-
1 细菌表面展示系统开发
-
1.1 新型载体蛋白的开发
外膜蛋白多以β桶折叠的形式存在于外膜,是跨膜蛋白的组成成分,载体蛋白目前已有OmpA、LamB、OmpC、OmpX和OmpS等多种以及脂蛋白与外膜蛋白镶嵌的Lpp-OmpA等,这些表面展示系统均已成功地展示过酶、抗体以及多肽等多种靶标蛋白
质[25] . 载体蛋白的位置和自身的表达量可能显著影响靶标蛋白的展示效果. YiaT是大肠杆菌的一种外膜蛋白,包含了5个暴露在细胞膜的外环. 研究表明,采用YiaT作为新的载体蛋白可以在大肠杆菌XL10-Gold表面展示71 ku和76 ku脂肪酶或68~73 ku的α-淀粉酶,并且展示的脂肪酶活性比载体蛋白OprF所展示的高10倍,比FadL所展示的高20倍[26] .大多数外膜展示系统都需要信号肽的引导,而且要求所展示的靶标蛋白质的分子质量不能太大,这使展示系统的应用范围受到比较大的限制.Park
等[27] 通过把炭疽芽孢杆菌外膜蛋白BclA作为载体蛋白引入大肠杆菌表面展示系统,成功实现了分子质量为120 ku的巨大芽孢杆菌单氧酶的表面展示,并且该载体蛋白不需要信号肽的引导,这给大分子质量的蛋白质展示提供了一个成功的范例.除了外膜蛋白,越来越多被外膜覆盖着的蛋白质也可能成为潜在的载体蛋白. 这类载体蛋白的开发利用往往需要连接序列的参与. 适当连接序列的引入,往往能取得意想不到的效果. Quehl
等[28] 系统研究了系列连接序列对自主转运蛋白作为载体蛋白时对P450酶及其突变体展示效果的影响. 结果显示适当的连接序列能够提高所展示P450酶的活性,也拓宽了载体蛋白的选择范围. 类似地,当用孢子外壳蛋白Z(CotZ)作为载体蛋白在枯草芽孢杆菌展示时,因无法充分暴露靶标蛋白尿素酶而导致其没有酶活,但在CotZ与靶标蛋白之间连接一个具有完整二级结构的多肽时,尿素酶能展示在枯草芽孢杆菌的表面,且活性良好[29] . 因此,使靶标蛋白和载体蛋白保持适当的距离是确保成功展示的一个重要因素. -
1.2 经典载体蛋白的改造
冰核蛋白(ice nucleation protein, INP)是目前细菌表面展示系统中经典的载体蛋白,INP是存在于荧光假单胞菌、假单胞杆菌、黄单胞菌属和欧氏杆菌等细菌种属中的一种分泌性型表面蛋
白[30] .因为INP是细菌表面展示系统中较为常用的载体蛋白,所以其变体的种类较多、功能各异,在表面展示中有着非常广泛的应用. 为了增强 INP的表面展示效率,扩大靶标蛋白质的展示范围,各种INP的变体及其改造修饰的方法被陆续报道.如INP的变体InaQ,通过增加2至3个N末端结构域(InaQ-N)就能提高其所展示靶标蛋白的跨膜转运活性和展示效率[31] . Niu等[32] 运用InaQ-N不仅实现了人诺如病毒衣壳蛋白在大肠杆菌外膜上的展示,而且所展示的蛋白质还能进行病毒受体结合能力的评估. 另外,利用INP的变体InaZ的N末端结构域可以实现鸡毒支原体黏附蛋白在大肠杆菌表面的展示,所得蛋白质具有生物学活性,能对DF-1细胞进行黏附[33] . 简单地说,INP各种突变体的发现和相关细菌表面展示系统的构建有效地拓宽了该类系统的应用范围.虽然INP多种变体可以有效提高靶标蛋白质的展示量、最大限度保持靶标蛋白质的活性,但也有些变体仍存在对蛋白水解酶较为敏感、不稳定及融合蛋白表面易位等情况. 解决靶标蛋白展示量的方法之一就是将全长序列进行截短,如变体InaK截短之后更容易携带大分子蛋白质(InaK-NC
)[34] . 另一方面,为解决融合蛋白表面易位和展示效率的问题,Zhang等[35] 利用某些短肽锚在截短的InaK的N末端(InaK-N),可以提高人类精氨酸酶(ARG1)三聚体的表面展示效率. 这个发现不仅解决了InaK-N对蛋白酶的水解问题和ARG1在大肠杆菌表面展示酶活的缺失问题,还为以后的表面展示系统的开发提供了新的思路.INP展示系统另外一个优点是能展示的靶标蛋白种类多,且靶标蛋白不会对宿主造成不良影响. 当用Lpp-OmpA在大肠杆菌表达有机磷水解(OPH)酶时酶活力降低且抑制宿主菌的生长,虽然通过启动子的调整可以避免这类情况的出现,但使用InaV-N表达OPH则不会有如此麻烦的情况,不需要做调
整[36] . 总的来说,INP及其变体种类繁多,应用范围广. 同时,更多新的INP家族蛋白质正在继续被研究应用于这一领域. 新近发现的INP-F,属于第二类冰核蛋白. 晶体结构显示其三维结构与现有INP之间有较大的差别,可能在细菌表面展示等领域给大家带来更多的惊喜[37] . -
1.3 展示效果检测
细菌表面展示技术虽然是获取靶标蛋白的优选方式,但是我们所需的蛋白质是否展示在细菌的外膜上还有待进一步的分析. 传统的方法主要通过特异的蛋白酶对细胞表面表达的蛋白质进行特异性消化后检测. 但这个方法比较繁琐,需要确保消化时细胞膜的完整性,同时还要确定报告蛋白和特异抗体
等[38] . 相比较而言,直接对载体蛋白或者靶标蛋白进行改造以便于检测往往是一种更优的选择. 有研究表明,在自转运蛋白AIDA-I的N端插入组标签(His6)后再与靶标蛋白质融合,并且在靶标蛋白C端插入Myc标签,这样当蛋白质在表面表达时可用这两种标签的特异性抗体进行检测,从而实现展示情况的具体定位和定量[39] . 此方法已成功地用于ω-转氨酶在大肠杆菌表面表达情况的检测,当检测到Myc标签抗体的信号则表明转氨酶被转运到外膜;如果细胞表面上的所有转氨酶蛋白都以全长序列的形式存在,则来自His6标签的荧光更强[40] . 通过这种双标签检测可以确定靶标蛋白是否充分展示.为了检测和量化所展示的靶标蛋白,有研究用一个绿色荧光蛋白的单域抗体(纳米抗体),与相应的载体蛋白和靶标蛋白融合组成载体蛋白-纳米抗体-靶标蛋白三明治结构. 通过这种展示方式将展示菌与绿色荧光蛋白孵育培养后可用荧光显微镜观察,也可用流式细胞仪对展示效率进行量化,并且做Western blot时不需添加2次抗体,只需一步即可检测,这大大地降低了实验的成
本[41] . 表面展示虽然简化了蛋白质纯化的繁琐步骤、降低生产成本,但其展示效果检测和定量还有待进一步的深入研究. 不管是从基因水平上改造还是蛋白质水平的修饰,其最终目的都是尽可能地在不影响靶标蛋白表达的情况下简化检测步骤、降低检测成本、提高表面展示系统的可操作性. -
2 细菌表面展示技术的应用
-
2.1 细菌表面展示技术在生物修复中的应用
社会的快速发展带来一系列的环境和生态安全问题,其中环境污染问题已经到了无法忽视的地步. 根据污染物的性质不同可将环境污染分为有机物污染和无机物污染.其中无机物污染主要包括重金属污染,硫、氮、碳的氧化物导致的空气污染,酸碱盐的排放导致水中氮或磷含量严重超标,水体富营养化而导致蓝藻的疯狂增长造成的水污染等.目前已有各式各样的环境污染治理办法,有些方法也取得了一定的成效,但环境污染问题的复杂性要求更多、更有效的方法的研究和实施.
如今,我们熟知的微生物除藻法不仅采用传统的活性污泥中的有益菌进行修复,还与细菌表面展示技术相结合. 有研究发现,将能特异性识别蓝藻表面脂多糖的凝集素通过表面展示技术表达于大肠杆菌的外膜上,利用凝集素与脂多糖的特异性识别去黏附蓝藻,借此来治理蓝藻水
华[42] . 此外,使用大肠杆菌表面展示三苯甲烷还原酶对染料分子进行分解来解决工业废水污染也取得良好的效果[43] .再者,将金属结合肽展示在细菌表面,通过金属结合肽与金属离子之间的结合力将金属吸附在细胞表面,一方面可以解决污染问题,另一方面还对金属进行收集运用[24] .有机物污染方面,目前以有机磷农药的滥用导致的环境污染最为严重. 由于有机磷农药的大规模生产和不当处理,已经造成了严重的土壤、空气、地表和地下水污染. 治理污染用的酶虽然可用重组基因工程菌来生产,但胞内表达的酶往往定位于细胞质或者是周质空间,难以穿越细胞膜而直接充分地发挥作用,如果进行破菌处理则增加生产工艺.如果采用细菌表面展示技术,则可将酶锚定于细胞表面从而更方便、快捷且有效地实现其功能. 现有研究从黄杆菌和缺陷假单胞菌中获得有机磷水解酶的相关基因,选用从环境中分离到的莫拉氏菌和恶臭假单胞菌JS444的菌株作为宿主菌,采用截短的冰核蛋白INPNC对有机磷水解酶进行有效的表面展示,同时获得降解对硝基酚的作
用[44,45] . 当然,有的情况下降解产生的中间产物对环境依然有严重的毒副作用,可能导致二次污染. 为解决这种问题,Liu等[46] 利用恶臭假单胞菌表面展示漆酶对农药氯吡硫磷进行降解,同时利用恶臭假单胞菌自身产的一些胞内酶降解氯吡硫磷产生的有毒中间产物3,5,6-三氯-2-吡啶(TCP)和磷酸二乙酯(DEP),比单独纯化的漆酶降解更为完全.这种综合利用宿主菌和所展示靶标蛋白质解决污染问题为更多新的环境污染治理方案的提出提供了理想的设计思路.虽然目前利用表面展示技术治理有机磷农药的污染已取得相当的进展,但大部分研究均处于实验室或小试阶段. 由于现实受污染的环境往往同时存在有机物污染和无机物污染,情况错综复杂,表面展示所用宿主菌能否在这种环境中顺利繁殖并发挥作用仍有待进一步验证和改良.
-
2.2 生物传感器的制备
生物传感器即能够识别生物物质并将其浓度变化转换为电信号响应的设备,是将固定化的细胞、酶或其他蛋白质等与转化器相结合构成相应的一类工具或者分析系统. 一般的生物传感器都具有接收和转化的功能,得到信息之后可进行放大以便于观察和记录,从而实现对目标物质的特异性检
测[47] .酶生物传感器主要利用酶作为生物识别器在生化反应中起催化作用,使生物分子迅速分解或者氧化,并将此中消耗或产生的物质的数量转变成电信号并记录. 由于酶的分离提取过程往往较为繁琐,生产成本较高,并且使用过程中经常会受到pH、温度或湿度等因素的限制. 因此,如何高效地将酶固定于修饰电极上是该类传感器制备过程中关键的问题之一. 随着表面展示技术的发展,微生物表面展示获取和固定酶用于酶电化学生物传感器的研究已取得长足进展. 如利用表面展示木糖脱氢酶构建的检测D-木糖的生物传感器,基于细菌表面展示葡萄糖脱氢酶灵敏地检测D-葡萄糖的生物传感
器[10] ,以及基于细菌表面展示谷氨酸脱氢酶对L-谷氨酸进行检测的生物传感器等等[18] . 其中谷氨酸脱氢酶的生物传感器将谷氨酸脱氢酶通过细胞表面展示技术展示在大肠杆菌的表面,然后结合碳纳米管等材料组装成Nafion/Gldh-bacteria/PEI-MWNTs/GCE电极. 该电极特异性好,不受其他氨基酸、抗坏血酸和尿酸等常见的电活性化合物的干扰.该电极的电位在1 mmol/L的谷氨酸中可维持在0.52 V超过2 h,氧化电流仍然保持初始响应值的95%左右[48,49] . 用该电极在分析样品时可以根据其校准曲线进行判断,非常方便、快捷.微生物表面展示酶用于制备生物传感器不仅可以灵敏地检测样品中一种物质的浓度,在某些情况下还可以将其与其他酶进行包埋,同时检测同种样品的不同生物物质,如微生物表面展示木糖和商品酶葡萄糖氧化酶联用实现了D-木糖和D-葡萄糖的共检
测[50] . 在实际运用中,如果所展示的酶活性或专一性等性质达不到要求,还可以通过突变等方法对其进行改造,以达到相应的应用目的. 如利用细菌表面展示野生型葡萄糖脱氢酶制作的生物传感器选择性偏低、线性范围不够宽、稳定性较差、容易受半乳糖、木糖或甘露糖等的干扰[10] . 为了提高其专一性,Liang等[51] 运用快速定点突变技术对野生型的葡萄糖脱氢酶的基因进行突变,将其展示在细菌的表面,组装成Nafion/GDH-mutant-bacteria/MWNTs/GCE电极. 所得突变体电极的线性范围达到10 μmol/L~ 4 mmol/L,较之野生型明显拓宽,最低检测限也达3 μmol/L,比野生型更低.总的来说,将细菌表面展示技术运用到生物传感器中不仅解决了生物识别元件生产难的问题,同时也拓展了细菌表面展示技术的应用. 这两者的结合在未来快速、智能检测领域将有更令人期待的发展.
-
3 结语
细菌表面展示技术是微生物表面展示技术的一个重要组成部分,细菌表面展示不仅可以根据实验条件的不同进行诱导表达,而且细菌表面展示系统多种多样、操作简便、可以满足不同的需求,在很多领域都显示出广泛的应用前景. 随着科学的不断进步,新的载体系统不断被开发,原有系统也日趋完善,使细菌表面展示技术在交叉学科中的应用也愈加广泛. 如生物传感器的出现、微生物燃料电池的开发,生态环境的微生物修复等,细菌表面展示技术必将在实践中发挥更大、更有效的作用. 当然,表面展示系统的应用也存在一定的风险. 展示系统在构建的过程中往往会利用抗性基因进行筛选,运用携带有抗性基因的细菌表面展示系统时还需考虑其对环境带来的不利影响,如怎么处理带有抗性的重组菌,用于生物修复时是否会对生态造成破坏以及如何预防超级菌的产生等问题. 如何做到科学地可持续地发展是一个难题,也是全人类必须长期面对和思考的问题.
-
参 考 文 献
-
1
Parmley S F, Smith G P. Filamentous fusion phage cloning vectors for the study of epitopes and design of vaccines. Springer US, 1989
-
2
Van B E, Winter R T, Kolmar H, et al. Decorating microbes: surface display of proteins on Escherichia coli. Trends in Biotechnology, 2011, 29(2): 79-86
-
3
Salverda M L, Meinderts S M, Hamstra H J, et al. Surface display of a borrelial lipoprotein on meningococcal outer membrane vesicles. Vaccine, 2016, 34(8): 1025-1033
-
4
Gadalla M R, El-Deeb A H, Emara M M, et al. Insect cell surface expression of hemagglutinin (HA) of Egyptian H5N1 avian influenza virus under transcriptional control of whispovirus immediate early-1 promoter. Microbiol Biotechnol, 2014, 24(12): 1719-1727
-
5
Stickney Z, Losacco J, Mcdevitt S, et al. Development of exosome surface display technology in living human cells. Biochem Biophys Res Commun, 2016, 472(1): 53-59
-
6
Li J, Xu Y, Wang X, et al. Construction and characterization of a highly reactive chicken-derived single-chain variable fragment (scFv) antibody against Staphylococcus aureus developed with the T7 phage display system. Int Immunopharmacol, 2016, 35(2016):149-154
-
7
Jahns A C, Rehm B H. Relevant uses of surface proteins--display on self-organized biological structures. Microb Biotechnol, 2012, 5(2): 188-202
-
8
Nhan N T, Gonzalez De Valdivia E, Gustavsson M, et al. Surface display of Salmonella epitopes in Escherichia coli and Staphylococcus carnosus. Microb Cell Fact, 2011, 10(1): 1-8
-
9
Wernérus H, Ståhl S. Biotechnological applications for surface‐engineered bacteria. Biotechnology and Applied Biochemistry, 2004, 40(3): 209-228
-
10
Liang B, Li L, Tang X, et al. Microbial surface display of glucose dehydrogenase for amperometric glucose biosensor. Biosens Bioelectron, 2013, 45(2013): 19-24
-
11
Kuipers K, Daleke-Schermerhorn M H, Jong W S, et al. Salmonella outer membrane vesicles displaying high densities of pneumococcal antigen at the surface offer protection against colonization. Vaccine, 2015, 33(17): 2022-2029
-
12
Schuurmann J, Quehl P, Festel G, et al. Bacterial whole-cell biocatalysts by surface display of enzymes: toward industrial application. Appl Microbiol Biotechnol, 2014, 98(19): 8031-8046
-
13
Yang C, Cai N, Dong M, et al. Surface display of MPH on Pseudomonas putida JS444 using ice nucleation protein and its application in detoxification of organophosphates. Biotechnol Bioeng, 2008, 99(1): 30-37
-
14
Tozakidis I E, Sichwart S, Jose J. Going beyond E. coli: autotransporter based surface display on alternative host organisms. N Biotechnol, 2015, 32(6): 644-650
-
15
Nicolay T, Vanderleyden J, Spaepen S. Autotransporter-based cell surface display in Gram-negative bacteria. Crit Rev Microbiol, 2015, 41(1): 109-123
-
16
Jo J C, Kim S J, Kim H K. Transesterification of plant oils using Staphylococcus haemolyticus L62 lipase displayed on Escherichia coli cell surface using the OmpA signal peptide and EstAbeta8 anchoring motif. Enzyme Microb Technol, 2014, 67(2014): 32-39
-
17
Michon C, Langella P, Eijsink V G, et al. Display of recombinant proteins at the surface of lactic acid bacteria: strategies and applications. Microb Cell Fact, 2016, 15(1): 1-16
-
18
Liang B, Zhang S, Lang Q, et al. Amperometric L-glutamate biosensor based on bacterial cell-surface displayed glutamate dehydrogenase. Anal Chim Acta, 2015, 884(1): 83-89
-
19
Kan S-C, Chen C-M, Lin C-C, et al. Deciphering EGFP production via surface display and self-cleavage intein system in different hosts. Journal of the Taiwan Institute of Chemical Engineers, 2015, 55: 1-6
-
20
Fan S, Hou C, Liang B, et al. Microbial surface displayed enzymes based biofuel cell utilizing degradation products of lignocellulosic biomass for direct electrical energy. Bioresour Technol, 2015, 192(1): 821-825
-
21
Tozakidis I E, Brossette T, Lenz F, et al. Proof of concept for the simplified breakdown of cellulose by combining Pseudomonas putida strains with surface displayed thermophilic endocellulase, exocellulase and beta-glucosidase. Microb Cell Fact, 2016, 15(1): 1-12
-
22
Chen H, Chen Z, Ni Z, et al. Display of Thermotoga maritima MSB8 nitrilase on the spore surface of Bacillus subtilis using out coat protein CotG as the fusion partner. Journal of Molecular Catalysis B: Enzymatic, 2016, 123(2016): 1-12
-
23
Wu I L, Narayan K, Castaing J P, et al. A versatile nano display platform from bacterial spore coat proteins. Nat Commun, 2015, 6: 6777
-
24
Tsai D-Y, Tsai Y-J, Yen C-H, et al. Bacterial surface display of metal binding peptides as whole-cell biocatalysts for 4-nitroaniline reduction. RSC Adv, 2015, 5(107): 87998-88001
-
25
Yim S S, An S J, Han M-J, et al. Isolation of a potential anchoring motif based on proteome analysis of Escherichia coli and its use for cell surface display. Applied Biochemistry and Biotechnology, 2013, 170(4): 787-804
-
26
Han M J, Lee S H. An efficient bacterial surface display system based on a novel outer membrane anchoring element from the Escherichia coli protein YiaT. FEMS Microbiol Lett, 2015, 362(1): 1-7
-
27
Park T J, Heo N S, Yim S S, et al. Surface display of recombinant proteins on Escherichia coli by BclA exosporium of Bacillus anthracis. Microbial Cell Factories, 2013, 12: 81
-
28
Quehl P, Schuurmann J, Hollender J, et al. Improving the activity of surface displayed cytochrome P450 enzymes by optimizing the outer membrane linker. Biochim Biophys Acta, 2017, 1859(1): 104-116
-
29
Hinc K, Iwanicki A, Obuchowski M. New stable anchor protein and peptide linker suitable for successful spore surface display in B. subtilis. Microbial Cell Factories, 2013, 12: 22
-
30
Wilson S L, Walker V K, Mormile M R. Selection of low-temperature resistance in bacteria and potential applications. Environmental Technology, 2010, 31(8-9): 943-956
-
31
Li Q, Yan Q, Chen J, et al. Molecular characterization of an ice nucleation protein variant (inaQ) from Pseudomonas syringae and the analysis of its transmembrane transport activity in Escherichia coli. Int J Biol Sci, 2012, 8(8): 1097-1108
-
32
Niu M, Yu Q, Tian P, et al. Engineering bacterial surface displayed human norovirus capsid proteins: a novel system to explore interaction between norovirus and ligands. Front Microbiol, 2015, 6: 1448
-
33
Bao S, Yu S, Guo X, et al. Construction of a cell-surface display system based on the N-terminal domain of ice nucleation protein and its application in identification of mycoplasma adhesion proteins. Appl Microbiol, 2015, 119(1): 236-244
-
34
Li L, Kang D G, Cha H J. Functional display of foreign protein on surface of Escherichia coli using N-terminal domain of ice nucleation protein. Biotechnol Bioeng, 2004, 85(2): 214-221
-
35
Zhang Z, Tang R, Bian L, et al. Surface immobilization of human Arginase-1 with an engineered ice nucleation protein display system in E. coli. Plos One, 2016, 11(8): e0160367
-
36
Khodi S. Surface display of organophosphorus hydrolase on E. coli using N-terminal domain of ice nucleation protein InaV. Journal of Microbiology and Biotechnology, 2012, 22(2): 234-238
-
37
Lagzian M, Latifi A M, Bassami M R, et al. An ice nucleation protein from Fusarium acuminatum: cloning, expression, biochemical characterization and computational modeling. Biotechnol Lett, 2014, 36(10): 2043-2051
-
38
Besingi R N, Clark P L. Extracellular protease digestion to evaluate membrane protein cell surface localization. Nat Protoc, 2015, 10(12): 2074-2080
-
39
Jarmander J, Gustavsson M, Do T-H, et al. A dual tag system for facilitated detection of surface expressed proteins in Escherichia coli. Microbial Cell Factories, 2012, 11: 118
-
40
Gustavsson M, Muraleedharan M N, Larsson G. Surface expression of omega-transaminase in Escherichia coli. Appl Environ Microbiol, 2014, 80(7): 2293-2298
-
41
Wendel S, Fischer E C, Martinez V, et al. A nanobody:GFP bacterial platform that enables functional enzyme display and easy quantification of display capacity. Microb Cell Fact, 2016, 15: 71
-
43
Gao F, Ding H, Feng Z, et al. Functional display of triphenylmethane reductase for dye removal on the surface of Escherichia coli using N-terminal domain of ice nucleation protein. Bioresour Technol, 2014, 169: 181-187
-
44
张红星, 李茜茜, 叶婷等.细胞表面展示有机磷水解酶的恶臭假单胞菌工程菌的构建及全细胞酶活性分析. 华中农业大学学报, 2008, 27(1): 65-70
Zhang H X, Li Q Q, Ye T ,et al. Journal of Huazhong Agricultural University,2008, 27(1): 65-70
-
45
张红星, 李茜茜, 叶婷等.细菌表面展示技术在有机磷农药降解中的应用.生物技术,2008, 18(2): 90-93
Zhang H X, Li Q Q, Ye T ,et al. Biotechnology,2008, 18(2): 90-93
-
46
Liu J, Tan L, Wang J, et al. Complete biodegradation of chlorpyrifos by engineered Pseudomonas putida cells expressing surface-immobilized laccases. Chemosphere, 2016, 157: 200-207
-
47
Thévenot D R, Toth K, Durst R A, et al. Electrochemical biosensors: recommended definitions and classification. Analytical Letters, 2001, 34(5): 635-659
-
48
Song J, Liawng B, Han D, et al. Bacterial cell-surface displaying of thermo-tolerant glutamate dehydrogenase and its application in L-glutamate assay. Enzyme Microb Technol, 2015, 70(1): 72-78
-
49
宋建侠. 谷氨酸脱氢酶在细菌表面展示系统的构建及其在谷氨酸检测中的应用. 中国海洋大学, 2015
SONG J X.Ocean University of China, 2015
-
50
李亮. 基于细菌表面展示脱氢酶新型单糖电化学生物传感器的研制及应用. 青岛科技大学, 2013
LI L. Qingdao University of Science & Technology, 2013
-
51
Liang B, Lang Q, Tang X, et al. Simultaneously improving stability and specificity of cell surface displayed glucose dehydrogenase mutants to construct whole-cell biocatalyst for glucose biosensor application. Bioresour Technol, 2013, 147:492-498
-
1
摘要
细菌表面展示是将靶标蛋白质表达于细菌表面以更好地实现其功能的一种技术,它在重组细菌疫苗、生物燃料电池、全细胞催化剂和生物修复等多个领域均有广泛的应用. 随着相关技术的发展,表面展示系统的各种性能被不断地改良,同时新的表面展示系统也陆续被开发和应用,使该技术得到持续的丰富和发展. 本文重点关注近年研究得较多的细菌表面展示系统,主要对各类细菌表面展示系统的开发、改造和修饰,以及该技术在生物修复和生物传感器方面的应用作一综述.
Abstract
Bacterial surface display is a kind of technology to express target protein on the surface of bacteria, so as to exert its function preferably. It has been widely applied in many fields such as recombinant bacteria vaccine, biofuel cell, whole cell catalyst and bioremediation. With the development of numerous related technologies, the performance of surface display system has been continuously improving. At the same time, several new surface display systems have also been developed and applied, all of which accelerate the multiformity and perfection of this technology continuously. This paper focus on the progress of bacterial surface display systems, mainly on their development, modification and improvement, as well as their application on bioremediation and biosensor.
表面展示技术是George P. Smith
表1 不同宿主菌的应用及优势
Table 1 Application and advantage of different host bacteria
宿主菌 | 种类 | 载体蛋白 | 应用 | 优点 | 文献 |
---|---|---|---|---|---|
脑膜炎奈瑟菌 | 脑膜炎奈瑟菌荚膜缺陷型HB-1 |
fHbp |
疫苗的开发与传递 | 特殊疾病的疫苗开发与传递,可作为佐剂引起免疫应答 |
[3] |
乳酸菌 |
乳酸杆菌、乳酸球菌 | PgsA、BmpA、 M6等 | 生物活性物质的表达和输送 | 生物安全性高、适应性强,可直接输送生物活性物质至胃肠道黏膜 |
[17] |
大肠杆菌 |
DH5α、BL21(DE3)、 JM109、HB101等 |
OmpC、OmpS、 Lpp-OmpA、 INP等 | 蛋白质表达、生物传感器开发和酶抑制剂筛选等 |
种类繁多、遗传背景研究透彻、周期短、应用范围广 |
[18-20] |
恶臭假单胞菌 |
假单胞菌KT2440P |
MATE | 生物燃料,高温水解酶的生产 | 耐高温、能耐受各种毒素和有机溶剂等不利因素 |
[21] |
芽孢杆菌 | 枯草芽孢杆菌、克劳氏枯草芽孢杆菌、蜡样芽胞杆菌等 |
CotB、CotC、CotG等 |
酶的固定化及表面展示药物、酶和疫苗等 | 稳定性高,对热、辐射和化学物质的抵抗力强,遗传信息明了,操作技术成熟,分离纯化简单 |
[22-23] |
真氧产碱杆菌 |
真氧产碱杆菌H16 | FhuA、IgA、OmpA等 | 全细胞生物催化剂及生物修复 |
具有优异的催化活性,可重复利用 |
[24] |
目前常用于细菌表面展示的宿主菌有大肠杆菌、乳酸菌、黄单胞菌、恶臭假单胞菌和芽孢杆菌等,可根据不同研究目的和应用方向进行选择,常见细菌表面展示系统的组成、相关应用和优点等信息见表1. 从表1中可以看出,主要的表面展示系统的载体蛋白包括细胞外膜蛋白、细胞表面附属物、脂蛋白、毒力因子、细胞膜孔道蛋白或细胞壁相关蛋白质