistry, detection and cellular lifetime. Biochim Biophys Acta, 2014, 1840(2): 847-875
-
11
Pimentel D, Haeussler D J, Matsui R, et al. Regulation of cell physiology and pathology by protein S-glutathionylation: lessons learned from the cardiovascular system. Antioxid Redox Signal, 2012, 16(6): 524-542
-
12
Grek C L, Zhang J, Manevich Y, et al. Causes and consequences of cysteine S-glutathionylation. J Biol Chem, 2013, 288(37): 26497-26504
-
13
Demasi M, Netto L E, Silva G M, et al. Redox regulation of the proteasome via S-glutathionylation. Redox Biol, 2014, 2: 44-51
-
14
Shang Q, Bao L, Guo H, et al. Contribution of glutaredoxin-1 to S-glutathionylation of endothelial nitric oxide synthase for mesenteric nitric oxide generation in experimental necrotizing enterocolitis. Transl Res, 2017, 188: 92-105
-
15
O’Brien M, Chalker J, Slade L, et al. Protein S-glutathionylation alters superoxide/hydrogen peroxide emission from pyruvate dehydrogenase complex. Free Radic Biol Med, 2017, 106: 302-314
-
16
Mailloux R J, Ayre D C, Christian S L. Induction of mitochondrial reactive oxygen species production by GSH mediated S-glutathionylation of 2-oxoglutarate dehydrogenase. Redox Biol, 2016, 8: 285-297
-
17
Eaton P. Protein thiol oxidation in health and disease: techniques for measuring disulfides and related modifications in complex protein mixtures. Free Radic Biol Med, 2006, 40(11): 1889-1899
-
18
Fratelli M, Demol H, Puype M, et al. Identification by redox proteomics of glutathionylated proteins in oxidatively stressed human T lymphocytes. Proc Natl Acad Sci USA, 2002, 99(6): 3505-3510
-
19
Ito H, Iwabuchi M, Ogawa K. The sugar-metabolic enzymes aldolase and triose-phosphate isomerase are targets of glutathionylation in Arabidopsisthaliana: detection using biotinylated glutathione. Plant Cell Physiol, 2003, 44(7): 655-660
-
20
Barinova K V, Serebryakova M V, Muronetz V I, et al. S-glutathionylation of glyceraldehyde-3-phosphate dehydrogenase induces formation of C150-C154 intrasubunit disulfide bond in the active site of the enzyme. Biochim Biophys Acta, 2017, 1861(12): 3167-3177
-
21
McGarry D J, Chen W, Chakravarty P, et al. Proteome-wide identification and quantification of S-glutathionylation targets in mouse liver. Biochem J, 2015, 469(1): 25-32
-
22
Bukowski M R, Bucklin C, Picklo M J. Quantitation of protein S-glutathionylation by liquid chromatography-tandem mass spectrometry: correction for contaminating glutathione and glutathione disulfide. Anal Biochem, 2015, 469: 54-64
-
23
Coppo L, Montano S J, Padilla A C, et al. Determination of glutaredoxin enzyme activity and protein S-glutathionylation using fluorescent eosin-glutathione. Anal Biochem, 2016, 499: 24-33
-
24
Gao X H, Bedhomme M, Veyel D, et al. Methods for analysis of protein glutathionylation and their application to photosynthetic organisms. Mol Plant, 2009, 2(2): 218-235
-
25
Feng S, Chen Y, Yang F, et al. Development of a clickable probe for profiling of protein glutathionylation in the central cellular metabolism of E. coli and Drosophila. Chem Biol, 2015, 22(11): 1461-1469
-
26
Portman J L, Huang Q, Reniere M L, et al. Activity of the pore-forming virulence factor listeriolysin O is reversibly inhibited by naturally occurring S-glutathionylation. Infect Immun, 2017, 85(4): e00959-16
-
27
Saisawang C, Kuadkitkan A, Smith D R, et al. Glutathionylation of chikungunya nsP2 protein affects protease activity. Biochim Biophys Acta, 2017, 1861(2): 106-111
-
28
Ulrich K, Finkenzeller C, Merker S, et al. Stress-induced protein S-glutathionylation and S-trypanothionylation in African trypanosomes-a quantitative redox proteome and thiol analysis. Antioxid Redox Signal, 2017, 27(9): 517-533
-
29
McGarry D J, Chen W, Chakravarty P, et al. Proteome-wide identification and quantification of S-glutathionylation targets in mouse liver. Biochem J, 2015, 469(1): 25-32
-
30
McGarry D J, Chakravarty P, Wolf C R, et al. Altered protein S-glutathionylation identifies a potential mechanism of resistance to acetaminophen-induced hepatotoxicity. J Pharmacol Exp Ther, 2015, 355(2): 137-144
-
31
Gergondey R, Garcia C, Marchand C H, et al. Modulation of the specific glutathionylation of mitochondrial proteins in the yeast Saccharomyces cerevisiae under basal and stress conditions. Biochem J, 2017, 474(7): 1175-1193
-
32
Butterfield D A, Dalle-Donne I. Redox proteomics: from protein modifications to cellular dysfunction and diseases. Mass Spectrom Rev, 2014, 33(1): 1-6
-
33
Ullevig S L, Kim H S, Short J D, et al. Protein S-glutathionylation mediates macrophage responses to metabolic cues from the extracellular environment. Antioxid Redox Signal, 2016, 25(15): 836-851
-
34
Dong K, Wu M, Liu X, et al. Glutaredoxins concomitant with optimal ROS activate AMPK through S-glutathionylation to improve glucose metabolism in type 2 diabetes. Free Radic Biol Med, 2016, 101: 334-347
-
35
Michelet L, Zaffagnini M, Marchand C, et al. Glutathionylation of chloroplast thioredoxin f is a redox signaling mechanism in plants. Proc Natl Acad Sci USA, 2005, 102(45): 16478-16483
-
36
Lee K, Lee J, Kim Y, et al. Defining the plant disulfide proteome. Electrophoresis, 2004, 25(3): 532-541
-
37
Dixon D P, Skipsey M, Grundy N M, et al. Stress-induced protein S-glutathionylation in Arabidopsis. Plant Physiol, 2005, 138(4): 2233-2244
-
38
Shenton D, Grant C M. Protein S-thiolation targets glycolysis and protein synthesis in response to oxidative stress in the yeast Saccharomyces cerevisiae. Biochem J, 2003, 374(2): 513-519
-
39
Leichert L I, Jakob U. Protein thiol modifications visualized in vivo. Plos Biol, 2004, 2(11): e333
-
40
Chardonnet S, Sakr S, Cassier-Chauvat C, et al. First proteomic study of S-glutathionylation in cyanobacteria. J Proteome Res, 2014, 14(1): 59-71
-
41
Prinarakis E, Chantzoura E, Thanos D, et al. S-glutathionylation of IRF3 regulates IRF3-CBP interaction and activation of the IFNβ pathway. EMBO J, 2008, 27(6): 865-875
-
42
Schininà M E, Carlini P, Polticelli F, et al. Amino acid sequence of chicken Cu, Zn-containing superoxide dismutase and identification of glutathionyl adducts at exposed cysteine residues. FEBS J, 1996, 237(2): 433-439
-
43
Tao L, English A M. Protein S-glutathiolation triggered by decomposed S-nitrosoglutathione. Biochem, 2004, 43(13): 4028-4038
-
44
Eaton P, Shattock M J. Purification of proteins susceptible to oxidation at cysteine residues: identification of malate dehydrogenase as a target for S-glutathiolation. Ann N Y Acad Sci, 2002, 973(1): 529-532
-
45
Reddy S, Jones A D, Carroll E, et al. Inactivation of creatine kinase by S-glutathionylation of the active-site cysteine residue. Biochem J, 2000, 347(3): 821-827
-
46
Dalle-Donne I, Giustarini D, Rossi R, et al. Reversible S-glutathionylation of Cys374 regulates actin filament formation by inducing structural changes in the actin molecule. Free Radic Biol Med, 2003, 34(1): 23-32
-
47
Percival M D, Ouellet M, Campagnolo C, et al. Inhibition of cathepsin K by nitric oxide donors: evidence for the formation of mixed disulfides and a sulfenic acid. Biochem, 1999, 38(41): 13574-13583
-
48
Fratelli M, Demol H, Puype M, et al. Identification by redox proteomics of glutathionylated proteins in oxidatively stressed human T lymphocytes. Proc Natl Acad Sci USA, 2002, 99(6): 3505-3510
-
49
Pan S, Berk B C. Glutathiolation regulates tumor necrosis factor-α-induced caspase-3 cleavage and apoptosis: key role for glutaredoxin in the death pathway. Circ Res, 2007, 100(2): 213-219
-
50
Eaton P, Wright N, Hearse D J, et al. Glyceraldehyde phosphate dehydrogenase oxidation during cardiac ischemia and reperfusion. J Mol Cell Cardiol, 2002, 34(11): 1549-1560
-
51
Sampathkumar R, Balasubramanyam M, Sudarslal S, et al. Increased glutathionylated hemoglobin (HbSSG) in type 2 diabetes subjects with microangiopathy. Clin Biochem, 2005, 38(10): 892-899
-
52
Chen F C, Ogut O. Decline of contractility during ischemia-reperfusion injury: actin glutathionylation and its effect on allosteric interaction with tropomyosin. Am J Physiol Cell Physiol, 2006, 290(3): 719-727
-
53
Aracena-Parks P, Goonasekera S A, Gilman C P, et al. Identification of cysteines involved in S-nitrosylation, S-glutathionylation, and oxidation to disulfides in ryanodine receptor type 1. J Biol Chem, 2006, 281(52): 40354-40368
-
54
Taylor E R, Hurrell F, Shannon R J, et al. Reversible glutathionylation of complex I increases mitochondrial superoxide formation. J Biol Chem, 2003, 278(22): 19603-19610
-
55
Beer S M, Taylor E R, Brown S E, et al. Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant defense. J Biol Chem, 2004, 279(46): 47939-47951
-
56
Chen Y R, Chen C L, Pfeiffer D R, et al. Mitochondrial complex II in the post-ischemic heart: OXIDATIVE INJURY AND THE ROLE OF PROTEIN S-GLUTATHIONYLATION. J Biol Chem, 2007, 282(45): 32640-32654
-
57
Adachi T, Weisbrod R M, Pimentel D R, et al. S-Glutathiolation by peroxynitrite activates SERCA during arterial relaxation by nitric oxide. Nat Med, 2004, 10(11): 1200-1207
-
58
Applegate M A, Humphries K M, Szweda L I. Reversible inhibition of α-ketoglutarate dehydrogenase by hydrogen peroxide: glutathionylation and protection of lipoic acid. Biochem, 2008, 47(1): 473-478
-
59
Nulton-Persson A C, Starke D W, Mieyal J J, et al. Reversible inactivation of α-ketoglutarate dehydrogenase in response to alterations in the mitochondrial glutathione status. Biochem, 2003, 42(14): 4235-4242
-
60
Pimentel D R, Adachi T, Ido Y, et al. Strain-stimulated hypertrophy in cardiac myocytes is mediated by reactive oxygen species-dependent Ras S-glutathiolation. J Mol Cell Cardiol, 2006, 41(4): 613-622
-
61
Clavreul N, Adachi T, Pimental D R, et al. S-glutathiolation by peroxynitrite of p21ras at cysteine-118 mediates its direct activation and downstream signaling in endothelial cells. FASEB J, 2006, 20(3): 518-520
-
62
Clavreul N, Bachschmid M M, Hou X, et al. S-glutathiolation of p21ras by peroxynitrite mediates endothelial insulin resistance caused by oxidized low-density lipoprotein. Arterioscler Thromb Vasc Bio, 2006, 126(3): 2454-2461
-
63
Rinna A, Torres M, Forman H J. Stimulation of the alveolar macrophage respiratory burst by ADP causes selective glutathionylation of protein tyrosine phosphatase 1B. Free Radic Biol Med, 2006, 41(1): 86-91
-
64
de Winter J M, Ottenheijm C A. A two-faced cysteine residue modulates skeletal muscle contraction. Focus on “S-nitrosylation and S-glutathionylation of Cys134 on troponin I have opposing competitive actions on Ca2+ sensitivity in rat fast-twitch muscle fibers. Am J Physiol Cell Physiol, 2017, 312(3): C314-C315
-
65
Carvalho A N, Marques C, Guedes R C, et al. S-Glutathionylation of Keap1: a new role for glutathione S-transferase pi in neuronal protection. FEBS Lett, 2016, 590(10): 1455-1466
-
66
Dubey M, Singh A K, Awasthi D, et al. L-Plastin S-glutathionylation promotes reduced binding to β-actin and affects neutrophil functions. Free Radic Biol Med, 2015, 86: 1-15
-
67
Niu W N, Yadav P K, Adamec J, et al. S-glutathionylation enhances human cystathionine-β-synthase activity under oxidative stress conditions. Antioxid Redox Signal, 2015, 22(5): 350-361
-
68
Cross J V, Templeton D J. Oxidative stress inhibits MEKK1 by site-specific glutathionylation in the ATP-binding domain. Biochem J, 2004, 381(3): 675-683
-
69
Dixon D P, Davis B G, Edwards R. Functional divergence in the glutathione transferase superfamily in plants: identification of two classes with putative functions in redox homeostasis in Arabidopsis thaliana. J Biol Chem, 2002, 277(34): 30859-30869
-
70
Dixon D P, Fordham-Skelton A P, Edwards R. Redox regulation of a soybean tyrosine-specific protein phosphatase. Biochem, 2005, 44(21): 7696-7703
-
71
Ye Z W, Zhang J, Ancrum T, et al. Glutathione S-transferase P-mediated protein S-glutathionylation of resident endoplasmic reticulum proteins influences sensitivity to drug-induced unfolded protein response. Antioxid Redox Signal, 2017, 26(6): 247-261
-
72
Fernandes A P, Fladvad M, Berndt C, et al. A novel monothiol glutaredoxin (Grx4) from Escherichia coli can serve as a substrate for thioredoxin reductase. J Biol Chem, 2005, 280(26): 24544-24552
-
73
Gelhaye E, Rouhier N, Gérard J, et al. A specific form of thioredoxin h occurs in plant mitochondria and regulates the alternative oxidase. Proc Natl Acad Sci USA, 2004, 101(40): 14545-14550
-
74
Belcastro E, Gaucher C, Corti A, et al. Regulation of protein function by S-nitrosation and S-glutathionylation: processes and targets in cardiovascular pathophysiology. Biol Chem, 2017, 398(12): 1267-1293
-
75
Dalle-Donne I, Milzani A, Gagliano N, et al. Molecular mechanisms and potential clinical significance of S-glutathionylation. Antioxid Redox Signal, 2008, 10(3): 445-473
-
76
Janssen-Heininger Y M, Mossman B T, Heintz N H, et al. Redox-based regulation of signal transduction: principles, pitfalls, and promises. Free Radic Biol Med, 2008, 45(1): 1-17
-
1
摘要
S-谷胱甘肽化(S-glutathionylation)是谷胱甘肽和靶蛋白半胱氨酸残基之间形成混合二硫化物的过程.由于其能调节靶蛋白功能,因此也属于蛋白质翻译后修饰. 与其相对应,蛋白质的去谷胱甘肽化可由谷氧还蛋白(Grx)催化. 因此,S-谷胱甘肽化修饰也被认为是一种防止蛋白质半胱氨酸巯基发生不可逆修饰的保护机制. 由于该修饰还会改变含有巯基的氧化还原敏感型蛋白的结构与功能,因此也属于蛋白质功能调节的重要方式. 哺乳动物细胞中S-谷胱甘肽化水平的改变与许多病理机制有关,但S-谷胱甘肽化在植物中的研究还处于起步阶段. 本文综述了蛋白质的S-谷胱甘肽化的反应机制、检测方法、生理作用的相关研究进展,最后还提出今后研究中要解决的重要问题.
Abstract
S-glutathionylation, the formation of disulphide of glutathione and target protein cysteine residues, is a post-translational modification that modulates the function of target protein. Besides its formation, the deglutathionylation of protein can also be reversibly catalyzed by glutaredoxin (Grx). The S-glutathionylation modification is also considered to be a protective mechanism for preventing cysteine residues of protein from irreversible oxidation. Since it changes the structure and function of the redox-sensitive thiol-containing protein, S-glutathionylation therefore is a mechanism responsible for the regulation of protein function. The changes in the levels of S-glutathionylation in mammalian cells are associated with many pathologic mechanisms. However, the research of S-glutathionylation in plants is just the beginning. In this paper, the research progress in mechanism, detecting method, and physiological action of S-glutathionylation were reviewed. Finally, the important problems in the future research were also put forward.
谷胱甘肽(GSH:γ-Glu-Cys-Gly)是由3种氨基酸组成的、生物体细胞内最丰富的巯基化合物,广泛存在于哺乳动物、植物和微生
在活性氧(reactive oxygen species,ROS)和活性氮(reactive nitrogen species,RNS)信号通路中,谷胱甘肽可作为中枢部分,通过自身氧化还原状态的改变调节相关代
近年来,随着对ROS和RNS介导的氧化还原信号的深入研
a:硫醇-二硫化物交换途径; b,c:次磺酸中间体介导途径;d:次磺酰胺中间体介导途径;e,f:硫自由基介导途径; g,h:硫代亚磺酸酯中间体介导途径; i,j:亚硝基化合物中间体介导途径; k:谷氧还蛋白(Grx) 催化途径.