en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
BaltesP B, DittmannkohliF, KlieglR. Reserve capacity of theelderly in aging-sensitive tests of fluid intelligence: replication andextension. Psychology and Aging, 1986, 1(2): 172-177
参考文献 2
LovdenM, BodammerN C, KuhnS, et al. Experience-dependent plasticity of white-matter microstructure extends into old age. Neuropsychologia, 2010, 48(13): 3878-3883
参考文献 3
CabezaR. Hemispheric asymmetry reduction in older adults: theHAROLDmodel. Psychology and Aging, 2002, 17(1): 85-100
参考文献 4
DavisS W, DennisN A, DaselaarS M, et al. Que PASA? The posterior-anterior shift in aging. [Research Support, NIH,Extramural] Cerebral Cortex, 2008, 18(5): 1201-1209
参考文献 5
RazN, LindenbergerU, RodrigueK M, et al. Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cerebral Cortex, 2005, 15(11): 1676-1689
参考文献 6
BavelierD, AchtmanR L, ManiM, et al. Neural bases of selective attention in action video game players. Vision Research, 2012, 61(61): 132-143
参考文献 7
ReuterlorenzP A, ParkD C. Howdoes it STAC up? Revisiting thescaffolding theory of aging and cognition. Neuropsychology Review, 2014, 24(3): 355-370
参考文献 8
LövdenM, BrehmerY, LiS, et al. Training-induced compensation versus magnification of individual differences in memory performance. Frontiers in Human Neurosience, 2012, 6(141): 1-14
参考文献 9
JaeggiS, BuschkuehlM, JonidesJ, et al. Improving fluid intelligence with training on working memory. Proc Natl Acad Sci USA, 2008, 105(19): 6829-6833
参考文献 10
LiS C, SchmiedekF, HuxholdO, et al. Working memory plasticity in old age: practice gain, transfer, and maintenance. Psychology & Aging, 2008, 23(4): 731-742
参考文献 11
LustigC, ShahP, SeidlerR, et al. Aging, training, and the brain: a review and future directions. Neuropsychology Review, 2009, 19(4): 504-522
参考文献 12
BromS S, KliegelM. Improving everyday prospective memory performance in older adults: comparing cognitive process and strategy training. Psychology & Aging, 2014. 29(3): 744-755
参考文献 13
CraikF I, WinocurG, PalmerH, et al. Cognitive rehabilitation in the elderly: effects on memory. Journal of the International Neuropsychological Society, 2007, 13(1): 132-142
参考文献 14
BellevilleS, GilbertB, FontaineF, et al. Improvement of episodic memory in persons with mild cognitive impairment and healthy older adults: evidence from a cognitive intervention program. Dementia & Geriatric Cognitive Disorders, 2006, 22(5-6): 486-499
参考文献 15
BellevilleS, ClémentF, MellahS, et al. Training-related brain plasticity in subjects at risk of developing Alzheimer’s disease. Brain, 2011, 134(6): 1623-1634
参考文献 16
SchaieK W, WillisS L. Can decline in adult intellectual functioning be reversed?. Developmental Psychology,1986, 22(2): 223-232
参考文献 17
YinS, ZhuX, LiR, et al. Intervention-induced enhancement in intrinsic brain activity in healthy older adults. Scientific Reports, 2014(4): 7309
参考文献 18
VerhaeghenP, MarcoenA, GoossensL. Improving memoryperformance in the aged through mnemonic training: ameta-analytic study. Psychology and Aging, 1992, 7(2): 242-251
参考文献 19
ParkD C, LodismithJ, DrewL, et al. The impact of sustained engagement on cognitive function in older adults: the Synapse Project. Psychological Science, 2014, 25(1): 103-112
参考文献 20
WhitlockL A, MclaughlinAC, AllaireJ C. Individual differencesin response to cognitive training: using a multi-modal, attentionally demanding game-based intervention for older adults. Computers inHuman Behavior, 2012, 28(4): 1091-1096
参考文献 21
PeretzC, KorczynA D, ShatilE, et al. Computer-based, personalized cognitive training versus classical computer games: a randomized double-blind prospective trial of cognitive stimulation. Neuroepidemiology, 2011, 36(2): 91-99
参考文献 22
BootW R. Video games as tools to achieve insight into cognitive processes. Frontiers in Psychology, 2015, 6(3): 1-3
参考文献 23
BootW R, BlakelyD P, SimonsD J. Do action video games improve perception and cognition?. Frontiers in Psychology, 2011, 2(226): 1-6
参考文献 24
ProjectP.I.a.A.L. Changes in internet use by age. Availableat: <http://www.pewinternet.org/data-trend/internet-use/>. 2010:2000-2010
参考文献 25
KueiderA M, ParisiJ M, GrossA L, et al. Computerized cognitive training with older adults: a systematic review. Plos One, 2012, 7(7): e40588
参考文献 26
GreenC S, BavelierD. Effect of action video games on the spatial distribution of visuospatial attention.Journal of Experimental Psychology: Human Perception and Performance,2006. 32(6): 1465-1478
参考文献 27
GopherD, WellM, BareketT. Transfer of skill from a computergame trainer to flight. Human Factors the Journal of the HumanFactors & Ergonomics Society, 1994, 36(3): 387-405
参考文献 28
BasakC, BootW R, VossM W, et al. Can training in a real-time strategy videogame attenuate cognitive decline in older adults? Psychology & Aging,2008, 23(4): 765-777
参考文献 29
ShatilE. Does combined cognitive training and physical activity training enhance cognitive abilities more than either alone? a four-condition randomized controlled trial among healthy older adults. Frontiers in Aging Neuroscience,2013. 5(8):1-12
参考文献 30
WillisS L, BellevilleS. Chapter 12-Cognitive training in later adulthood. Handbook of the Psychology of Aging, Schaie K W, Willis S.Nilli Levy: the United States of America. Eighth Edition, 2016: 219-243
参考文献 31
BaniquedP L, LeeH, VossM W, et al. Selling points: what cognitive abilities are tapped by casual video games? Acta Psychologica,2013, 142(1): 74-86
参考文献 32
BellevilleS, MellahS, De BoyssonC, et al. The pattern and loci of training-induced brain changes in healthy older adults are predicted by the nature of the intervention. Plos One, 2014, 9(8): e102710
参考文献 33
BrehmerY, WesterbergH, BäckmanL. Working-memory training in younger and older adults: training gains, transfer, and maintenance. Frontiers in Human Neuroscience,2012,6(63): 1-7
参考文献 34
DahlinE, NeelyA S, LarssonA, et al. Transfer of learning after updating training mediated by the striatum. Science, 2008, 320(5882): 1510-1512
参考文献 35
HeinzelS, LorenzR C, BrockhausW R, et al. Working memory load-dependent brain response predicts behavioral training gains in older adults. Journal of Neuroscience, 2014, 34(4): 1224-1233
参考文献 36
KirchhoffB A, AndersonB A, BarchD M, et al. Cognitive and neural effects of semantic encoding strategy training in older adults. Cerebral Cortex, 2012, 22(4): 788-799
参考文献 37
KirchhoffB A, AndersonB A, SmithS E, et al. Cognitive training-related changes in hippocampal activity associated with recollection in older adults. Neuroimage, 2012, 62(3): 1956-1964
参考文献 38
PieramicoV, EspositoR, SensiF, et al. Combination training in aging individuals modifies functional connectivity and cognition, and is potentially affected by dopamine-related genes. Plos One, 2012, 7(8): e43901
参考文献 39
EngvigA, FjellA M, WestlyeL T, et al. Effects of memory training on cortical thickness in the elderly. Neuroimage, 2010, 52(4): 1667-1676
参考文献 40
EngvigA, FjellA M, WestlyeL T, et al. Memory training impacts short-term changes in aging white matter: a longitudinal diffusion tensor imaging study. Human Brain Mapping, 2012, 33(10): 2390-2406
参考文献 41
EngvigA, FjellA M, WestlyeL T, et al. Effects of cognitive training on gray matter volumes in memory clinic patients with subjective memory impairment. Journal of Alzheimers Disease, 2014, 41(3): 779-791
参考文献 42
EngvigA, FjellA M, WestlyeL T, et al. Hippocampal subfield volumes correlate with memory training benefit in subjective memory impairment. Neuroimage, 2012, 61(1): 188-194
参考文献 43
EricksonK I, BootW R, BasakC, et al. Striatal volume predicts level of video game skill acquisition. Cerebral Cortex, 2010, 20(11): 2522-2530
参考文献 44
MozolicJ, HayasakaS, LaurientiP.A cognitive training intervention increases resting cerebral blood flow in healthy older adults. Frontiers in Human Neuroscience,2010, 4(16): 1-10
参考文献 45
BuschkuehlM, JaeggiS M, JonidesJ. Neuronal effects followingworking memory training. Developmental Cognitive Neuroscience,2012, 2(4): S167-S179
参考文献 46
NybergL, SandblomJ, JonesS, et al. Neural correlates of training-related memory improvement in adulthood and aging. Proc Natl Acad Sci USA, 2003, 100(23): 13728-13733
参考文献 47
NikolaidisA, VossM W, LeeH, et al. Parietal plasticity after training with a complex video game is associated with individual differences in improvements in an untrained working memory task. Frontiers in Human Neuroscience, 2014, 8(5): 1-11
参考文献 48
PascualleoneA, AmediA, FregniF, et al. THE PLASTIC HUMAN BRAIN CORTEX. Annual Review of Neuroscience, 2005, 28(28): 377-401
参考文献 49
SchneidersJ A, OpitzB, KrickC M, et al. Separating intra-modal and across-modal training effects in visual working memory: an fMRI investigation. Cerebral Cortex, 2011, 21(11): 2555-2564
参考文献 50
KellyC, FoxeJ J, GaravanH. Patterns of normal human brainplasticity after practice and their implications for neurohabilitation.Archives of Physical Medicine & Rehabilitation, 2006, 87 (12):20-29
参考文献 51
ChapmanS B, AslanS, SpenceJ S, et al. Neural mechanisms of brain plasticity with complex cognitive training in healthy seniors. Cereb Cortex, 2015, 25(2): 396-405
参考文献 52
LiR, ZhuX, YinS, et al. Multimodal intervention in older adults improves resting-state functional connectivity between the medial prefrontal cortex and medial temporal lobe. Frontiers in Aging Neuroscience, 2014, 6(2): 1-11
参考文献 53
JollesD D, BuchemM a V, CroneE A, et al. Functional brain connectivity at rest changes after working memory training. Human Brain Mapping, 2013, 34(2): 396-406
参考文献 54
ClémentF, BellevilleS. Effect of disease severity on neural compensation of itemand associative recognition in mild cognitiveimpairment. Journal of Alzheimers Disease, 2012, 29(1): 109-123
参考文献 55
ReuterlorenzP A, CappellK A. Neurocognitive aging and thecompensation hypothesis. Current Directions in Psychological Science, 2008, 17(3): 177-182
参考文献 56
GohJ O, ParkD C. Neuroplasticity and cognitive aging: thescaffolding theory of aging and cognition. Restorative Neurology and Neuroscience,2009, 27(5): 391-403
参考文献 57
EricksonK I, VossM W, PrakashR S, et al. A cross-sectional study of hormone treatment and hippocampal volume in postmenopausal women: evidence for a limited window of opportunity. Neuropsychology, 2010, 24(1): 68-76
参考文献 58
尹述飞, 朱心怡, 李娟. 主观记忆减退老年人认知功能的可塑性(综述). 中国心理卫生杂志, 2016, 30(8): 600-606
Yin S F, Zhu X Y, Li J. Chinese Mental Health Journal,2016, 30(8): 600-606
参考文献 59
郭起浩, 陈瑞燕, 洪震, 等. 不同文化背景下正常老人认知功能比较. 中国心理卫生杂志, 2003, 17(11): 731-733
Guo Q H, Chen R Y, Hong Z,et al. Chinese Mental Health Journal,2003, 17(11):731-733
参考文献 60
WillisS, CaskieG. Reasoning training in the ACTIVE study: howmuch is needed and who benefits? Journal of Aging & Health, 2013,25(8 Suppl): 43S-64S
参考文献 61
BallK, EdwardsJ, RossL. The impact of speed of processingtraining on cognitive and everyday functions. Journal of Gerontology. 2007, 62(1): 19-31
参考文献 62
WillisS, TennstedtS, MarsiskeM, et al. Long-term effects of cognitive training on everyday functional outcomes in older adults. JAMA, 2006, 296(23): 2805-2814
参考文献 63
薛志强, 冯威, 李春波, 等. 对社区老人认知功能干预的近期效果. 临床精神医学杂志, 2007, 17(5): 292-295
Xue Z Q, Feng W, Li C B,et al. Journal of Clinical Psychiatry,2007, 17(5): 292-295
目录 contents

    摘要

    伴随老化,老年人的认知和脑功能会表现出一定的下降趋势. 尽管如此,人类的大脑到老年期都会保有一定的可塑性,认知训练的方式是延缓认知和脑功能衰退的有效手段. 本文回顾了以往针对老年人不同类型的认知训练研究,探讨了认知训练的理论基础(包括放大观和补偿观),深入分析了老年人认知训练的神经机制,并在此基础上指出以往研究中理论基础冲突的不足和对未来研究老年人训练任务适配性的展望.

    Abstract

    Despite brain functions decline with age in the elderly, the brain maintains a certain degree of plasticity which can delay this process through cognitive training. Various cognitive trainings were tested in studies, including strategy training, cognitive processes based training, and multidimensional cognitive training. Recently, computerized cognitive training is becoming the focus of this area because of its universal potential of application. Previous studies have identified the effectiveness of cognitive trainings, but some vital issues remain unclear. For example, to what extent cognitive trainings can help benefit cognition of the elderly and which kind of training is the most beneficial to the specific cognitive ability. To better understand the effectiveness of cognitive trainings and the way they work, this paper reviewed the studies of neural mechanisms of cognitive trainings and the related theoretical models. SMRI studies find that cognitive trainings can alter the structure of the brain, thus delaying or resisting the cognitive decline with age. Functional MRI studies also find that cognitive trainings help improve cognition functionally in both rest state and task-related state. Based on the perspective of compensatory and magnification, several theory models were established to interpret these findings, including HAROLD model, CRUNCH model, Lovden’s model, STAC model and Belleville’s Interactive model. Compensatory perspective focuses the individual differences within the same age range and proposes that cognitive trainings benefit the elderly with lower cognitive ability better, while magnification perspective emphasizes the differences between the youth and the elderly and puts forward that cognitive trainings magnify these differences (cognitive trainings benefit individuals with higher cognitive ability better). At present, there is no consistent conclusion about the two perspectives, and more studies are needed to reconcile the contradiction. In addition, it is beneficial for the application of cognitive trainings in the future to use brain image techniques to examine the effectiveness of cognitive trainings, to carry more studies on computerized cognitive trainings and to adopt more rigorous experimental design is beneficial to the application of cognitive trainings in the future.

    认知能力的毕生发展过程包括发展(获得)和衰退(丧失)两个复杂而相互关联的动力学过[1,2]. 适当的干预措施,如认知训练,可以延缓认知功能的衰退,并在一定程度上改善个体的认知功能. 国内外相关研究发现,通过认知训练能使老年人的认知成绩得以提高,证明老年人的认知能力具有一定的可塑性,这也提示认知训练等干预手段将有助于延缓老年性痴呆等神经退行性疾病的发生和发展. 虽然研究证明认知训练对老年人的认知功能有一定改善作用,但是认知功能包含多个维度的内容,所以各研究运用的认知训练方式多样,认知老化理论以及模型也各有特色. 针对这些研究中不一致的地方,从认知训练的神经机制角度进行探讨可能为老年人认知能力的改善和提升提供重要的理论基础.

  • 1 认知训练的理论观点和假设

    1

    人类大脑具有一定的灵活性和可塑性,随着年龄的增长,大脑受到老化的影响不只是被动地衰退(deterioration), 还有可能发生功能性补偿活动,包括老年人的大脑半球非对称性减弱模式(hemispheric asymmetry reduction in older adults, HAROLD)和认知老化的后部向前部转换模式(posterior-anterior shift with aging, PASA). HAROLD表现为在进行认知操作时,年轻人的大脑表现出明显的偏侧化激活,而老年人则表现为明显的双侧化激[3]. PASA表现为前后模式转换,即在进行认知任务时,老年人脑的前部活动增强而后部活动减[4]. 结构性成像数据显示,伴随老化白质和灰质会出现萎缩,特别体现在前部脑区(外侧前额叶)、海马和基底神经核等区域,但枕叶是神经元损伤相对最小的部[5]. 这些证据说明,老年人的大脑会使用各种补偿性策略来适应老[2,6]. 总体来讲,老年人认知功能干预研究的不同,不仅表现在训练方案上,也表现在理论观点和对有关认知老化的主要问题的强调[2,7]. 大部分认知干预研究都强调的问题是,关注认知功能的可塑性和训练效果的个体差[8]. 基于此,认知理论的假设主要分为放大观和补偿观两个方面.

  • 1.1 放大观

    1.1

    考虑到横断研究法在认知老化研究中的优势,年龄已经成为最常见的个体差异变量. 早期的训练研究主要涉及不同年龄组(年轻人和老年人)间训练效果的比[9,10]. 根据放大观(magnification perspective),各年龄组在认知资源或认知储备的基线水平上存在差异,并且假定基线能力较高的被试可能获得更高的训练收益. 所以,在训练中被试间个体差异(比如年龄),会随着训练而被放[8]. 在不使用策略和指导的训练中,干预主要集中在练习完成一个或多个认知任务;而最初能力较高的个体拥有更多的认知资源,只需要练习就可以表现得很好. 从认知神经机制的角度来看,这可能与个体的神经可塑性有关,大脑的可塑性可能先于或伴随行为的可塑性而产[11]. 神经可塑性经常表现为加工效率的改变,通常与广泛的大脑额叶激活有关.

  • 1.2 补偿观

    1.2

    老年人认知训练研究的第二个主要视角在于补偿[12,13]. 补偿观(compensatory perspective)承认与正常老化有关的认知障碍发生的可能性,同时通过策略或成分训练,关注补偿过程中效率低下的被试,特别是能力较差的老年[14,15,16]. 补偿观也关心个体差异,但通常关注的是同一年龄范围的年长个体间的不同,而不是年龄差异大的团体. 不同于放大观,该观点认为,训练的作用在于减少了个体差异,能力较低的老年人表现出较大的获[16,17].

    一些研究者采用灵活性这一术语取代可塑性来描述补偿机制. 灵活性指,在衰老过程的限制条件下优化表现的能力,这主要受神经结构的限制. 训练中策略的使用和指导提供的支持,导致认知老化的重构和补偿,进而使得认知行为表现出可塑性. 补偿法也考虑认知神经的作用,但通常强调认知神经的个体差异,这些差异存在于认知行为基线水平和神经结构不同的个体. 比如,训练后能力较差的老人活动性增[17],而不像放大观下表现出的能力较高的老人和年轻人的活动性降低(效率提高).

  • 2 老年人的认知训练方式

    2

    前人研究证实,人类的认知能力到老年期都会保有一定的可塑性,策略训练、基于认知过程的训练和多维度训练等都可用于提高老年人认知功能的可塑性,而除此之外还有新兴的计算机化训练. 计算机化训练在分类模式上边缘比较模糊,它可以基于研究者的兴趣而转变,正是由于这种灵活性,计算机化训练愈发受到关注. 基于策略的训练旨在补偿与老化有关的认知缺[12,18],一般通过教授参与者一些外在的策略或方法(包括记忆术、推理方法等)来达到提高认知能力的目的. 策略训练通常聚焦于单一心理功能,比如情节记忆、推理能力. 通过策略学习,可以降低特定任务的复杂性和注意或记忆等认知需求. 最近的训练方案越来越强调被试在日常活动和自然情境(比如,记住一份杂货单、记住聚会上知道的名字等)中使用训练时学习过的策略.

    基于加工过程/成分的训练能提高个体一般的认知能力,比如加工速度和工作记忆等,这种训练方式试图通过不断地练习针对某种认知能力的任务来提高相应的认知能力. 基于加工过程/成分的训练没有涉及具体策略的使用,但通过依次重点关注任务的不同成分和增加任务资源的方式,确实减少了任务的复杂性. 这种训练经常采用适应性训练方式,根据个体在任务上的表现来校准和改变项目难度、反应速度及任务成分等.

    以往的训练研究大多集中针对某个单一的认知能力. 然而,导致老年人认知衰退和功能丧失的因素是复杂多样的,单一类型的训练(策略训练或加工成分训练)就不容易将训练效果迁移或推广应用到日常生活中,不利于帮助老年人独立生活和提高生活质[19]. 近来,研究者开始采用多因素训练方法(即综合训练方法)来延缓认知衰老,提高认知能力. Whitlock[20]通过基于游戏的认知训练、进行心理旋转等实验,对老年人注意力以及多种认知能力(基于前后测量空间能力、执行功能以及内存)进行分析,发现这种认知训练方式对注意力以及空间定向能力有明显的改善. 另外,Peretz[21]基于计算机技术开展随机、双盲的介入性研究,将老年人分为认知训练组和电脑游戏组进行训练,分析训练后两组老年人的认知能力发现,基于计算机的认知训练对老年人的认知功能的提升更大.

    随着计算机技术的发展,研究者开始发展计算机化认知训练来控制训练成本,而使用计算机和移动设备作为干预的传递机制是认知干预中发展最快和最有争议的方法之[22,23,24]. Kueider[25]回顾了1984~2011年期间进行的关注认知正常老年人的151项计算机化训练研究,并从中筛选出符合标准的21项经典认知训练研究. 这21个经典认知训练研究针对7种认知功能,其中一半研究针对加工速度或记忆(包括情节记忆、工作记忆和空间记忆)进行了认知干预. 结果发现,计算机化训练的效果与非计算机化的训练效果相当,其中对加工速度、反应时间和工作记忆的训练效果最佳.

    针对老年人的计算机化训练还有一个比较有争议的领域在于以休闲视频游戏为依托的认知训[23]. 早期研究显示,年轻人玩电脑游戏有益于注意和加工速度的提[26,27];针对老年人的电脑游戏训练亦发现类似结[28,29]. 虽然研究者承认参与这些商业休闲游戏有助于提高参与者认知和脑功能的可塑性,但很少有训练项目提供实证证据来证明这些游戏能改善老人在日常任务上的表现,更没有游戏被证明可以预防或治愈老年性痴呆等神经退行性疾[30]. 休闲游戏涉及到各种基本认知能力和认知过程训练,从而具有成为训练工具的潜[22,23]. 有研究考察了关键认知结构(流体智力、感知速度、情节记忆、工作记忆和注意力)和网络游戏之间的关[31],发现许多游戏可以归属到多个类别,比如推理游戏也可以放在工作记忆游戏类别中;而且无论游戏群体如何,大多数游戏得分都与工作记忆、流动智力和感知速度高度相关. 这些结果表明,当选择休闲游戏进行干预时,仅基于直觉对游戏进行归类显然是不够的,如果休闲游戏对于训练是有用的,那么首先且必须要做的就是确定该游戏与认知能力之间的关系.

  • 3 老年人认知训练的神经机制

    3

    人类大脑在神经结构和功能上存在一定的相似性,这为我们通过脑成像技术理解和剖析大脑认知训练的效果及其神经机制提供了基础. 在认知训练研究中,运用最为广泛的脑成像技术包括核磁共振脑结构成像和脑功能成像. 脑成像在一定程度上可以反映干预增强认知功能的神经机制:脑结构性成像提供了关于全脑体积、区域灰质体积、皮质厚度及复杂度和白质完整性等解剖学信息;而脑功能性成像可以提供静息状态下或执行任务时活跃(激活)的脑区或大脑激活模式的信息. 例如,从大脑激活模式的改变可以揭示认知改善是大脑发生了替代脑区的功能补偿还是特定脑区神经活动效率的提高. 在个体行为层面发生改变之前,脑结构和功能可能已经发生变化. 因此,不同类型的影像可能会额外提供关于训练效果的有用信息.

  • 3.1 老年人脑结构与功能的可塑性

    3.1

    认知训练对老年人脑功能的影响效果在很大程度上是未知的,但是越来越多的神经影像学数据显示老年人的大脑仍然具有一定的可塑性. 这为通过认知训练改善老年人的脑功[32,33,34,35,36,37,38],甚至改变脑结[2,39,40,41,42,43,44]提供了理论依据.

  • 3.1.1 认知训练改变老年人的脑结构

    3.1.1

    认知训练对老年人的脑结构影响主要体现在大脑皮层厚度的增[39]、体积的变[2,8,42]和白质变[42]等方面. 比如,通过对正常老年人和中年人实施8 w的位置法训[39],发现实验组被试大脑皮层厚度相对增加,而在右侧梭状回、双侧眶额皮层厚度的变化与记忆成绩提高呈正比,这种位置法训练还会给老年人带来大脑白质上的变[42]. 针对主观记忆损伤(阿尔茨海默病前临床阶段)老年人的研究也发[41],结果8 w情节记忆训练,主观记忆损伤老年人和健康对照组老年人在情节记忆相关脑区的灰质体积上表现出相同程度的提高(图1).

    图1
                            主观记忆减退老年人和健康对照组老年人训练后大脑皮层体积变化[41]

    图1 主观记忆减退老年人和健康对照组老年人训练后大脑皮层体积变[41]

    Fig. 1 Longitudinal increases in cortical volume in SMI- and HC-training groups following training[41]

    注:(a) 在训练之后,主观记忆损伤老年人和健康对照组老年人大脑皮层体积变化的脑区如图中有颜色标记的区域所示(左侧缘上回,左侧内嗅皮层,右侧颞叶下部,右侧额叶下部);(b) 每组被试大脑皮层的平均体积变化. 绿色为健康无训练组,蓝色为健康训练组,黄色为主观记忆减退训练组.

  • 3.1.2 认知训练改变老年人任务态下的脑活动

    3.1.2

    认知训练会带来老年人在任务状态下脑激活模式的改变,而且与训练任务相关脑区更容易受训练影[45]. Nyberg[46]最先评估了认知训练改变任务状态下的大脑激活模式. 研究发现,使用记忆策略训练(位置法)增强了老年人枕顶皮层的活动,但年轻人在训练后还表现出前额叶皮层活动的增强(图2). Erickson[43]考察了被试经过注意训练后在双任务下的脑激活模式. 结果发现,被试在左侧腹外侧前额叶(Broca区附近)的活动有所增加,这可能反映对语音或内部语言策略的依赖程度增加;而右侧腹外侧前额叶活动减弱,这可能表明刺激-反应-刺激联结更有效. Brehmer[33]发现在 5 w的工作记忆(个体化)训练后,被试的大脑活动降低,这可能反映训练提高了个体的神经活动效率. Nikolaidis[47]考察了视频游戏训练对老年人任务态下脑功能的影响. 经过30 h的认知游戏训练,被试顶上小叶、尾状核和楔前叶等顶区的脑活动增强,而且这些区域的变化可以预测个体在行为成绩上的变化. Dahlin[34]报告工作记忆训练后,老年人纹状体的激活增强,而这种激活增强可能体现了神经反应增强或皮层代表区增[48]. 而Schneiders[49]发现,经过2 w的n-back训练后,被试右侧额中回上部和后顶叶区的激活减弱,这种激活减弱可能更多反映训练使得神经活动效率提[50]. 一般认为,训练后与认知控制相关脑区(如额叶)激活减弱,而与特定任务相关脑区会表现出激活增[45].

    图2
                            认知训练后老年组与青年组脑区激活的变化[46]

    图2 认知训练后老年组与青年组脑区激活的变[46]

    Fig. 2 Changes in brain activation in the elderly and young groups after cognitive training[46]

    注:(a)经过认知训练后,所有被试顶枕皮层活动增强的脑区;(b)训练后,青年组、老年有认知成绩提高组、老年无认知成绩提高组,各自顶枕皮层的活动变化;(c)各组年龄差异导致的活动变化.

  • 3.1.3 认知训练改变老年人静息态下的脑活动

    3.1.3

    大脑在静息态下的能量需求(身体能量的20%)比任务态下神经活动(占消耗总能量的5%)占比更大,且静止的大脑消耗的能量用途中很大占比用于支持正在进行的神经元信号传导,因而在静息态下脑部活动能够反映任务态下的脑活动异常,所以评估静息态下训练诱发的大脑改变是很有意义[51]. 已有研究发现,不同脑区的血氧水平依赖(blood oxygenation level dependent,BOLD)信号中存在同步低频震荡(low frequency fluctuation, LFF)的相关性,利用LFF探索人脑的功能连接已成为脑功能成像领域的一个热点. 功能连接反映了不同脑区间活动的时间一致性,是衡量脑网络中不同区域间整合功能(inter-regional integration)的指标.

    近两年开始有研究关注认知训练对静息态下脑功能的影响,其中大部分将区域间的功能连接作为可塑性指[51,52,53]. 一项为期6 w的工作记忆训练显示:被试额顶网络中右侧额中回与额顶网络其他区域的功能连接,包括双侧额上回、旁扣带回和前扣带回的功能连接在训练结束后得到增[53]. Chapman[51]通过认知训练的方式考察老年人脑功能的可塑性:37名老年人被随机分配到认知训练组和控制组,实验组老人接受12 w认知训练. 结果发现显著的训练相关脑功能的改变,主要体现在默认网络和执行网络的整体和局部血流量(cerebral blood flow, CBF)的增加及这些网络的连接更强(图3). 这一研究提示认知训练可以通过神经血管耦合来为相关脑区增加血液供给,从而增强静息态神经活动和功能连接. 综合来看,受老化影响较大的脑网络,比如额顶网络、默认网络和执行网络,更容易在训练后发生变化,因而可能是考察健康老年人脑功能可塑性的良好指标.

    图3
                            认知训练组被试在不同时间点(T1、T2、T3)上默认网络(DMN)和中央执行网络(CEN)激活模式的变化[51]

    图3 认知训练组被试在不同时间点(T1、T2、T3)上默认网络(DMN)和中央执行网络(CEN)激活模式的变[51]

    Fig. 3 The average functional connectivity maps in the DMN and CEN for the cognitive training group at different time points (T1,T2,T3)[51]

    注:默认模式网络(DMN)和中央执行网络(CEN)随着认知训练进行,在不同时间点(T1,T2,T3)上的激活模式变化.

  • 3.2 训练诱发大脑变化的理论模型

    3.2

    目前已有研究者从不同侧面提出了大脑变化的理论模型的思考,当前总体关于大脑变化理论模型主要从脑区激活、补偿等方面进行阐述,主要包括HAROLD模型、CRUNCH模型、Lovden的理论模型、认知老化的脚手架理论(scaffolding theory of cognitive aging, STAC)和Belleville的互动模型.

    有研究提出在AD早期阶段,可能通过在增强专门负责某过程的结构受损网络的激活来起到补偿作[54]. 其他研究也提出,脑损伤可以揭示在执行任务时处于静默状态的其他潜在区域来起补偿作用. 例如,HAROLD模[3]提出,伴随老化,老年人在执行任务时可能激活完成该任务的特定区域的对侧脑区来起到补偿作用. 在执行任务时,相对于年轻人,中老年人大脑中过度激活的现象更为普[55]. 根据CRUNCH模型,在衰老的大脑中,脑网络可能会更努力地工作,从而过度活跃,以弥补自身效率的下降或处理大脑其他部分的缺陷. 而这种过度活跃通过两种方式体现. a. 特定脑区的激活增强以弥补功能衰退的部分脑区,例如前额叶活动增强以弥补MTL衰退;b. 可替代脑区的广泛激活,年老大脑处理效率的低下会导致占用更多的神经资源,以达到与年轻大脑相当的计算输出. 与这两个模型一致,老年人的记忆训练往往确实会诱发新的脑区激活;但是注意训练往往会导致脑区激活减少. 因此,不同类型的认知训练会导致大脑发生不同的变化.

    Lovden[2]的理论框架与放大观一致,他们认为可塑性会随着训练而加强. 各种形式的训练都可能会诱发可塑性,但是适应性训练会根据个体能力来调整任务或训练要求,因而是能够最优化可塑性的训练方法. 值得注意的是,他们认为,涉及大脑变化的训练研究,除了报告脑激活的变化外,还应该报告脑结构的变化.

    认知老化的脚手架理论提出,功能性变化是缓解与衰老有关的认知衰退的重要方式,认知补偿性脚手架过程可以减少神经元及功能变化的不利影响,老化的大脑依然保留了应对刺激和新的学习神经可塑性,如额叶补偿性活动和老年人记忆恢复有关,而额叶双侧化激活影响老年人的记忆表现和快速反应时[56],并且在该理论的修订模型中指出,生命历程事件(life course events)的个体差异可能是丰富或消耗神经资源和补偿能力的因[7]. 该模型认为,正式的干预和训练可以增强认知资源和补偿性脚手架,并且可以对神经可塑性产生影响.

    Belleville[32]提出的互动模型表明,训练引起的脑激活程度变化取决于训练模式与个体因素之间的复杂交互作用. 个体因素,如大脑可塑性的遗传性、高智商或高教育水平,可能有利于结构与功能重塑,不同人群对补偿作用的敏感性可能存在很大差异. 例如,干预方式能否对脑恢复起作用可能取决于受损区域的结构性损伤程度,其中中等程度的脑损伤效果最好. 该模型还提出,激活变化的模式应与相应认知过程相一致. 例如,在某个任务上的重复练习应该导致与该任务相关的特定脑区激活减少,这是因为训练提高了特定脑区的加工效率. 相比之下,策略训练将会导致参与这些特定策略的脑网络激活增加. 因此,在预测训练模式对大脑的影响之前,首先要十分清楚干预所涉及的认知机制.

  • 3.3 脑成像技术对认知训练效果的检测

    3.3

    每个人对认知训练的反应都有所不同,因此区分相应相关影响因素将有助于在临床上确定谁能从干预中获益更多. 训练收益的个体差异可能与不同个体的大脑差异有关. 有研究发现,基线外侧纹状体体积可以预测被试在空间堡垒游戏训练中的获[57],这可能与纹状体在多巴胺能功能中的作用有[10]. 不论训练类型如何,多巴胺活性更高的个体可能具有更高的神经可塑[30]. 另外,不同大脑区域的预测价值,可能还取决于它与训练内容的相关程度. 例如,Engvig[42]发现,左侧海马体积更大的主观记忆减退老年人,在记忆训练后行为成绩改善更大. 海马区可能更好地预测被试从情节记忆训练中的获益,而纹状体(参与执行控制的脑区)则能更好地预测被试从注意控制训练中的获益.

    认知训练能多大程度上带来认知成绩的提高,很大程度上取决于测验任务与训练任务的相似性,那些与训练任务在涉及的加工成分和脑区有重叠的任务较容易受到训练影[58]. Dahlin[34]的研究支持了这一假设,他们对年轻人和老年人进行了刷新任务(updating task)训练. 为了考察干预效果,他们实施了字母刷新测验(与训练任务相似)、n-back测验和stroop测验(迁移任务),其中n-back测验涉及刷新过程,stroop不涉及刷新但需要负责执行加工的额叶参与. 训练前执行这三项任务均激活了年轻人的额顶网络(frontoparietal network),但仅在n-back和字母任务上激活了左侧纹状体. 如果迁移特别依赖于纹状体的改善,那么预期在stroop测验上成绩不会改善. 结果发现,对年轻人而言,训练改善了字母记忆,并仅迁移到n-back任务上,而且,训练后在字母刷新和n-back任务中左侧纹状体激活增强. 而对老年人而言,仅在字母任务中发现了训练相关的纹状体激活增强的现象,而老年人的训练收益较小可能与其纹状体功能受损有关.

    因此,脑成像可用于预测训练效果的个体差异以及不同训练模式的迁移效果. 未来研究可以借助磁共振等脑成像技术来考察老年人认知功能的可塑性. 研究提示,认知训练能多大程度上带来认知成绩的提高,很大程度上取决于测验任务与训练任务的相似性,那些与训练任务在涉及的加工成分和脑区有重叠的任务较容易受到训练影[34]. 据此可以推测,认知训练前测验任务和训练任务在激活脑区上重叠越多,则测验任务所涉及的认知功能更有可能得到提高. 因而,借助磁共振成像等脑成像技术能够有助于指导干预方案的设计和完善,从而获得更好的训练效果.

  • 4 研究展望

    4

    前人研究证实,人类的认知能力到老年期都会保有一定的可塑性,策略训练、基于认知过程的训练、多维度认知训练等都可用于提升老年人认知功能和脑功能. 前人研究试图揭示老年人认知训练的神经机制,但目前的研究还存在一些局限性,需要更多未来实证研究的支持.

    首先,在对老年人认知训练方式的神经机制探讨上,理论基础主要遵循的放大观和补偿观并不统一,具体理论和模型中诸如脚手架模型、HAROLD等模型都能成立也支持不同的神经机制解释,为什么会出现这种差异是未来研究的重点挖掘之处. 在目前已有的模型研究基础之上,可以展望对个体特异性的研究控制. 今后的干预研究需要进一步考察教育水平、基线认知能力、地域文[59]等个体差异对认知训练收益的影响. 基线个体差异可能会影响个体从认知训练中的获益. 比如,Willis和Caskie[60]研究发现,基线总体认知成绩(MMSE得分)与更高的训练收益相关. 并且,在老年人干预研究中,基线功能差异对个体大脑可塑性影响素有争议,放大[8]认为基线水平好的个体因为认知训练的资源充足,会表现出更好的训练水平;而补偿观学[16]则认为训练减少了个体差异,也就是说基线功能差的个体得到更大的训练. 关于基线水平指标,有研[50]指出日常生活亦是考察老年人认知水平的重要指[58]. 而在神经机制方面尹述飞[17]提出ALFF反映静息状态下自发电位的活动,ALFF分析在评估干预计划对改善大脑功能方面的有效性较为可靠. 在未来研究中,对基线水平不同的个体应加以关注,基线功能不同的个体在可塑性程度上值得进一步探讨.

    其次,基于老年人认知训练的研究中,老年人认知训练模式中有策略训练、基于认知过程的训练、多维度认知训练方式. 前人研究提示速度训练的即刻效果最为明[61],推理训练的长期效果持[62],记忆训练效果的泛化性显[63]. 单项策略研究诠释了老年人不同认知功能的训练结果,对老年人认知功能研究有不可否认的基础性建设作用,但是单项策略在研究中由于本身形式单一易引起老年人兴趣减退,而综合训练弥补这一缺点. 除此之外前人研究证明综合训练能在短期内改善认知功能减退的作[63]. 计算机训练特别是休闲游戏训练属于新兴发展最快最有争议的综合训练方式,但是休闲游戏与认知能力之间的关系值得探索. 在未来研究展望中,一方面在计算机训练中因为计算机化训练是可设置灵活、多变的训练方式,在对训练方式进行探析研究时,应严谨、明确界定计算机式训练方式的类别,避免无关因素的干扰;另一方面需要更多的实证来证明诸如游戏等训练能改变老年人日常表现,更甚者缓解老年神经疾病症状. 正如有研究者认为认知训练需更严谨并且测查指标需要更丰富一[58],基于老年人研究中的认知训练方式本身需要更多的研究和探索.

    此外,在研究技术层面,脑成像可用于预测训练效果的个体差异以及不同训练模式的迁移效果. 未来研究可以借助磁共振等脑成像技术来考察老年人认知功能的可塑性. 前人研究提[34],认知训练前测验任务和训练任务在激活脑区上重叠越多,则测验任务所涉及的认知功能更有可能得到提高. 因而,借助磁共振成像等脑成像技术能够有助于指导干预方案的设计和完善,从而获得更好的训练效果.

    最后,未来研究如果要考察某种认知训练方式是否有效,需要设置积极对照组(active control). 目前大部分认知训练研究没有设置积极对照组,这样认知训练组成绩的提升也有可能仅仅是由于经验的增多,而非训练的内容本身所致. 而且未来研究应该多关注针对老年人的认知训练效果的保持性. 目前绝大部分研究仅考察了认知训练的即时效果,未对认知训练带来的认知功能改变进行追踪调查,认知训练效果能保持多久尤未可知.

  • 参 考 文 献

    • 1

      Baltes P B, Dittmannkohli F, Kliegl R. Reserve capacity of theelderly in aging-sensitive tests of fluid intelligence: replication andextension. Psychology and Aging, 1986, 1(2): 172-177

    • 2

      Lovden M, Bodammer N C, Kuhn S, et al. Experience-dependent plasticity of white-matter microstructure extends into old age. Neuropsychologia, 2010, 48(13): 3878-3883

    • 3

      Cabeza R. Hemispheric asymmetry reduction in older adults: theHAROLDmodel. Psychology and Aging, 2002, 17(1): 85-100

    • 4

      Davis S W, Dennis N A, Daselaar S M, et al. Que PASA? The posterior-anterior shift in aging. [Research Support, NIH,Extramural] Cerebral Cortex, 2008, 18(5): 1201-1209

    • 5

      Raz N, Lindenberger U, Rodrigue K M, et al. Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cerebral Cortex, 2005, 15(11): 1676-1689

    • 6

      Bavelier D, Achtman R L, Mani M, et al. Neural bases of selective attention in action video game players. Vision Research, 2012, 61(61): 132-143

    • 7

      Reuterlorenz P A, Park D C. Howdoes it STAC up? Revisiting thescaffolding theory of aging and cognition. Neuropsychology Review, 2014, 24(3): 355-370

    • 8

      Lövden M, Brehmer Y, Li S, et al. Training-induced compensation versus magnification of individual differences in memory performance. Frontiers in Human Neurosience, 2012, 6(141): 1-14

    • 9

      Jaeggi S, Buschkuehl M, Jonides J, et al. Improving fluid intelligence with training on working memory. Proc Natl Acad Sci USA, 2008, 105(19): 6829-6833

    • 10

      Li S C, Schmiedek F, Huxhold O, et al. Working memory plasticity in old age: practice gain, transfer, and maintenance. Psychology & Aging, 2008, 23(4): 731-742

    • 11

      Lustig C, Shah P, Seidler R, et al. Aging, training, and the brain: a review and future directions. Neuropsychology Review, 2009, 19(4): 504-522

    • 12

      Brom S S, Kliegel M. Improving everyday prospective memory performance in older adults: comparing cognitive process and strategy training. Psychology & Aging, 2014. 29(3): 744-755

    • 13

      Craik F I, Winocur G, Palmer H, et al. Cognitive rehabilitation in the elderly: effects on memory. Journal of the International Neuropsychological Society, 2007, 13(1): 132-142

    • 14

      Belleville S, Gilbert B, Fontaine F, et al. Improvement of episodic memory in persons with mild cognitive impairment and healthy older adults: evidence from a cognitive intervention program. Dementia & Geriatric Cognitive Disorders, 2006, 22(5-6): 486-499

    • 15

      Belleville S, Clément F, Mellah S, et al. Training-related brain plasticity in subjects at risk of developing Alzheimer’s disease. Brain, 2011, 134(6): 1623-1634

    • 16

      Schaie K W, Willis S L. Can decline in adult intellectual functioning be reversed?. Developmental Psychology,1986, 22(2): 223-232

    • 17

      Yin S, Zhu X, Li R, et al. Intervention-induced enhancement in intrinsic brain activity in healthy older adults. Scientific Reports, 2014(4): 7309

    • 18

      Verhaeghen P, Marcoen A, Goossens L. Improving memoryperformance in the aged through mnemonic training: ameta-analytic study. Psychology and Aging, 1992, 7(2): 242-251

    • 19

      Park D C, Lodismith J, Drew L, et al. The impact of sustained engagement on cognitive function in older adults: the Synapse Project. Psychological Science, 2014, 25(1): 103-112

    • 20

      Whitlock L A, Mclaughlin AC, Allaire J C. Individual differencesin response to cognitive training: using a multi-modal, attentionally demanding game-based intervention for older adults. Computers inHuman Behavior, 2012, 28(4): 1091-1096

    • 21

      Peretz C, Korczyn A D, Shatil E, et al. Computer-based, personalized cognitive training versus classical computer games: a randomized double-blind prospective trial of cognitive stimulation. Neuroepidemiology, 2011, 36(2): 91-99

    • 22

      Boot W R. Video games as tools to achieve insight into cognitive processes. Frontiers in Psychology, 2015, 6(3): 1-3

    • 23

      Boot W R, Blakely D P, Simons D J. Do action video games improve perception and cognition?. Frontiers in Psychology, 2011, 2(226): 1-6

    • 24

      Project P.I.a.A.L. Changes in internet use by age. Availableat: <http://www.pewinternet.org/data-trend/internet-use/>. 2010:2000-2010

    • 25

      Kueider A M, Parisi J M, Gross A L, et al. Computerized cognitive training with older adults: a systematic review. Plos One, 2012, 7(7): e40588

    • 26

      Green C S, Bavelier D. Effect of action video games on the spatial distribution of visuospatial attention.Journal of Experimental Psychology: Human Perception and Performance,2006. 32(6): 1465-1478

    • 27

      Gopher D, Well M, Bareket T. Transfer of skill from a computergame trainer to flight. Human Factors the Journal of the HumanFactors & Ergonomics Society, 1994, 36(3): 387-405

    • 28

      Basak C, Boot W R, Voss M W, et al. Can training in a real-time strategy videogame attenuate cognitive decline in older adults? Psychology & Aging,2008, 23(4): 765-777

    • 29

      Shatil E. Does combined cognitive training and physical activity training enhance cognitive abilities more than either alone? a four-condition randomized controlled trial among healthy older adults. Frontiers in Aging Neuroscience,2013. 5(8):1-12

    • 30

      Willis S L, Belleville S. Chapter 12-Cognitive training in later adulthood. Handbook of the Psychology of Aging, Schaie K W, Willis S.Nilli Levy: the United States of America. Eighth Edition, 2016: 219-243

    • 31

      Baniqued P L, Lee H, Voss M W, et al. Selling points: what cognitive abilities are tapped by casual video games? Acta Psychologica,2013, 142(1): 74-86

    • 32

      Belleville S, Mellah S, De Boysson C, et al. The pattern and loci of training-induced brain changes in healthy older adults are predicted by the nature of the intervention. Plos One, 2014, 9(8): e102710

    • 33

      Brehmer Y, Westerberg H, Bäckman L. Working-memory training in younger and older adults: training gains, transfer, and maintenance. Frontiers in Human Neuroscience,2012,6(63): 1-7

    • 34

      Dahlin E, Neely A S, Larsson A, et al. Transfer of learning after updating training mediated by the striatum. Science, 2008, 320(5882): 1510-1512

    • 35

      Heinzel S, Lorenz R C, Brockhaus W R, et al. Working memory load-dependent brain response predicts behavioral training gains in older adults. Journal of Neuroscience, 2014, 34(4): 1224-1233

    • 36

      Kirchhoff B A, Anderson B A, Barch D M, et al. Cognitive and neural effects of semantic encoding strategy training in older adults. Cerebral Cortex, 2012, 22(4): 788-799

    • 37

      Kirchhoff B A, Anderson B A, Smith S E, et al. Cognitive training-related changes in hippocampal activity associated with recollection in older adults. Neuroimage, 2012, 62(3): 1956-1964

    • 38

      Pieramico V, Esposito R, Sensi F, et al. Combination training in aging individuals modifies functional connectivity and cognition, and is potentially affected by dopamine-related genes. Plos One, 2012, 7(8): e43901

    • 39

      Engvig A, Fjell A M, Westlye L T, et al. Effects of memory training on cortical thickness in the elderly. Neuroimage, 2010, 52(4): 1667-1676

    • 40

      Engvig A, Fjell A M, Westlye L T, et al. Memory training impacts short-term changes in aging white matter: a longitudinal diffusion tensor imaging study. Human Brain Mapping, 2012, 33(10): 2390-2406

    • 41

      Engvig A, Fjell A M, Westlye L T, et al. Effects of cognitive training on gray matter volumes in memory clinic patients with subjective memory impairment. Journal of Alzheimers Disease, 2014, 41(3): 779-791

    • 42

      Engvig A, Fjell A M, Westlye L T, et al. Hippocampal subfield volumes correlate with memory training benefit in subjective memory impairment. Neuroimage, 2012, 61(1): 188-194

    • 43

      Erickson K I, Boot W R, Basak C, et al. Striatal volume predicts level of video game skill acquisition. Cerebral Cortex, 2010, 20(11): 2522-2530

    • 44

      Mozolic J, Hayasaka S, Laurienti P.A cognitive training intervention increases resting cerebral blood flow in healthy older adults. Frontiers in Human Neuroscience,2010, 4(16): 1-10

    • 45

      Buschkuehl M, Jaeggi S M, Jonides J. Neuronal effects followingworking memory training. Developmental Cognitive Neuroscience,2012, 2(4): S167-S179

    • 46

      Nyberg L, Sandblom J, Jones S, et al. Neural correlates of training-related memory improvement in adulthood and aging. Proc Natl Acad Sci USA, 2003, 100(23): 13728-13733

    • 47

      Nikolaidis A, Voss M W, Lee H, et al. Parietal plasticity after training with a complex video game is associated with individual differences in improvements in an untrained working memory task. Frontiers in Human Neuroscience, 2014, 8(5): 1-11

    • 48

      Pascualleone A, Amedi A, Fregni F, et al. THE PLASTIC HUMAN BRAIN CORTEX. Annual Review of Neuroscience, 2005, 28(28): 377-401

    • 49

      Schneiders J A, Opitz B, Krick C M, et al. Separating intra-modal and across-modal training effects in visual working memory: an fMRI investigation. Cerebral Cortex, 2011, 21(11): 2555-2564

    • 50

      Kelly C, Foxe J J, Garavan H. Patterns of normal human brainplasticity after practice and their implications for neurohabilitation.Archives of Physical Medicine & Rehabilitation, 2006, 87 (12):20-29

    • 51

      Chapman S B, Aslan S, Spence J S, et al. Neural mechanisms of brain plasticity with complex cognitive training in healthy seniors. Cereb Cortex, 2015, 25(2): 396-405

    • 52

      Li R, Zhu X, Yin S, et al. Multimodal intervention in older adults improves resting-state functional connectivity between the medial prefrontal cortex and medial temporal lobe. Frontiers in Aging Neuroscience, 2014, 6(2): 1-11

    • 53

      Jolles D D, Buchem M a V, Crone E A, et al. Functional brain connectivity at rest changes after working memory training. Human Brain Mapping, 2013, 34(2): 396-406

    • 54

      Clément F, Belleville S. Effect of disease severity on neural compensation of itemand associative recognition in mild cognitiveimpairment. Journal of Alzheimers Disease, 2012, 29(1): 109-123

    • 55

      Reuterlorenz P A, Cappell K A. Neurocognitive aging and thecompensation hypothesis. Current Directions in Psychological Science, 2008, 17(3): 177-182

    • 56

      Goh J O, Park D C. Neuroplasticity and cognitive aging: thescaffolding theory of aging and cognition. Restorative Neurology and Neuroscience,2009, 27(5): 391-403

    • 57

      Erickson K I, Voss M W, Prakash R S, et al. A cross-sectional study of hormone treatment and hippocampal volume in postmenopausal women: evidence for a limited window of opportunity. Neuropsychology, 2010, 24(1): 68-76

    • 58

      尹述飞, 朱心怡, 李娟. 主观记忆减退老年人认知功能的可塑性(综述). 中国心理卫生杂志, 2016, 30(8): 600-606

      Yin S F, Zhu X Y, Li J. Chinese Mental Health Journal,2016, 30(8): 600-606

    • 59

      郭起浩, 陈瑞燕, 洪震, 等. 不同文化背景下正常老人认知功能比较. 中国心理卫生杂志, 2003, 17(11): 731-733

      Guo Q H, Chen R Y, Hong Z,et al. Chinese Mental Health Journal,2003, 17(11):731-733

    • 60

      Willis S, Caskie G. Reasoning training in the ACTIVE study: howmuch is needed and who benefits? Journal of Aging & Health, 2013,25(8 Suppl): 43S-64S

    • 61

      Ball K, Edwards J, Ross L. The impact of speed of processingtraining on cognitive and everyday functions. Journal of Gerontology. 2007, 62(1): 19-31

    • 62

      Willis S, Tennstedt S, Marsiske M, et al. Long-term effects of cognitive training on everyday functional outcomes in older adults. JAMA, 2006, 296(23): 2805-2814

    • 63

      薛志强, 冯威, 李春波, 等. 对社区老人认知功能干预的近期效果. 临床精神医学杂志, 2007, 17(5): 292-295

      Xue Z Q, Feng W, Li C B,et al. Journal of Clinical Psychiatry,2007, 17(5): 292-295

尹述飞

机 构:

1. 湖北大学教育学院心理学系,武汉 430062

2. 北京师范大学心理学部应用实验心理北京市重点实验室,北京 100875

Affiliation:

1. Department of Psychology, Faculty of Education, Hubei University, Wuhan 430062, China

2. Beijing Key Laboratory of Applied Experimental Psychology, Faculty of Psychology, Beijing Normal University, Beijing 100875, China

角 色:通讯作者

Role:Corresponding author

电 话:18627838661

邮 箱:yinshufei121@163.com

Introduction:Tel:18627838661, E-mail: yinshufei121@163.com

陈祥展

机 构:湖北大学教育学院心理学系,武汉 430062

Affiliation:Department of Psychology, Faculty of Education, Hubei University, Wuhan 430062, China

刘启珍

机 构:湖北大学教育学院心理学系,武汉 430062

Affiliation:Department of Psychology, Faculty of Education, Hubei University, Wuhan 430062, China

丁舟舟

机 构:湖北大学教育学院心理学系,武汉 430062

Affiliation:Department of Psychology, Faculty of Education, Hubei University, Wuhan 430062, China

李添

机 构:湖北大学教育学院心理学系,武汉 430062

Affiliation:Department of Psychology, Faculty of Education, Hubei University, Wuhan 430062, China

杨伟平

机 构:湖北大学教育学院心理学系,武汉 430062

Affiliation:Department of Psychology, Faculty of Education, Hubei University, Wuhan 430062, China

朱心怡

机 构:中国科学院心理研究所心理健康院重点实验室老年心理研究中心,北京 100101

Affiliation:Center on Aging Psychology, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Science, Beijing 100101, China

html/pibbcn/20180147/alternativeImage/d87414b9-ef62-4d98-a8c3-ba6d956cbc5a-F001.jpg
html/pibbcn/20180147/alternativeImage/d87414b9-ef62-4d98-a8c3-ba6d956cbc5a-F002.jpg
html/pibbcn/20180147/alternativeImage/d87414b9-ef62-4d98-a8c3-ba6d956cbc5a-F003.jpg

图1 主观记忆减退老年人和健康对照组老年人训练后大脑皮层体积变[41]

Fig. 1 Longitudinal increases in cortical volume in SMI- and HC-training groups following training[41]

图2 认知训练后老年组与青年组脑区激活的变[46]

Fig. 2 Changes in brain activation in the elderly and young groups after cognitive training[46]

图3 认知训练组被试在不同时间点(T1、T2、T3)上默认网络(DMN)和中央执行网络(CEN)激活模式的变[51]

Fig. 3 The average functional connectivity maps in the DMN and CEN for the cognitive training group at different time points (T1,T2,T3)[51]

image /

(a) 在训练之后,主观记忆损伤老年人和健康对照组老年人大脑皮层体积变化的脑区如图中有颜色标记的区域所示(左侧缘上回,左侧内嗅皮层,右侧颞叶下部,右侧额叶下部);(b) 每组被试大脑皮层的平均体积变化. 绿色为健康无训练组,蓝色为健康训练组,黄色为主观记忆减退训练组.

(a)经过认知训练后,所有被试顶枕皮层活动增强的脑区;(b)训练后,青年组、老年有认知成绩提高组、老年无认知成绩提高组,各自顶枕皮层的活动变化;(c)各组年龄差异导致的活动变化.

默认模式网络(DMN)和中央执行网络(CEN)随着认知训练进行,在不同时间点(T1,T2,T3)上的激活模式变化.

  • 参 考 文 献

    • 1

      Baltes P B, Dittmannkohli F, Kliegl R. Reserve capacity of theelderly in aging-sensitive tests of fluid intelligence: replication andextension. Psychology and Aging, 1986, 1(2): 172-177

    • 2

      Lovden M, Bodammer N C, Kuhn S, et al. Experience-dependent plasticity of white-matter microstructure extends into old age. Neuropsychologia, 2010, 48(13): 3878-3883

    • 3

      Cabeza R. Hemispheric asymmetry reduction in older adults: theHAROLDmodel. Psychology and Aging, 2002, 17(1): 85-100

    • 4

      Davis S W, Dennis N A, Daselaar S M, et al. Que PASA? The posterior-anterior shift in aging. [Research Support, NIH,Extramural] Cerebral Cortex, 2008, 18(5): 1201-1209

    • 5

      Raz N, Lindenberger U, Rodrigue K M, et al. Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cerebral Cortex, 2005, 15(11): 1676-1689

    • 6

      Bavelier D, Achtman R L, Mani M, et al. Neural bases of selective attention in action video game players. Vision Research, 2012, 61(61): 132-143

    • 7

      Reuterlorenz P A, Park D C. Howdoes it STAC up? Revisiting thescaffolding theory of aging and cognition. Neuropsychology Review, 2014, 24(3): 355-370

    • 8

      Lövden M, Brehmer Y, Li S, et al. Training-induced compensation versus magnification of individual differences in memory performance. Frontiers in Human Neurosience, 2012, 6(141): 1-14

    • 9

      Jaeggi S, Buschkuehl M, Jonides J, et al. Improving fluid intelligence with training on working memory. Proc Natl Acad Sci USA, 2008, 105(19): 6829-6833

    • 10

      Li S C, Schmiedek F, Huxhold O, et al. Working memory plasticity in old age: practice gain, transfer, and maintenance. Psychology & Aging, 2008, 23(4): 731-742

    • 11

      Lustig C, Shah P, Seidler R, et al. Aging, training, and the brain: a review and future directions. Neuropsychology Review, 2009, 19(4): 504-522

    • 12

      Brom S S, Kliegel M. Improving everyday prospective memory performance in older adults: comparing cognitive process and strategy training. Psychology & Aging, 2014. 29(3): 744-755

    • 13

      Craik F I, Winocur G, Palmer H, et al. Cognitive rehabilitation in the elderly: effects on memory. Journal of the International Neuropsychological Society, 2007, 13(1): 132-142

    • 14

      Belleville S, Gilbert B, Fontaine F, et al. Improvement of episodic memory in persons with mild cognitive impairment and healthy older adults: evidence from a cognitive intervention program. Dementia & Geriatric Cognitive Disorders, 2006, 22(5-6): 486-499

    • 15

      Belleville S, Clément F, Mellah S, et al. Training-related brain plasticity in subjects at risk of developing Alzheimer’s disease. Brain, 2011, 134(6): 1623-1634

    • 16

      Schaie K W, Willis S L. Can decline in adult intellectual functioning be reversed?. Developmental Psychology,1986, 22(2): 223-232

    • 17

      Yin S, Zhu X, Li R, et al. Intervention-induced enhancement in intrinsic brain activity in healthy older adults. Scientific Reports, 2014(4): 7309

    • 18

      Verhaeghen P, Marcoen A, Goossens L. Improving memoryperformance in the aged through mnemonic training: ameta-analytic study. Psychology and Aging, 1992, 7(2): 242-251

    • 19

      Park D C, Lodismith J, Drew L, et al. The impact of sustained engagement on cognitive function in older adults: the Synapse Project. Psychological Science, 2014, 25(1): 103-112

    • 20

      Whitlock L A, Mclaughlin AC, Allaire J C. Individual differencesin response to cognitive training: using a multi-modal, attentionally demanding game-based intervention for older adults. Computers inHuman Behavior, 2012, 28(4): 1091-1096

    • 21

      Peretz C, Korczyn A D, Shatil E, et al. Computer-based, personalized cognitive training versus classical computer games: a randomized double-blind prospective trial of cognitive stimulation. Neuroepidemiology, 2011, 36(2): 91-99

    • 22

      Boot W R. Video games as tools to achieve insight into cognitive processes. Frontiers in Psychology, 2015, 6(3): 1-3

    • 23

      Boot W R, Blakely D P, Simons D J. Do action video games improve perception and cognition?. Frontiers in Psychology, 2011, 2(226): 1-6

    • 24

      Project P.I.a.A.L. Changes in internet use by age. Availableat: <http://www.pewinternet.org/data-trend/internet-use/>. 2010:2000-2010

    • 25

      Kueider A M, Parisi J M, Gross A L, et al. Computerized cognitive training with older adults: a systematic review. Plos One, 2012, 7(7): e40588

    • 26

      Green C S, Bavelier D. Effect of action video games on the spatial distribution of visuospatial attention.Journal of Experimental Psychology: Human Perception and Performance,2006. 32(6): 1465-1478

    • 27

      Gopher D, Well M, Bareket T. Transfer of skill from a computergame trainer to flight. Human Factors the Journal of the HumanFactors & Ergonomics Society, 1994, 36(3): 387-405

    • 28

      Basak C, Boot W R, Voss M W, et al. Can training in a real-time strategy videogame attenuate cognitive decline in older adults? Psychology & Aging,2008, 23(4): 765-777

    • 29

      Shatil E. Does combined cognitive training and physical activity training enhance cognitive abilities more than either alone? a four-condition randomized controlled trial among healthy older adults. Frontiers in Aging Neuroscience,2013. 5(8):1-12

    • 30

      Willis S L, Belleville S. Chapter 12-Cognitive training in later adulthood. Handbook of the Psychology of Aging, Schaie K W, Willis S.Nilli Levy: the United States of America. Eighth Edition, 2016: 219-243

    • 31

      Baniqued P L, Lee H, Voss M W, et al. Selling points: what cognitive abilities are tapped by casual video games? Acta Psychologica,2013, 142(1): 74-86

    • 32

      Belleville S, Mellah S, De Boysson C, et al. The pattern and loci of training-induced brain changes in healthy older adults are predicted by the nature of the intervention. Plos One, 2014, 9(8): e102710

    • 33

      Brehmer Y, Westerberg H, Bäckman L. Working-memory training in younger and older adults: training gains, transfer, and maintenance. Frontiers in Human Neuroscience,2012,6(63): 1-7

    • 34

      Dahlin E, Neely A S, Larsson A, et al. Transfer of learning after updating training mediated by the striatum. Science, 2008, 320(5882): 1510-1512

    • 35

      Heinzel S, Lorenz R C, Brockhaus W R, et al. Working memory load-dependent brain response predicts behavioral training gains in older adults. Journal of Neuroscience, 2014, 34(4): 1224-1233

    • 36

      Kirchhoff B A, Anderson B A, Barch D M, et al. Cognitive and neural effects of semantic encoding strategy training in older adults. Cerebral Cortex, 2012, 22(4): 788-799

    • 37

      Kirchhoff B A, Anderson B A, Smith S E, et al. Cognitive training-related changes in hippocampal activity associated with recollection in older adults. Neuroimage, 2012, 62(3): 1956-1964

    • 38

      Pieramico V, Esposito R, Sensi F, et al. Combination training in aging individuals modifies functional connectivity and cognition, and is potentially affected by dopamine-related genes. Plos One, 2012, 7(8): e43901

    • 39

      Engvig A, Fjell A M, Westlye L T, et al. Effects of memory training on cortical thickness in the elderly. Neuroimage, 2010, 52(4): 1667-1676

    • 40

      Engvig A, Fjell A M, Westlye L T, et al. Memory training impacts short-term changes in aging white matter: a longitudinal diffusion tensor imaging study. Human Brain Mapping, 2012, 33(10): 2390-2406

    • 41

      Engvig A, Fjell A M, Westlye L T, et al. Effects of cognitive training on gray matter volumes in memory clinic patients with subjective memory impairment. Journal of Alzheimers Disease, 2014, 41(3): 779-791

    • 42

      Engvig A, Fjell A M, Westlye L T, et al. Hippocampal subfield volumes correlate with memory training benefit in subjective memory impairment. Neuroimage, 2012, 61(1): 188-194

    • 43

      Erickson K I, Boot W R, Basak C, et al. Striatal volume predicts level of video game skill acquisition. Cerebral Cortex, 2010, 20(11): 2522-2530

    • 44

      Mozolic J, Hayasaka S, Laurienti P.A cognitive training intervention increases resting cerebral blood flow in healthy older adults. Frontiers in Human Neuroscience,2010, 4(16): 1-10

    • 45

      Buschkuehl M, Jaeggi S M, Jonides J. Neuronal effects followingworking memory training. Developmental Cognitive Neuroscience,2012, 2(4): S167-S179

    • 46

      Nyberg L, Sandblom J, Jones S, et al. Neural correlates of training-related memory improvement in adulthood and aging. Proc Natl Acad Sci USA, 2003, 100(23): 13728-13733

    • 47

      Nikolaidis A, Voss M W, Lee H, et al. Parietal plasticity after training with a complex video game is associated with individual differences in improvements in an untrained working memory task. Frontiers in Human Neuroscience, 2014, 8(5): 1-11

    • 48

      Pascualleone A, Amedi A, Fregni F, et al. THE PLASTIC HUMAN BRAIN CORTEX. Annual Review of Neuroscience, 2005, 28(28): 377-401

    • 49

      Schneiders J A, Opitz B, Krick C M, et al. Separating intra-modal and across-modal training effects in visual working memory: an fMRI investigation. Cerebral Cortex, 2011, 21(11): 2555-2564

    • 50

      Kelly C, Foxe J J, Garavan H. Patterns of normal human brainplasticity after practice and their implications for neurohabilitation.Archives of Physical Medicine & Rehabilitation, 2006, 87 (12):20-29

    • 51

      Chapman S B, Aslan S, Spence J S, et al. Neural mechanisms of brain plasticity with complex cognitive training in healthy seniors. Cereb Cortex, 2015, 25(2): 396-405

    • 52

      Li R, Zhu X, Yin S, et al. Multimodal intervention in older adults improves resting-state functional connectivity between the medial prefrontal cortex and medial temporal lobe. Frontiers in Aging Neuroscience, 2014, 6(2): 1-11

    • 53

      Jolles D D, Buchem M a V, Crone E A, et al. Functional brain connectivity at rest changes after working memory training. Human Brain Mapping, 2013, 34(2): 396-406

    • 54

      Clément F, Belleville S. Effect of disease severity on neural compensation of itemand associative recognition in mild cognitiveimpairment. Journal of Alzheimers Disease, 2012, 29(1): 109-123

    • 55

      Reuterlorenz P A, Cappell K A. Neurocognitive aging and thecompensation hypothesis. Current Directions in Psychological Science, 2008, 17(3): 177-182

    • 56

      Goh J O, Park D C. Neuroplasticity and cognitive aging: thescaffolding theory of aging and cognition. Restorative Neurology and Neuroscience,2009, 27(5): 391-403

    • 57

      Erickson K I, Voss M W, Prakash R S, et al. A cross-sectional study of hormone treatment and hippocampal volume in postmenopausal women: evidence for a limited window of opportunity. Neuropsychology, 2010, 24(1): 68-76

    • 58

      尹述飞, 朱心怡, 李娟. 主观记忆减退老年人认知功能的可塑性(综述). 中国心理卫生杂志, 2016, 30(8): 600-606

      Yin S F, Zhu X Y, Li J. Chinese Mental Health Journal,2016, 30(8): 600-606

    • 59

      郭起浩, 陈瑞燕, 洪震, 等. 不同文化背景下正常老人认知功能比较. 中国心理卫生杂志, 2003, 17(11): 731-733

      Guo Q H, Chen R Y, Hong Z,et al. Chinese Mental Health Journal,2003, 17(11):731-733

    • 60

      Willis S, Caskie G. Reasoning training in the ACTIVE study: howmuch is needed and who benefits? Journal of Aging & Health, 2013,25(8 Suppl): 43S-64S

    • 61

      Ball K, Edwards J, Ross L. The impact of speed of processingtraining on cognitive and everyday functions. Journal of Gerontology. 2007, 62(1): 19-31

    • 62

      Willis S, Tennstedt S, Marsiske M, et al. Long-term effects of cognitive training on everyday functional outcomes in older adults. JAMA, 2006, 296(23): 2805-2814

    • 63

      薛志强, 冯威, 李春波, 等. 对社区老人认知功能干预的近期效果. 临床精神医学杂志, 2007, 17(5): 292-295

      Xue Z Q, Feng W, Li C B,et al. Journal of Clinical Psychiatry,2007, 17(5): 292-295