en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
NajorN A. Desmosomes in human disease. Annual Review of Pathology, 2018, 13(1): 51-70
参考文献 2
ChidgeyM, DawsonC. Desmosomes: a role in cancer? British Journal of Cancer,2007, 96(12): 1783-1787
参考文献 3
RietscherK, KeilR, JordanA, et al. 14-3-3 proteins regulate desmosomal adhesion via plakophilins. Journal of Cell Science, 2018, 131(10): 1-13
参考文献 4
GarrodD, ChidgeyM, NorthA. Desmosomes: differentiation, development, dynamics and disease. Current Opinion in Cell Biology, 1996, 8(5): 670-678
参考文献 5
CirilloN. 150th anniversary series: desmosomes in physiology and disease. Cell Communication & Adhesion, 2014, 21(2): 85-88
参考文献 6
PolivkaL, HadjrabiaS, BalE, et al. Epithelial barrier dysfunction in Desmoglein-1 deficiency. Journal of Allergy & Clinical Immunology, 2018, 142(2): 702-706
参考文献 7
HammersC M, StanleyJ R. Desmoglein-1, differentiation, and disease. Journal of Clinical Investigation, 2013, 123(4): 1419-1422
参考文献 8
AlaeeM, NoolK, PasdarM. Plakoglobin restores tumor suppressor activity of p53R175H mutant by sequestering the oncogenic potential of β-catenin. Cancer Science, 2018, 109(6): 1876-1888
参考文献 9
RotembergV, GarzonM, LaurenC, et al. A novel mutation in junctional plakoglobin causing lethal congenital epidermolysis bullosa. Journal of Pediatrics, 2017, 191: 266-269
参考文献 10
GiuliodoriA, BeffagnaG, MarchettoG, et al. Loss of cardiac Wnt/β-catenin signalling in Desmoplakin-deficient AC8 zebrafish models is rescuable by genetic and pharmacological intervention. Cardiovascular Research, 2018, 114(8):1082-1097
参考文献 11
AbreuvelezA M, ValenciayepesC A, UpeguizapataY A, et al. Patients with a new variant of endemic pemphigus foliaceus have autoantibodies against arrector pili muscle, colocalizing with MYZAP, p0071, desmoplakins 1 and 2 and ARVCF. Clinical & Experimental Dermatology, 2017, 42(8): 874-880
参考文献 12
OuyangP, SugrueS P. Identification of an epithelial protein related to the desmosome and intermediate filament network. Journal of Cell Biology, 1992, 118(6): 1477-1488
参考文献 13
OuyangP, SugrueS P. Characterization of pinin, a novel protein associated with the desmosome-intermediate filament complex. Journal of Cell Biology, 1996, 135(4): 1027-1042
参考文献 14
BrandnerJ M, ReidenbachS, KuhnC, et al. Identification and characterization of a novel kind of nuclear protein occurring free in the nucleoplasm and in ribonucleoprotein structures of the "speckle" type. European Journal of Cell Biology, 1998, 75(4): 295-308
参考文献 15
DegenW G, AgterbosM A, MuyrersJ P, et al. memA/DRS, a putative mediator of multiprotein complexes, is overexpressed in the metastasizing human melanoma cell lines BLM and MV3. Biochimica Et Biophysica Acta, 1999, 1444(3): 384-394
参考文献 16
ShiY, OuyangP, SugrueS P. Characterization of the gene encoding pinin/DRS/memA and evidence for its potential tumor suppressor function. Oncogene, 2000, 19(2): 289-297
参考文献 17
OuyangP. Antibodies differentiate desmosome-form and nucleus-form pinin: evidence that pinin is a moonlighting protein with dual location at the desmosome and within the nucleus. Biochemical & Biophysical Research Communications, 1999, 263(1): 192-200
参考文献 18
HsuS Y, ChenY J, OuyangP. Pnn and SR family proteins are differentially expressed in mouse central nervous system. Histochemistry & Cell Biology, 2011, 135(4): 361-373
参考文献 19
HsuS Y, ChengY C, ShihH Y, et al. Dissection of the role of Pinin in the development of zebrafish posterior pharyngeal cartilages. Histochemistry & Cell Biology, 2012, 138(1): 127-140
参考文献 20
SimmonsM N. Change in gene expression subsequent to induction of Pnn/DRS/memA: increase in p21cip1/waf1. Oncogene, 2001, 20(30): 4007-4018
参考文献 21
ShiJ, SugrueS P. Dissection of protein linkage between keratins and pinin, a protein with dual location at desmosome-intermediate filament complex and in the nucleus. Journal of Biological Chemistry, 2000, 275(20): 14910-14915
参考文献 22
ShiY, TabeshM, SugrueS P. Role of cell adhesion-associated protein, pinin (DRS/memA), in corneal epithelial migration. Investigative Ophthalmology & Visual Science, 2000, 41(6): 1337-1345
参考文献 23
JooJ H, AlpatovR, MungubaG C, et al. Reduction of Pnn by RNAi induces loss of cell-cell adhesion between human corneal epithelial cells. Molecular Vision, 2005, 11(15): 133-142
参考文献 24
ZimowskaG, ShiJ, MungubaG, et al. Pinin/DRS/memA interacts with SRp75, SRm300 and SRrp130 in corneal epithelial cells. Investigative Ophthalmology & Visual Science, 2003, 44(11): 4715-4723
参考文献 25
Jeong-HoonJ, CorreiaG P, Jian-LiangL, et al. Transcriptomic analysis of PNN- and ESRP1-regulated alternative pre-mRNA splicing in human corneal epithelial cells. Investigative Ophthalmology & Visual Science, 2013, 54(1): 697-707
参考文献 26
MurachelliA G, EbertJ, BasquinC, et al. The structure of the ASAP core complex reveals the existence of a Pinin-containing PSAP complex. Nature Structural & Molecular biology, 2012, 19(4): 378-386
参考文献 27
JooJ H, RyuD, PengQ, et al. Role of Pnn in alternative splicing of a specific subset of lncRNAs of the corneal epithelium. Molecular Vision, 2014, 20(32): 1629-1642
参考文献 28
AkinD, NewmanJ R, McintyreL M, et al. RNA-seq analysis of impact of PNN on gene expression and alternative splicing in corneal epithelial cells. Molecular Vision, 2016, 22: 40-60
参考文献 29
ZhangY, KwokJ S, ChoiP W, et al. Pinin interacts with C-terminal binding proteins for RNA alternative splicing and epithelial cell identity of human ovarian cancer cells. Oncotarget, 2016, 7(10): 11397-11411
参考文献 30
YangX, SunD, DongC, et al. Pinin associates with prognosis of hepatocellular carcinoma through promoting cell proliferation and suppressing glucose deprivation-induced apoptosis. Oncotarget, 2016, 7(26): 39694-39704
参考文献 31
WeiZ, MaW, QiX, et al. Pinin facilitated proliferation and metastasis of colorectal cancer through activating EGFR/ERK signaling pathway. Oncotarget, 2016, 7(20): 29429-29439
参考文献 32
LeuS, OuyangP. Spatial and temporal expression profile of pinin during mouse development. Gene Expression Patterns, 2006, 6(6): 620-631
参考文献 33
LeuS, LinY M, WuC H, et al. Loss of Pnn expression results in mouse early embryonic lethality and cellular apoptosis through SRSF1-mediated alternative expression of Bcl-xS and ICAD. Journal of Cell Science, 2012, 125(pt13): 3164-3172
目录 contents

    摘要

    桥粒不但参与上皮和心肌细胞的连接,增强细胞承受机械应力时的黏附作用,还能调控细胞行为和组织形态发生改变时的信号传导通路过程. 桥粒相关蛋白Pinin(PNN)自发现以来,其位置和功能就备受争议. 现有结果表明,PNN包含与细胞膜上桥粒共定位的桥粒型PNN和位于细胞核中的核型PNN两种,前者参与上皮细胞的黏附,后者与mRNA的选择性剪接功能有关. 新近研究发现,PNN与肿瘤发生密切相关,然而其作用及其分子机制却不相同. 本文对PNN的结构、功能及其与肿瘤发生的关系作一综述.

    Abstract

    Desmosome not only participates in the connections of epithelial cell and cardiomyocyte to enhance the cell adhesion when subjected to mechanical stress, it also regulates signal pathways of cell behavior. Since the discovery of Pinin (PNN), a desmosome-associated protein,its position and function are controversial. Current results indicate that PNN has two types: a desmosome-like PNN co-localized with desmosomes on the cell membrane, and a karyotype PNN located in the nucleus. The former participates in epithelial cell adhesion, the latter is related to the alternative splicing function of genes. Recent studies have found that PNN is closely related to tumorigenesis via different molecular mechanism. This article reviews the biological function of PNN and its relationship with tumorigenesis.

    桥粒是位于上皮细胞和心肌膜上的一种胞间连[1,2,3]. 它不但能增强细胞承受机械应力时的黏附作用,还能控制细胞行为和组织形态发生改变时的信号传导通[4,5]. 研究表明,桥粒三大家族(桥粒钙黏蛋白家族、犰狳家族和斑素蛋白家族)中的桥粒芯糖蛋白1(desmoglein 1,Dsg 1[6,7]、斑珠蛋白(plakoglobin,PG[8,9]和桥粒斑蛋白(desmoplakin,DP)[10,11]都能单独或者协同参与调控细胞的功能.

    1992年,Ouyang[12,13]在研究细胞桥粒和中间丝(interfilament,IF)相关上皮蛋白的鉴定时,首次发现了一种新蛋白质,并将其命名为桥粒相关蛋白Pinin(PNN). PNN除了具备和桥粒蛋白相似的黏附功能外,还具备mRNA的选择性剪接功能.新近研究发现,PNN在肿瘤的发生发展中也扮演重要的角色. 本文对PNN的结构、生物学功能和调控机制等作一综述.

  • 1 PNN简介

    1

    PNN基因定位于14q21.1,全长8 036 bp(NC_000014.9),编码产物的分子质量为140 ku. 该蛋白质羧基末端富含羟基氨基酸,特别是丝氨酸(Ser,S)或任意氨基酸(X)-丝氨酸(Ser,S)-精氨酸(Arg,R)-丝氨酸(Ser,S)类型的四肽重复序列,因此被称为富含丝氨酸结构域(domain rich in serines,DRS)的蛋白[14]. 此外,Degen[15]应用cDNA克隆技术,比较了不同转移程度的人黑素瘤细胞的mRNA水平. 结果发现,在高转移和其衍生的异种移植物中表达最高的是黑素瘤转移克隆A(melanoma metastasis clone A,memA). 分析其cDNA序列后发现,memA、DRS与PNN之间的同源性超过97.9%. 因此,PNN又称为DRS/memA.

    Ouyang[16]将携带有PNN全长基因的重组载体转染至不表达细胞黏附相关蛋白的293细胞后发现,PNN集中在细胞表面进行表达,同时细胞形状由纺锤形变为椭圆形,由独立存在到黏附成片. 结果提示,位于膜上的PNN主要参与促进细胞的黏附能力. 然而另有文献却发现,和PNN的氨基酸序列几乎相同(95%)的一类DRS蛋白质只存在于细胞核[14]. 针对这一争论,Ouyang[17]对PNN的定位进行了更深一步的研究. 他们分别构建携带有PNN羧基端36个氨基酸和PQLQ结构域的重组载体,原核表达后进行蛋白质纯化,并制备出特异性抗体. 免疫荧光实验结果显示,携带有PNN羧基端的蛋白质定位在细胞间接触的区域,和桥粒斑蛋白位置一致,而携带PQLQ结构域的蛋白质只定位在细胞核. 因此,Ouyang等根据该蛋白质分布位置的不同,将其分类为桥粒型PNN和核型PNN两种.

    为了研究上述两种蛋白质在细胞中的功能,他们根据犬肾上皮细胞(MDCK)培养时间的不同来推断细胞的成熟度. 结果发现,桥粒型和核型在幼稚型细胞中的位置分别位于膜和核内,Triton破坏细胞膜后,PNN在膜上的染色逐渐减少,而核内PNN染色依然存在,然而,当用Triton破坏成熟型细胞膜后却发现,荧光强度依然集中在细胞膜上. 这些结果提示,核型PNN由于不受Triton的影响,以一种结构蛋白的形式存在,而桥粒型PNN随着细胞成熟度的增加,位置逐渐转移至细胞膜上,并与桥粒和/或中间丝结合. 最后他们还发现,两种形式的PNN是由两个具有部分序列相似性的基因表达的结[17]. PNN的两种定位也在其他动物体内得到证[18,19].

  • 2 PNN与细胞连接

    2

    上皮细胞中过表达PNN会破坏上皮内环境的平衡,促进上皮细胞之间的黏连功能,进而抑制细胞从静止到迁移状态之间的转化. 反之,下调PNN的表达能抑制E-cadherin、Dsg2和桥粒斑蛋白等的表达,导致上皮细胞黏附消失,促使细胞从连接状态向运动状态转[16,20]. 这些结果提示,PNN能促进上皮细胞之间的连接,进而抑制细胞的转移. 为了研究PNN抑制细胞转移的机制,Shi [21]用酵母双杂交实验发现角蛋白(keratins,K)8、18和19能与PNN的氨基末端结构域结合. 由于K8、K18和K19是一般上皮细胞中表达的含有共同结构特性的角蛋白,进一步分析发现,角蛋白的2B结构域含有与PNN氨基酸序列中亮氨酸8 和19结合的序列,当它们定点突变亮氨酸8后发现PNN与角蛋白之间的结合能力显著性下降. 因此,他们认为PNN能通过与角蛋白丝的结合在上皮细胞黏附和IF复合物中发挥作用.

    Shi[22]为了研究PNN在角膜受伤病人上皮细胞迁移中的作用,他们对豚鼠和鸡角膜上皮进行划伤试验,对受伤和正常上皮细胞(对照组)中的PNN和桥粒斑蛋白进行免疫染色. 结果发现,对照组中表层细胞膜上的PNN和桥粒斑蛋白染色程度显著高于基底层细胞. 然而在角膜器官培养实验中发现,随着划伤时间的延长,细胞的形态从静止状态的上皮细胞转变成易于迁移的鳞状细胞,PNN的位置也由细胞膜转移到细胞质. 此外,他们在对损伤后不同时间点的组织进行电镜观察时发现,在发生迁移的受损组织上皮中,PNN与桥粒的结合逐渐松散并向胞质迁移. 直至创伤后72 h伤口闭合,PNN的定位又返回至桥粒位置. 有趣的是,桥粒斑蛋白的荧光一直局限在细胞膜上. 这些结果提示,PNN位置的改变与细胞修复有关.随后他们用MDCK进行了体外实验. 结果发现,在MDCK细胞的划痕实验中,PNN在细胞中的分布情况和组织中结果相似. 此外,过表达PNN的MDCK细胞迁移能力显著下降. 因此他们认为,PNN通过抑制角膜上皮细胞的迁移,进而影响角膜上皮损伤后的愈合.

    Joo[23]为了研究PNN在角膜上皮细胞连接中的作用,他们构建了携带有GFP和21个针对PNN特异核苷酸短发夹RNAi(shRNAi)的重组载体,并转染至人角膜上皮细胞. 结果发现,转染后24 h和48 h,细胞中的PNN荧光强度显著低于对照,细胞形状也由椭圆转变成纺锤形或者长梭形. 此外,细胞黏附相关蛋白E-cadherin的表达也显著降低. 这些结果提示,PNN的表达影响上皮细胞的连接. 此外,他们还构建了含有3个保守突变残基(CS3-PNN)的PNN定点突变异构体. 共转染PNN shRNAi与PNN-CS3-GFP异构体后,PNN的蛋白质表达被显著抑制,然而异构蛋白的表达不受影响. 同时,PNN-CS3-GFP蛋白位置集中在转染细胞的核斑点中. 此外,PNN-CS3-GFP细胞中 E-cadherin的表达水平与对照相比没有显著差异. 由此可见,野生型PNN蛋白参与建立和维持上皮细胞之间的连接.

    上述研究结果表明,PNN在细胞中的位置和表达水平的改变都影响上皮细胞之间的连接(图1).

    图1
                            PNN的定位及其与细胞黏附机制

    图1 PNN的定位及其与细胞黏附机制

    Fig. 1 PNN’s location and its regulation mechanism of cell adhesion

    PNN在上皮细胞成熟过程中,由核型转变成桥粒型,并通过角蛋白结合中间丝影响细胞黏附.

  • 3 PNN的选择性剪接

    3

    为了阐明角膜上皮细胞核内PNN的作用,Zimowska[24]将人PNN蛋白C末端(465~717)区域以及人cDNA文库质粒共转染至PJ69-4A酵母,并进行酵母双杂交试验. 结果发现,3个丝氨酸-精氨酸(SR)蛋白(SRp75、SRm300和SRrp130)与PNN的 C末端相互作用,并在细胞核内与前体mRNA的剪接体共定位呈斑点分布. 由于SRrp130是一个新的130-ku核蛋白,其cDNA能编码含有805个氨基酸残基的蛋白质,这些蛋白质中含有多个精氨酸-丝氨酸(RS)重复,但没有RNA识别基序. 利用双杂交系统分析PNN结构域发现,PNN内多聚RS基序在PNN与SR富集蛋白相互作用中扮演着重要的作用. 综上所述,PNN和SR富集蛋白质都具备参与前体mRNA的加工过[25,26].

    Joo[27]为了研究PNN在lncRNA选择性剪接中的作用,他们用shRNA下调人角膜上皮细胞内PNN的表达. 结果发现,细胞内特定6个lncRNA的表达和选择性剪接受到影响,其中5个(Linc00085、HAS2-AS1、RP11-18I14.1、RP11-295G20.2和RP11-322M19.1)已经被独立验证. 其中,Linc00085在PNN表达下调的人角膜上皮细胞内升高,而HAS2-AS1发生明显的选择性剪接改变. 此外,在PNN表达缺陷的小鼠角膜组织内,mHas2as(与人HAS2-AS1同源)3个主要的剪接突变体(外显子1-2-3-4-5、外显子1-2-3-5和外显子1-2-5)呈现不同的剪接模式. 尽管人HAS2-AS1与小鼠HAS2-AS1同源物mHas2as在基因组成和内含子长度方面存在明显差异,但两者的剪接模式却是相似的. 并且,mHas2as的剪接变异体在小鼠不同组织中呈现不同的剪接模式,可能提示每种剪接变异体具备组织特异性的作用. 在人角膜上皮细胞内,下调PNN的表达后,lncRNA RP11-18I14.1主要的剪接变异体1-2-5减少,而剪接变异体1-2-4-5相对增加,lncRNA RP11-295G20.2剪接变异体1-4-5-6显著性增加. 此外,人角膜组织原位杂交显示,RP11-295G20.2定位于角膜上皮细胞的细胞核内,下调其表达后,lncRNA RP11-322M19.1外显子的剪接和剪接位点都将发生改变. 综上所述,PNN在特定lncRNAs的选择性剪接中发挥作用,可能对角膜上皮有明显的影响.

    另有研究发现,强力霉素条件诱导shRNA PNN降低细胞内的蛋白质表达后,RNA-seq检测到36 275个转录本. 其中有90个转录本存在显著性差异的表达(P < 0.01),同时在这90个转录本中,61个基因表达上调,另有28个基因下调. GO(gene ontology)分析发现,这61个表达上调的基因包括大量与增强细胞迁移和细胞外基质重建过程相关的基因(MMPs、ADAMs、HAS2、LAMA3和UNC5C等),此外还包括影响细胞迁移的CXCR趋化因子受体结合家族、金属内肽酶以及细胞外基质组织和结构相关的基因. 微滴式数字PCR(ddPCR)检测MMP1、MMP9、MMP13和VEGF-A的基因表达趋势和RNA-seq一致. RNA-seq检测基因的选择性剪接时,共检测到80 813个选择性剪接发生,其中58 817个剪接事件在正常角膜上皮细胞和强力霉素条件下诱导敲低PNN的角膜上皮细胞内都检测到. 分析发现,5 063个选择性剪接存在差异表达,其中4 683(92.5%)个选择性剪接在PNN敲低的细胞内显著提高,其余380(7.5%)个选择性剪接在正常细胞内更高. 此外,91.8%(635/692)的外显子跳跃剪接、94.1%(531/564)的选择性供体位点剪接、93.0%(490/527)的选择性受体位点剪接、93.7%(554/591)选择性供体和受体位点剪接以及62.9%(95/151)的内含子保留剪接都在PNN敲低的细胞内显著性升[28]. 由于PNN下调导致了大量影响上皮细胞核型基因的剪接事件发生,故其表达能调控影响角膜上皮细胞内基因转录和选择性剪接,并在二者中发挥桥梁作用.

  • 4 PNN与肿瘤

    4

    PNN与肿瘤的发生发展也密切相关. 它不仅可以通过细胞桥粒结构来调控细胞表型的变化,完成核中pre-mRNA剪接的过程,还能通过其他机制参与膀胱移行细胞癌、肾细胞癌、卵巢癌、结直肠癌和肝癌等多种肿瘤的发生发展过程.

    Zhang[29]研究发现,PNN在卵巢肿瘤组织和细胞系中高表达,降低细胞中PNN的表达后,显著抑制了细胞的黏附和克隆形成能力,同时伴随着细胞对抗癌药物紫杉醇敏感性的增强. 此外,他们还发现PNN能和细胞核内的C末端结合蛋白(C-terminal binding proteins,CtBP)紧密结合形成共转录因子,shRNA下调细胞内PNN表达后,CtBP 1的表达也显著性降低. 由此可见,PNN能促进卵巢癌细胞的生长,并降低细胞对抗癌药物的敏感性.

    Yang[30]在研究PNN的表达与肝细胞癌(hepatocellular carcinoma,HCC)之间的关系时发现,PNN在HCC组织中高表达,在HCC细胞中也高表达. 降低HCC细胞中PNN的表达后,细胞增殖、集落形成和DNA的合成能力显著性降低. 由此可见,PNN可能以癌基因的角色参与HCC的发生. 由于肿瘤细胞的生长受细胞内能量消耗和糖代谢的控制,为了研究PNN在HCC代谢应激期间存活中的作用,他们研究了葡萄糖、谷氨酰胺以及血清缺乏对HCC细胞生存的影响. 结果发现,细胞内PNN的表达程度与细胞对葡萄糖缺乏诱导的细胞死亡呈反比;然而,在谷氨酰胺或血清剥夺条件下的HCC细胞中,却未观察到PNN过表达对细胞的保护作用. 此外他们还发现,HCC细胞内磷酸化ERK1/2和MEK水平随葡萄糖剥夺时间的延长而降低,但在过表达PNN的HCC细胞中上述现象被拮抗. MEK1/2特异性抑制剂U0126处理细胞后,完全阻断了PNN高表达介导的抵抗葡萄糖匮乏诱导的ERK去磷酸化. 综上所述,PNN通过促进ERK1/2的磷酸化水平促进HCC的恶性发展并抑制了葡萄糖匮乏诱导的细胞凋亡.

    为了研究PNN与结直肠癌(colorectal cancer,CRC)的关系,Wei[31]在检测肿瘤及其相邻正常组织中PNN的表达时发现,其mRNA和蛋白质水平都显著高于正常对照. 用siRNA降低高表达PNN的SW620细胞后,细胞的增殖、迁移和侵袭能力都被显著性抑制,而外源性上调PNN表达得到了相反的结果. 此外,裸鼠皮下成瘤实验和尾静脉注射实验结果显示,降低PNN的表达能显著性抑制肿块的形成和大小,以及肺转移结节的数量. 深入研究其机制时发现,下调SW620中PNN的表达,DSG2的表达被显著性抑制;PNN的降低也伴随着EGFR和ERK1/2磷酸化水平的下降. 为了研究EGFR和ERK1/2在PNN促进DSG2表达中的作用,将ERK抑制剂SCH772984加入PNN过表达的SW480细胞后发现,在不影响DSG2蛋白表达和p-EGFR水平的情况下,ERK1/2的磷酸化水平被显著性下调,同时PNN高表达促进的SW480细胞增殖迁移和浸润能力都被显著性抑制. 由此可见,PNN通过激活EGFR/ERK通路促进CRC细胞的增殖和迁移,可作为诊断CRC预后的一个标志物.

    有趣的是,Shi[16]用RNA印迹(Northern blot)法检测了4对肾细胞癌(renal caner carcinoma,RCC)及其配对的正常组织中PNN mRNA表达水平,结果发现在其中2例RCC组织中PNN表达低于正常对照. 此外,PNN在B细胞淋巴瘤和黑色素瘤细胞中也低表达. 因此,他们认为在一些肿瘤中,PNN和其他细胞黏附蛋白一样可以作为抑癌基因,影响肿瘤的发生. 然而,他们在应用免疫组化方法研究PNN的蛋白质表达时却发现,一些RCC组织标本中呈低表达,一例上皮细胞来源于集合管的RCC中PNN的表达没有明显的变化,同时在一些未分化的RCC细胞中,PNN在胞质中大量聚集,而桥粒蛋白的表达和分布没有明显变化. 这些实验结果提示,PNN在不同来源的RCC发生过程中扮演不同的角色. 他们的实验仅仅涉及到4例RCC标本和1例集合管型RCC,PNN与RCC发生以及亚型之间的关系尚需深入研究. 我们实验室在收集80例RCC的临床标本后,分析了PNN的蛋白质和基因表达情况. 结果发现,PNN在72%的RCC组织中呈高表达,并且该蛋白质的表达与病人的淋巴结转移和远处转移间有显著差异(未发表). 由此可见,PNN在RCC发生中也可能扮演癌基因的角色.

    图2
                            PNN促进肿瘤发生的分子机制

    图2 PNN促进肿瘤发生的分子机制

    Fig. 2 Molecular mechanism of PNN-promoted tumorigenesis

    PNN通过EGFR,ERK和糖酵解途径促进结肠癌和肝癌细胞增殖;PNN通过结合核内转录因子和抑制剪接因子的表达,促进卵巢癌和乳腺癌细胞的增殖和迁移.

    早期文献报道,PNN在鼠受精卵的2细胞期开始和多能性胚胎干细胞中都持续表[32]. 为了在动物体内研究PNN的生物学功能,Leu[33]构建了PNN的外显子1和2缺陷的小鼠模型,然而在胚泡形成之后没有发现其纯合子型的子代. 由此可见,PNN缺陷能导致早期胚胎的死亡. 为了深入研究其分子机制,Leu等抑制乳腺癌MCF-7细胞和多能干细胞中PNN的表达后发现,细胞核发生浓缩和染色质出现边缘化、细胞增殖标志物ki-67的表达显著性降低、核斑点破坏、SR蛋白表达下降.RT-PCR分析显示,凋亡相关基因Bcl-x和ICAD有mRNA异构体的出现、富含丝氨酸和精氨酸剪接因子(serine/arginine-rich splicing factor, SRSF1)中含有3号内含子的长mRNA异构体逐渐升高,而高表达SRSF1后能逆转上述现象. 因此,PNN的表达是鼠胚胎发育和乳腺癌细胞生长的关键调节因素,SRSF1调控的PNN缺失通过激活Bcl-xS转录,进而诱导细胞凋亡.

  • 5 展 望

    5

    综上所述,在正常上皮细胞中,PNN通过桥粒蛋白家族成员促进细胞之间的连接和黏附,抑制迁移. 在肿瘤细胞中,PNN还可通过mRNA选择性剪接和其他机制作为癌基因促进肿瘤细胞(肾癌细胞除外)的生长和迁移(图2). 然而,关于PNN,蛋白质可变体的形式及其功能、mRNA剪接功能与肿瘤之间的关系以及大样本分析在肿瘤亚型发生发展过程中的作用等方面尚需深入研究. 这些研究将进一步拓展我们对PNN蛋白功能的认识, 并将为其在肿瘤的个性化诊断和靶向治疗中的应用奠定基础.

    Tel:0574-87609595, E-mail: wangping2@nbu.edu.cn

  • 参考文献

    • 1

      Najor N A. Desmosomes in human disease. Annual Review of Pathology, 2018, 13(1): 51-70

    • 2

      Chidgey M, Dawson C. Desmosomes: a role in cancer? British Journal of Cancer,2007, 96(12): 1783-1787

    • 3

      Rietscher K, Keil R, Jordan A, et al. 14-3-3 proteins regulate desmosomal adhesion via plakophilins. Journal of Cell Science, 2018, 131(10): 1-13

    • 4

      Garrod D, Chidgey M, North A. Desmosomes: differentiation, development, dynamics and disease. Current Opinion in Cell Biology, 1996, 8(5): 670-678

    • 5

      Cirillo N. 150th anniversary series: desmosomes in physiology and disease. Cell Communication & Adhesion, 2014, 21(2): 85-88

    • 6

      Polivka L, Hadjrabia S, Bal E, et al. Epithelial barrier dysfunction in Desmoglein-1 deficiency. Journal of Allergy & Clinical Immunology, 2018, 142(2): 702-706

    • 7

      Hammers C M, Stanley J R. Desmoglein-1, differentiation, and disease. Journal of Clinical Investigation, 2013, 123(4): 1419-1422

    • 8

      Alaee M, Nool K, Pasdar M. Plakoglobin restores tumor suppressor activity of p53R175H mutant by sequestering the oncogenic potential of β-catenin. Cancer Science, 2018, 109(6): 1876-1888

    • 9

      Rotemberg V, Garzon M, Lauren C, et al. A novel mutation in junctional plakoglobin causing lethal congenital epidermolysis bullosa. Journal of Pediatrics, 2017, 191: 266-269

    • 10

      Giuliodori A, Beffagna G, Marchetto G, et al. Loss of cardiac Wnt/β-catenin signalling in Desmoplakin-deficient AC8 zebrafish models is rescuable by genetic and pharmacological intervention. Cardiovascular Research, 2018, 114(8):1082-1097

    • 11

      Abreuvelez A M, Valenciayepes C A, Upeguizapata Y A, et al. Patients with a new variant of endemic pemphigus foliaceus have autoantibodies against arrector pili muscle, colocalizing with MYZAP, p0071, desmoplakins 1 and 2 and ARVCF. Clinical & Experimental Dermatology, 2017, 42(8): 874-880

    • 12

      Ouyang P, Sugrue S P. Identification of an epithelial protein related to the desmosome and intermediate filament network. Journal of Cell Biology, 1992, 118(6): 1477-1488

    • 13

      Ouyang P, Sugrue S P. Characterization of pinin, a novel protein associated with the desmosome-intermediate filament complex. Journal of Cell Biology, 1996, 135(4): 1027-1042

    • 14

      Brandner J M, Reidenbach S, Kuhn C, et al. Identification and characterization of a novel kind of nuclear protein occurring free in the nucleoplasm and in ribonucleoprotein structures of the "speckle" type. European Journal of Cell Biology, 1998, 75(4): 295-308

    • 15

      Degen W G, Agterbos M A, Muyrers J P, et al. memA/DRS, a putative mediator of multiprotein complexes, is overexpressed in the metastasizing human melanoma cell lines BLM and MV3. Biochimica Et Biophysica Acta, 1999, 1444(3): 384-394

    • 16

      Shi Y, Ouyang P, Sugrue S P. Characterization of the gene encoding pinin/DRS/memA and evidence for its potential tumor suppressor function. Oncogene, 2000, 19(2): 289-297

    • 17

      Ouyang P. Antibodies differentiate desmosome-form and nucleus-form pinin: evidence that pinin is a moonlighting protein with dual location at the desmosome and within the nucleus. Biochemical & Biophysical Research Communications, 1999, 263(1): 192-200

    • 18

      Hsu S Y, Chen Y J, Ouyang P. Pnn and SR family proteins are differentially expressed in mouse central nervous system. Histochemistry & Cell Biology, 2011, 135(4): 361-373

    • 19

      Hsu S Y, Cheng Y C, Shih H Y, et al. Dissection of the role of Pinin in the development of zebrafish posterior pharyngeal cartilages. Histochemistry & Cell Biology, 2012, 138(1): 127-140

    • 20

      Simmons M N. Change in gene expression subsequent to induction of Pnn/DRS/memA: increase in p21cip1/waf1. Oncogene, 2001, 20(30): 4007-4018

    • 21

      Shi J, Sugrue S P. Dissection of protein linkage between keratins and pinin, a protein with dual location at desmosome-intermediate filament complex and in the nucleus. Journal of Biological Chemistry, 2000, 275(20): 14910-14915

    • 22

      Shi Y, Tabesh M, Sugrue S P. Role of cell adhesion-associated protein, pinin (DRS/memA), in corneal epithelial migration. Investigative Ophthalmology & Visual Science, 2000, 41(6): 1337-1345

    • 23

      Joo J H, Alpatov R, Munguba G C, et al. Reduction of Pnn by RNAi induces loss of cell-cell adhesion between human corneal epithelial cells. Molecular Vision, 2005, 11(15): 133-142

    • 24

      Zimowska G, Shi J, Munguba G, et al. Pinin/DRS/memA interacts with SRp75, SRm300 and SRrp130 in corneal epithelial cells. Investigative Ophthalmology & Visual Science, 2003, 44(11): 4715-4723

    • 25

      Jeong-Hoon J, Correia G P, Jian-Liang L, et al. Transcriptomic analysis of PNN- and ESRP1-regulated alternative pre-mRNA splicing in human corneal epithelial cells. Investigative Ophthalmology & Visual Science, 2013, 54(1): 697-707

    • 26

      Murachelli A G, Ebert J, Basquin C, et al. The structure of the ASAP core complex reveals the existence of a Pinin-containing PSAP complex. Nature Structural & Molecular biology, 2012, 19(4): 378-386

    • 27

      Joo J H, Ryu D, Peng Q, et al. Role of Pnn in alternative splicing of a specific subset of lncRNAs of the corneal epithelium. Molecular Vision, 2014, 20(32): 1629-1642

    • 28

      Akin D, Newman J R, Mcintyre L M, et al. RNA-seq analysis of impact of PNN on gene expression and alternative splicing in corneal epithelial cells. Molecular Vision, 2016, 22: 40-60

    • 29

      Zhang Y, Kwok J S, Choi P W, et al. Pinin interacts with C-terminal binding proteins for RNA alternative splicing and epithelial cell identity of human ovarian cancer cells. Oncotarget, 2016, 7(10): 11397-11411

    • 30

      Yang X, Sun D, Dong C, et al. Pinin associates with prognosis of hepatocellular carcinoma through promoting cell proliferation and suppressing glucose deprivation-induced apoptosis. Oncotarget, 2016, 7(26): 39694-39704

    • 31

      Wei Z, Ma W, Qi X, et al. Pinin facilitated proliferation and metastasis of colorectal cancer through activating EGFR/ERK signaling pathway. Oncotarget, 2016, 7(20): 29429-29439

    • 32

      Leu S, Ouyang P. Spatial and temporal expression profile of pinin during mouse development. Gene Expression Patterns, 2006, 6(6): 620-631

    • 33

      Leu S, Lin Y M, Wu C H, et al. Loss of Pnn expression results in mouse early embryonic lethality and cellular apoptosis through SRSF1-mediated alternative expression of Bcl-xS and ICAD. Journal of Cell Science, 2012, 125(pt13): 3164-3172

刘伟红

机 构:宁波大学医学院,浙江省病理生理重点实验室,宁波 315211

Affiliation:Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China

林晨

机 构:宁波大学医学院,浙江省病理生理重点实验室,宁波 315211

Affiliation:Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China

余肖

机 构:宁波大学医学院,浙江省病理生理重点实验室,宁波 315211

Affiliation:Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China

王萍

机 构:宁波大学医学院,浙江省病理生理重点实验室,宁波 315211

Affiliation:Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo 315211, China

角 色:通讯作者

Role:Corresponding author

html/pibbcn/20180150/alternativeImage/83500840-2f3b-48f4-89bd-b79ada4f4234-F002.jpg
html/pibbcn/20180150/alternativeImage/83500840-2f3b-48f4-89bd-b79ada4f4234-F003.jpg

图1 PNN的定位及其与细胞黏附机制

Fig. 1 PNN’s location and its regulation mechanism of cell adhesion

图2 PNN促进肿瘤发生的分子机制

Fig. 2 Molecular mechanism of PNN-promoted tumorigenesis

image /

无注解

无注解

  • 参考文献

    • 1

      Najor N A. Desmosomes in human disease. Annual Review of Pathology, 2018, 13(1): 51-70

    • 2

      Chidgey M, Dawson C. Desmosomes: a role in cancer? British Journal of Cancer,2007, 96(12): 1783-1787

    • 3

      Rietscher K, Keil R, Jordan A, et al. 14-3-3 proteins regulate desmosomal adhesion via plakophilins. Journal of Cell Science, 2018, 131(10): 1-13

    • 4

      Garrod D, Chidgey M, North A. Desmosomes: differentiation, development, dynamics and disease. Current Opinion in Cell Biology, 1996, 8(5): 670-678

    • 5

      Cirillo N. 150th anniversary series: desmosomes in physiology and disease. Cell Communication & Adhesion, 2014, 21(2): 85-88

    • 6

      Polivka L, Hadjrabia S, Bal E, et al. Epithelial barrier dysfunction in Desmoglein-1 deficiency. Journal of Allergy & Clinical Immunology, 2018, 142(2): 702-706

    • 7

      Hammers C M, Stanley J R. Desmoglein-1, differentiation, and disease. Journal of Clinical Investigation, 2013, 123(4): 1419-1422

    • 8

      Alaee M, Nool K, Pasdar M. Plakoglobin restores tumor suppressor activity of p53R175H mutant by sequestering the oncogenic potential of β-catenin. Cancer Science, 2018, 109(6): 1876-1888

    • 9

      Rotemberg V, Garzon M, Lauren C, et al. A novel mutation in junctional plakoglobin causing lethal congenital epidermolysis bullosa. Journal of Pediatrics, 2017, 191: 266-269

    • 10

      Giuliodori A, Beffagna G, Marchetto G, et al. Loss of cardiac Wnt/β-catenin signalling in Desmoplakin-deficient AC8 zebrafish models is rescuable by genetic and pharmacological intervention. Cardiovascular Research, 2018, 114(8):1082-1097

    • 11

      Abreuvelez A M, Valenciayepes C A, Upeguizapata Y A, et al. Patients with a new variant of endemic pemphigus foliaceus have autoantibodies against arrector pili muscle, colocalizing with MYZAP, p0071, desmoplakins 1 and 2 and ARVCF. Clinical & Experimental Dermatology, 2017, 42(8): 874-880

    • 12

      Ouyang P, Sugrue S P. Identification of an epithelial protein related to the desmosome and intermediate filament network. Journal of Cell Biology, 1992, 118(6): 1477-1488

    • 13

      Ouyang P, Sugrue S P. Characterization of pinin, a novel protein associated with the desmosome-intermediate filament complex. Journal of Cell Biology, 1996, 135(4): 1027-1042

    • 14

      Brandner J M, Reidenbach S, Kuhn C, et al. Identification and characterization of a novel kind of nuclear protein occurring free in the nucleoplasm and in ribonucleoprotein structures of the "speckle" type. European Journal of Cell Biology, 1998, 75(4): 295-308

    • 15

      Degen W G, Agterbos M A, Muyrers J P, et al. memA/DRS, a putative mediator of multiprotein complexes, is overexpressed in the metastasizing human melanoma cell lines BLM and MV3. Biochimica Et Biophysica Acta, 1999, 1444(3): 384-394

    • 16

      Shi Y, Ouyang P, Sugrue S P. Characterization of the gene encoding pinin/DRS/memA and evidence for its potential tumor suppressor function. Oncogene, 2000, 19(2): 289-297

    • 17

      Ouyang P. Antibodies differentiate desmosome-form and nucleus-form pinin: evidence that pinin is a moonlighting protein with dual location at the desmosome and within the nucleus. Biochemical & Biophysical Research Communications, 1999, 263(1): 192-200

    • 18

      Hsu S Y, Chen Y J, Ouyang P. Pnn and SR family proteins are differentially expressed in mouse central nervous system. Histochemistry & Cell Biology, 2011, 135(4): 361-373

    • 19

      Hsu S Y, Cheng Y C, Shih H Y, et al. Dissection of the role of Pinin in the development of zebrafish posterior pharyngeal cartilages. Histochemistry & Cell Biology, 2012, 138(1): 127-140

    • 20

      Simmons M N. Change in gene expression subsequent to induction of Pnn/DRS/memA: increase in p21cip1/waf1. Oncogene, 2001, 20(30): 4007-4018

    • 21

      Shi J, Sugrue S P. Dissection of protein linkage between keratins and pinin, a protein with dual location at desmosome-intermediate filament complex and in the nucleus. Journal of Biological Chemistry, 2000, 275(20): 14910-14915

    • 22

      Shi Y, Tabesh M, Sugrue S P. Role of cell adhesion-associated protein, pinin (DRS/memA), in corneal epithelial migration. Investigative Ophthalmology & Visual Science, 2000, 41(6): 1337-1345

    • 23

      Joo J H, Alpatov R, Munguba G C, et al. Reduction of Pnn by RNAi induces loss of cell-cell adhesion between human corneal epithelial cells. Molecular Vision, 2005, 11(15): 133-142

    • 24

      Zimowska G, Shi J, Munguba G, et al. Pinin/DRS/memA interacts with SRp75, SRm300 and SRrp130 in corneal epithelial cells. Investigative Ophthalmology & Visual Science, 2003, 44(11): 4715-4723

    • 25

      Jeong-Hoon J, Correia G P, Jian-Liang L, et al. Transcriptomic analysis of PNN- and ESRP1-regulated alternative pre-mRNA splicing in human corneal epithelial cells. Investigative Ophthalmology & Visual Science, 2013, 54(1): 697-707

    • 26

      Murachelli A G, Ebert J, Basquin C, et al. The structure of the ASAP core complex reveals the existence of a Pinin-containing PSAP complex. Nature Structural & Molecular biology, 2012, 19(4): 378-386

    • 27

      Joo J H, Ryu D, Peng Q, et al. Role of Pnn in alternative splicing of a specific subset of lncRNAs of the corneal epithelium. Molecular Vision, 2014, 20(32): 1629-1642

    • 28

      Akin D, Newman J R, Mcintyre L M, et al. RNA-seq analysis of impact of PNN on gene expression and alternative splicing in corneal epithelial cells. Molecular Vision, 2016, 22: 40-60

    • 29

      Zhang Y, Kwok J S, Choi P W, et al. Pinin interacts with C-terminal binding proteins for RNA alternative splicing and epithelial cell identity of human ovarian cancer cells. Oncotarget, 2016, 7(10): 11397-11411

    • 30

      Yang X, Sun D, Dong C, et al. Pinin associates with prognosis of hepatocellular carcinoma through promoting cell proliferation and suppressing glucose deprivation-induced apoptosis. Oncotarget, 2016, 7(26): 39694-39704

    • 31

      Wei Z, Ma W, Qi X, et al. Pinin facilitated proliferation and metastasis of colorectal cancer through activating EGFR/ERK signaling pathway. Oncotarget, 2016, 7(20): 29429-29439

    • 32

      Leu S, Ouyang P. Spatial and temporal expression profile of pinin during mouse development. Gene Expression Patterns, 2006, 6(6): 620-631

    • 33

      Leu S, Lin Y M, Wu C H, et al. Loss of Pnn expression results in mouse early embryonic lethality and cellular apoptosis through SRSF1-mediated alternative expression of Bcl-xS and ICAD. Journal of Cell Science, 2012, 125(pt13): 3164-3172