en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
YuR K, TsaiY T, ArigaT, et al. Structures, biosynthesis, and functions of gangliosides--an overview. J Oleo Sci, 2011, 60(10): 537-544
参考文献 2
KolterT, ProiaR L, SandhoffK. Combinatorial ganglioside biosynthesis. J Biol Chem, 2002, 277(29): 25859-25862
参考文献 3
GiraudoC G, MaccioniH J. Ganglioside glycosyltransferases organize in distinct multienzyme complexes in CHO-K1 cells. J Biol Chem, 2003, 278(41): 40262-40271
参考文献 4
Regina TodeschiniA, HakomoriS I. Functional role of glycosphingolipids and gangliosides in control of cell adhesion, motility, and growth, through glycosynaptic microdomains. Biochim Biophys Acta, 2008, 1780(3): 421-433
参考文献 5
SalcedoJ, BarberaR, MatencioE, et al. Gangliosides and sialic acid effects upon newborn pathogenic bacteria adhesion: an in vitro study. Food Chem, 2013, 136(2): 726-734
参考文献 6
PalmanoK, RowanA, GuillermoR, et al. The role of gangliosides in neurodevelopment. Nutrients, 2015, 7(5): 3891-3913
参考文献 7
MlinacK, Jovanov MilosevicN, HefferM, et al. Neuroplastin expression in the hippocampus of mice lacking complex gangliosides. J Mol Neurosci, 2012, 48(1): 161-166
参考文献 8
HanX. Lipidomics for studying metabolism. Nat Rev Endocrinol, 2016, 12(11): 668-679
参考文献 9
VajnK, ViljeticB, DegmecicI V, et al. Differential distribution of major brain gangliosides in the adult mouse central nervous system. Plos One, 2013, 8(9): e75720
参考文献 10
LedeenR, WuG. GM1 in the nuclear envelope regulates nuclear calcium through association with a nuclear sodium-calcium exchanger. J Neurochem, 2007, 103 Suppl1:126-134
参考文献 11
FewouS N, PlompJ J, WillisonH J. The pre-synaptic motor nerve terminal as a site for antibody-mediated neurotoxicity in autoimmune neuropathies and synaptopathies. J Anat, 2014, 224(1): 36-44
参考文献 12
RitterG, FortunatoS R, CohenL, et al. Induction of antibodies reactive with GM2 ganglioside after immunization with lipopolysaccharides from Camplyobacter jejuni. Int J Cancer, 1996, 66(2): 184-190
参考文献 13
PanB, FromholtS E, HessE J, et al. Myelin-associated glycoprotein and complementary axonal ligands, gangliosides, mediate axon stability in the CNS and PNS: neuropathology and behavioral deficits in single- and double-null mice. Exp Neurol, 2005, 195(1): 208-217
参考文献 14
MandalC, Schwartz-AlbiezR, VlasakR. Functions and biosynthesis of O-acetylated sialic acids. Top Curr Chem, 2015, 366:1-30
参考文献 15
MlinacK, FabrisD, VukelicZ, et al. Structural analysis of brain ganglioside acetylation patterns in mice with altered ganglioside biosynthesis. Carbohydr Res, 2013, 382:1-8
参考文献 16
ChenH Y, ChallaA K, VarkiA. 9-O-acetylation of exogenously added ganglioside GD3. The GD3 molecule induces its own O-acetylation machinery. J Biol Chem, 2006, 281(12): 7825-7833
参考文献 17
HandaY, OzakiN, HondaT, et al. GD3 synthase gene knockout mice exhibit thermal hyperalgesia and mechanical allodynia but decreased response to formalin-induced prolonged noxious stimulation. Pain, 2005, 117(3): 271-279
参考文献 18
YaoD, McgonigalR, BarrieJ A, et al. Neuronal expression of GalNAc transferase is sufficient to prevent the age-related neurodegenerative phenotype of complex ganglioside-deficient mice. J Neurosci, 2014, 34(3): 880-891
参考文献 19
WoodsA S, ColschB, JacksonS N, et al. Gangliosides and ceramides change in a mouse model of blast induced traumatic brain injury. ACS Chem Neurosci, 2013, 4(4): 594-600
参考文献 20
RyanJ M, RiceG E, MitchellM D. The role of gangliosides in brain development and the potential benefits of perinatal supplementation. Nutr Res, 2013, 33(11): 877-887
参考文献 21
ZhuX, LiH, ZhangC. Clinical effects of Ganglioside and fructose-1, 6-diphosphate on neonatal heart and brain injuries after Asphyxia. Pak J Med Sci, 2017, 33(5): 1199-1204
参考文献 22
SheJ Q, WangM, ZhuD M, et al. Monosialoanglioside (GM1) prevents lead-induced neurotoxicity on long-term potentiation, SOD activity, MDA levels, and intracellular calcium levels of hippocampus in rats. Naunyn Schmiedebergs Arch Pharmacol, 2009, 379(5): 517-524
参考文献 23
LimS T, EsfahaniK, AvdoshinaV, et al. Exogenous gangliosides increase the release of brain-derived neurotrophic factor. Neuropharmacology, 2011, 60(7-8): 1160-1167
参考文献 24
FukudaY, FukuiT, HikichiC, et al. Neurotropin promotes NGF signaling through interaction of GM1 ganglioside with Trk neurotrophin receptor in PC12 cells. Brain Res, 2015, 1596:13-21
参考文献 25
NakatsujiY, MillerR H. Selective cell-cycle arrest and induction of apoptosis in proliferating neural cells by ganglioside GM3. Exp Neurol, 2001, 168(2): 290-299
参考文献 26
SandhoffK, HarzerK. Gangliosides and gangliosidoses: principles of molecular and metabolic pathogenesis. J Neurosci, 2013, 33(25): 10195-10208
参考文献 27
OhmiY, TajimaO, OhkawaY, et al. Gangliosides are essential in the protection of inflammation and neurodegeneration via maintenance of lipid rafts: elucidation by a series of ganglioside-deficient mutant mice. J Neurochem, 2011, 116(5): 926-935
参考文献 28
KimS J, ChungT W, ChoiH J, et al. Monosialic ganglioside GM3 specifically suppresses the monocyte adhesion to endothelial cells for inflammation. Int J Biochem Cell Biol, 2014, 46:32-38
参考文献 29
ShahrizailaN, YukiN. Bickerstaff brainstem encephalitis and Fisher syndrome: anti-GQ1b antibody syndrome. J Neurol Neurosurg Psychiatry, 2013, 84(5): 576-583
参考文献 30
ArigaT. Pathogenic role of ganglioside metabolism in neurodegenerative diseases. J Neurosci Res, 2014, 92(10): 1227-1242
参考文献 31
MuckeL, SelkoeD J. Neurotoxicity of amyloid beta-protein: synaptic and network dysfunction. Cold Spring Harb Perspect Med, 2012, 2(7): a006338
参考文献 32
GrimmM O, ZinserE G, GrosgenS, et al. Amyloid precursor protein (APP) mediated regulation of ganglioside homeostasis linking Alzheimer's disease pathology with ganglioside metabolism. Plos One, 2012, 7(3): e34095
参考文献 33
HongS, OstaszewskiB L, YangT, et al. Soluble abeta oligomers are rapidly sequestered from brain ISF in vivo and bind GM1 ganglioside on cellular membranes. Neuron, 2014, 82(2): 308-319
参考文献 34
YanagisawaK. GM1 ganglioside and Alzheimer's disease. Glycoconj J, 2015, 32(3-4): 87-91
参考文献 35
CaughlinS, HepburnJ D, ParkD H, et al. Increased expression of simple ganglioside species GM2 and GM3 detected by MALDI imaging mass spectrometry in a combined rat model of abeta toxicity and stroke. Plos One, 2015, 10(6): e0130364
参考文献 36
OwenM C, KuligW, PoojariC, et al. Physiologically-relevant levels of sphingomyelin, but not GM1, induces a beta-sheet-rich structure in the amyloid-beta(1-42) monomer. Biochim Biophys Acta, 2018, pii: S0005-273618)30106-8. doi: 10.1016/j.bbamem.2018.03.026
参考文献 37
SchneiderJ S, GollompS M, SendekS, et al. A randomized, controlled, delayed start trial of GM1 ganglioside in treated Parkinson's disease patients. J Neurol Sci, 2013, 324(1-2): 140-148
参考文献 38
SchneiderJ S, SendekS, DaskalakisC, et al. GM1 ganglioside in Parkinson's disease: results of a five year open study. J Neurol Sci, 2010, 292(1-2): 45-51
参考文献 39
SchneiderJ S, CambiF, GollompS M, et al. GM1 ganglioside in Parkinson's disease: pilot study of effects on dopamine transporter binding. J Neurol Sci, 2015, 356(1-2): 118-123
参考文献 40
XuR, ZhouY, FangX, et al. The possible mechanism of Parkinson's disease progressive damage and the preventive effect of GM1 in the rat model induced by 6-hydroxydopamine. Brain Res, 2014, 1592:73-81
参考文献 41
BaX H. Therapeutic effects of GM1 on Parkinson's disease in rats and its mechanism. Int J Neurosci, 2016, 126(2): 163-167
参考文献 42
AlpaughM, GalleguillosD, ForeroJ, et al. Disease-modifying effects of ganglioside GM1 in Huntington's disease models. EMBO Mol Med, 2017, 9(11): 1537-1557
参考文献 43
FantiniJ, YahiN. The driving force of alpha-synuclein insertion and amyloid channel formation in the plasma membrane of neural cells: key role of ganglioside- and cholesterol-binding domains. Adv Exp Med Biol, 2013, 991:15-26
参考文献 44
GreyM, DunningC J, GasparR, et al. Acceleration of alpha-synuclein aggregation by exosomes. J Biol Chem, 2015, 290(5): 2969-2982
参考文献 45
YahiN, FantiniJ. Deciphering the glycolipid code of Alzheimer's and Parkinson's amyloid proteins allowed the creation of a universal ganglioside-binding peptide. Plos One, 2014, 9(8): e104751
参考文献 46
Groux-DegrooteS, Rodriguez-WalkerM, DewaldJ H, et al. Gangliosides in cancer cell signaling. Prog Mol Biol Transl Sci, 2018, 156:197-227
参考文献 47
MukherjeeP, FaberA C, SheltonL M, et al. Thematic review series: sphingolipids. Ganglioside GM3 suppresses the proangiogenic effects of vascular endothelial growth factor and ganglioside GD1a. J Lipid Res, 2008, 49(5): 929-938
参考文献 48
HyugaS, KawasakiN, HyugaM, et al. Ganglioside GD1a inhibits HGF-induced motility and scattering of cancer cells through suppression of tyrosine phosphorylation of c-Met. Int J Cancer, 2001, 94(3): 328-334
参考文献 49
WangL, TakakuS, WangP, et al. Ganglioside GD1a regulation of caveolin-1 and Stim1 expression in mouse FBJ cells: augmented expression of caveolin-1 and Stim1 in cells with increased GD1a content. Glycoconj J, 2006, 23(5-6): 303-315
参考文献 50
BullC, BoltjeT J, Van DintherE A, et al. Targeted delivery of a sialic acid-blocking glycomimetic to cancer cells inhibits metastatic spread. ACS Nano, 2015, 9(1): 733-745
参考文献 51
王艳萍,王征,朱健,等. 鞘糖脂研究进展. 生命科学. 2011, 23(06): 583-591
Wang Y P, Wang Z, Zhu J,et al. Chinese Bulletin of Life Sciences,2011, 23(06): 583-591
参考文献 52
BadrH A, AlsadekD M, MathewM P, et al. Nutrient-deprived cancer cells preferentially use sialic acid to maintain cell surface glycosylation. Biomaterials, 2015, 70:23-36
参考文献 53
FangL H, LuceroM, KazarianT, et al. Effects of neuroblastoma tumor gangliosides on platelet adhesion to collagen. Clin Exp Metastasis, 1997, 15(1): 33-40
参考文献 54
OhkawaY, MomotaH, KatoA, et al. Ganglioside GD3 enhances invasiveness of gliomas by forming a complex with platelet-derived growth factor receptor alpha and Yes kinase. J Biol Chem, 2015, 290(26): 16043-16058
参考文献 55
IwasawaT, ZhangP, OhkawaY, et al. Enhancement of malignant properties of human glioma cells by ganglioside GD3/GD2. Int J Oncol, 2018, 52(4): 1255-1266
参考文献 56
MahataB, BiswasS, RaymanP, et al. GBM derived gangliosides induce T cell apoptosis through activation of the caspase cascade involving both the extrinsic and the intrinsic pathway. Plos One, 2015, 10(7): e0134425
参考文献 57
HwangJ, LeeS, LeeJ T, et al. Gangliosides induce autophagic cell death in astrocytes. Br J Pharmacol, 2010, 159(3): 586-603
参考文献 58
LiL, TianJ, LongM K, et al. Protection against experimental stroke by ganglioside GM1 is associated with the inhibition of autophagy. Plos One, 2016, 11(1): e0144219
参考文献 59
NollE N, LinJ, NakatsujiY, et al. GM3 as a novel growth regulator for human gliomas. Exp Neurol, 2001, 168(2): 300-309
参考文献 60
LeisA A, StokicD S. Zika virus and Guillain-Barre syndrome: is there sufficient evidence for causality? Front Neurol,2016, 7: 170
参考文献 61
KoikeH. Zika virus and Guillain-Barre syndrome. Brain Nerve, 2018, 70(2): 113-120
参考文献 62
NicoD, CondeL, Rivera-CorreaJ L, et al. Prevalence of IgG autoantibodies against GD3 ganglioside in acute Zika virus infection. Front Med (Lausanne), 2018, 5:25
参考文献 63
SonninoS, AureliM, MauriL, et al. Membrane lipid domains in the nervous system. Front Biosci (Landmark Ed), 2015, 20: 280-302
参考文献 64
MarinR, DiazM. Estrogen interactions with lipid rafts related to neuroprotection. Impact of brain aging and menopause. Front Neurosci, 2018, 12: 128
参考文献 65
FurukawaK, OhmiY, OhkawaY, et al. Regulatory mechanisms of nervous systems with glycosphingolipids. Neurochem Res, 2011, 36(9): 1578-1586
参考文献 66
MollinedoF, GajateC. Lipid rafts as major platforms for signaling regulation in cancer. Adv Biol Regul, 2015, 57:130-146
参考文献 67
BottoL, CunatiD, CocoS, et al. Role of lipid rafts and GM1 in the segregation and processing of prion protein. Plos One, 2014, 9(5): e98344
参考文献 68
DoodyR S, ThomasR G, FarlowM, et al. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer's disease. N Engl J Med, 2014, 370(4): 311-321
目录 contents

    摘要

    神经节苷脂是一种糖链结构上包含有唾液酸的酸性鞘糖脂,是动物细胞膜的重要组成成分,并在细胞膜表面上参与各种重要的生物学进程. 正常生理情况下,脑内的神经节苷脂在神经细胞的形态稳定和神经信号的传递等生物进程中发挥至关重要的作用,这些生物进程和大脑的生长发育与认知发展密切相关. 在一些患者各脑区检测到的神经节苷脂含量与种类的明显改变,提示着不同脑部疾病的发生与发展,例如在一些脱髓鞘疾病患者脑内常常伴随有神经节苷脂减少的现象. 此外,定位于胞膜上的神经节苷脂还能极大地影响阿尔茨海默病等神经退行性疾病和胶质瘤等脑部肿瘤的发生和发展. 以上所述的种种病症看似发病机制相去甚远,但这些脑病之间却因为神经节苷脂的联系而具有一定的共性和发病模式,例如在数年前流行于南美的寨卡病毒与常见的神经脱髓鞘疾病格林-巴利综合症均是由于自身B细胞产生的抗GQ1b神经节苷脂抗体与脑内神经细胞膜表面GQ1b的结合所引起的. 本文就脑内数种疾病涉及神经节苷脂的发病机制进行总结并概括了几种可能的共同发病模式,以期未来在脑内疾病的诊断和治疗中提供一个新的思路.

    Abstract

    Gangliosides are glycosphingolipids containing one or more sialic acids in the glycan chains, which are components of the cell surface of all mammalian cells and involved in various important biological processes in cell plasma membranes. Such it plays an important role in the transmission of nerve signals and keeps morphological stability of nerve cells in normal physiological conditions. Gangliosides are particularly abundant and typically more structurally complex in the mammalian brain, which are considered closely related to brain growth and cognitive development. Significant changes of ganglioside content and types in some brain regions may herald different brain diseases occurrence and development. For example, some demyelinating diseases are associated with a significant decrease of gangliosides in brain. On the other hand, gangliosides located on the cell membrane can greatly affect the development of neurodegenerative diseases and brain tumors, such as Alzheimer's disease and glioma. The brain diseases seem to have different pathogenesis, however, these brain diseases have certain relevance in their pathogenesis due to the existing gangliosides, such Zika fever is similar to Guillain-Barré syndrome (a common neurodemyelination disease). This paper summarizes possible common patterns of the pathogenesis of several encephalopathies associated with gangliosides, which could provide a new idea for the diagnosis and treatment of the encephalopathies.

    神经节苷脂(ganglioside)是一类主要分布于脊椎动物神经系统,在大脑中含量丰富但同时又在各组织器官中广泛表达的一类酸性鞘糖脂. 其结构主要分为亲水的寡糖链与疏水的神经酰胺(ceramide)两部分,不同种类的神经节苷脂之间往往具有一定的结构多样性,这种多样性主要是由其寡糖链部分而非神经酰胺所赋予. 大多数神经节苷脂的核心糖链部分属于ganglio-系列,同时也有部分属于lacto-、neolacto-、globo-与isoglobo-系列(表1[1]. 此外其寡糖链结构上所拥有1~5个不等的唾液酸残基,既是神经节苷脂与其他鞘糖脂(glycosphingolipids)相互区分的重要标志,也是该分子呈负电性的缘由. 在合成方面,脊椎动物体内的神经节苷脂合成于内质网并在高尔基体顺面完成糖基化修饰,这种修饰首先由葡萄糖神经酰胺合酶将一个葡萄糖残基转移到神经酰胺上生成葡萄糖神经酰胺(glucosylceramide, GlcCer),再由乳糖神经酰胺合酶将一个半乳糖残基连接到GlcCer上形成乳糖神经酰胺(lactosylceramide, LacCer),最终LacCer在3种唾液酸转移酶ST3Gal V (GM3 synthase)、ST8Sia I(GD3 synthase)和ST8Sia V (GT3 synthase)的作用下分别加上第1、2、3个唾液酸,依次生成GM3、GD3和GT3[2],这3种简单神经节苷脂分别是a-、b-、c-系列复杂神经节苷脂合成途径的最起始底物. 上述多种糖基转移酶(glycosyltransferase,GT)大多在顺面高尔基体成梯度分布,并形成功能复合[3],动物体内对于神经节苷脂种类与含量调控主要通过这些GT的表达调控来完成.

    神经节苷脂是胞膜上影响细胞黏附、转移与信号传递的关键分子之一,既可以作为细胞黏附的介质和信号转导的调节器,也可以作为微生物毒素受体和免疫抗[4]. 神经节苷脂常富集于细胞膜外叶之上,亲水的糖链头部伸向胞外,并由疏水神经酰胺尾部固定在胞膜上,胞膜上的神经节苷脂通常情况下并不单独存在,而是与其他鞘磷脂、胆固醇与跨膜蛋白等组分相互作用形成膜性结构域(microdomain)与脂筏(lipid raft)结构. 此外神经节苷脂糖链结构上的唾液酸残基是其生物功能的一个主要承载者,在一项利用神经节苷脂GM1、GM3和GD3与游离唾液酸研究其对于婴儿腹泻致病菌黏附效果的实验表明,含唾液酸的分子能干扰肠毒性大肠杆菌(enterotoxigenic Escherichia coli)和幽门螺杆菌(Helicobacter pylori)等肠道致病菌对于上皮细胞的黏附从而减轻婴儿腹泻的症状,这种对病原微生物黏附能力的干扰随着神经节苷脂的唾液酸残基增多而逐渐增强,在体外条件的实验中,GD3的干扰能力便强于GM3[5].

    在脑部和神经系统中,神经节苷脂更是具有多样且重要的生理功能,能显著地促进后代的大脑发育和认知的发展,而这种促进主要通过调控神经细胞的生长、髓鞘与突触的形成以及影响神经信息传递等方面来发挥效[6]. 负责建立复杂认知功能和记忆相关功能的海马体有着大量的神经节苷脂存在,而在不同脑部疾病的发展过程中,患者脑部各区包括海马体的神经节苷脂含量与种类也会发生明显的改变,进而对相关的生理功能造成极大的影响. 神经节苷脂表达的改变能影响一些相关区域下游分子的活性,例如B4galnt1基因缺陷小鼠无法合成GM2,GM2的缺失会影响在突触信号传递和突触可塑性中都起重要作用的神经塑蛋白(neuroplastin)表达的改[7],进而影响整个神经系统,海马体等脑区缺乏神经节苷脂会造成神经系统的明显功能障碍,削弱生物体的高级行为能力.

    表1 神经节苷脂核心糖链结构

    Table 1 The core structures of ganglioside oligosaccharide chains

    分类简写结构
    Ganglio-GgGalβ1-3GalNAcβ1-4Galβ1-4Glcβ1-Cer
    Lacto-LcGalβ1-3GlcNacβ1-3Galβ1-4Glcβ1-Cer
    Neolacto-nLcGalβ1-4GlcNacβ1-3Galβ1-4Glcβ1-Cer
    Globo-GbGalNacβ1-3Galα1-4Galβ1-4Glcβ1-Cer
    Isoglobo-iGbGalNAcβ1-3Galα1-3Galβ1-4Glcβ1-Cer
    表1
                    神经节苷脂核心糖链结构
  • 1 脑部的神经节苷脂

    1

    继基因组学和蛋白质组学等传统领域之后,脂质组学(lipidomics)和糖组学(glycomics)两个较新的领域近年来也在迅猛发[8],鞘糖脂家族中含量丰富的神经节苷脂无疑将是一个新的研究热点. 健康哺乳动物大脑中,GD1a、GD1b、GT1b和GM1这4种神经节苷脂所占脑内总神经节苷脂的比例几乎达到了百分之百,其中GM1主要分布于由神经细胞的轴突组成的白质(white matter)中,GD1a和GT1b在白质和由神经细胞胞体组成的灰质(gray matter)中均广泛表达,而GD1b主要在一些脑核与脑束组织中表[9]. 主要富集于白质的GM1与神经细胞突触部位的信号传递息息相关,目前大多突触内神经递质释放相关的钙离子通道均能被GM1活化,因此在神经信号传导中,GM1有着不可或缺的地位. GM1同时也广泛存在于神经细胞核膜中,紧密地与核膜上的钠钙交换通道(Na+/Ca2+ exchanger,NCX)结合,这一结合主要是通过GM1唾液酸残基上的负电荷与NCX环的替代剪接区(alternative splice region)上带正电荷氨基酸的亲和来完成,NCX/GM1复合物定位于核膜内膜,能介导Ca2+从核质向核间隙/内质网转[10],在内质网的钙调控通道打开并释放Ca2+进入胞质后,突触中浓度上升的游离Ca2+与钙调蛋白(calmodulin, CaM)形成复合物,激活Ca2+/CaM复合物依赖的蛋白激酶PKII,激活的PKII促使介导突触囊泡锚定于细胞骨架上的突触蛋白(synapsin)磷酸化,使突触囊泡从骨架上游离,紧接着高Ca2+环境下的突触结合蛋白(synaptotagmin)促进突触囊泡膜和突触前膜融合,最终使得神经递质得以释放(图1a). 值得注意的是,富含神经节苷脂的突触前膜也是血清中自身抗体的潜在结合靶标,自身抗体与抗原结合后可引起膜溶作用,许多自身免疫运动神经病均会依靠该机制影响神经信号的传[11]. 在一些由弯曲菌(Camplyobacter)等微生物引起的感染性肠炎中,由携带神经节苷脂抗原的微生物刺激淋巴B细胞产生的抗神经节苷脂抗体,能引发突触前神经末梢损伤进而导致运动轴突神经病变,这种损伤便是由于突触表面神经节苷脂被抗体所识别与结合,使得小泡摄取通路高度活跃,最终结合抗体被网格蛋白介导的内吞所导致[12]. 哺乳动物大脑中另外两种主要的神经节苷脂GD1a和GT1b在髓鞘化神经纤维中能影响构成髓鞘的施万细胞(Schwann)与神经元轴突之间的结合能力,这二者均是髓鞘相关糖蛋白(myelin-associated glycoprotein, MAG)的互补受[13]. MAG是一种能介导施万细胞与轴突连接的凝集素,缺乏GD1a和GT1b可能会使得MAG无法发挥作用进而导致髓鞘形成障碍(图1b). 因此在治疗多发性硬化症(multiple sclerosis,MS)等拥有髓鞘形成障碍和脱髓鞘症状的慢性中枢神经系统疾病时,考虑患者脑内神经节苷脂含量是否失衡不失为一个新的研究思路.

    图1
                            神经节苷脂影响脑内神经系统的机制

    图1 神经节苷脂影响脑内神经系统的机制

    Fig. 1 Mechanism of intracerebral nerve influenced by ganglioside

    注:(a)Ca2+通过NCX/GM1复合物由核质向核间隙/内质网转移,紧接着通过钙调控通道转移至胞质与CaM结合,激活PKII,PKII使突触蛋白磷酸化,最终影响神经递质释[10].(b)神经元轴突与髓鞘依靠MAG来维持连[13].

    乙酰化(Acetyl-)是神经节苷脂唾液酸一种常见修饰,对脑内神经节苷脂的生理功能影响巨大,神经节苷脂的乙酰化已被证实是一种防止唾液酸被酶解的重要保护措[14]. O-乙酰化唾液酸是许多外源入侵病毒的识别受体,神经节苷脂与病原体相关受体的结合能力也会因为乙酰化的修饰而发生明显的改变. 此外,在发育过程中O-乙酰化神经节苷脂也被认为是胚胎发生和分化的标记,并与肿瘤的发展与扩散相[15],细胞自然表达GD3唾液酸残基末端发生乙酰化所产生的9-O-acetyl-GD3,是一种神经细胞恶性转化的标志[16].

    目前的多项研究表明,神经节苷脂在促进神经系统发育与修复脑损伤方面有着明显的功效,不同类别的神经节苷脂在体内具有相互转化的能力,这种能力对于神经系统的补救和修复至关重要,缺乏神经节苷脂合成能力的基因缺陷鼠,例如敲除GD3合成酶基因St8sia1的小鼠神经发育迟缓并显示出感知异常的症[17],而B4galnt1敲除小鼠的体内所有复杂神经节苷脂都被结构更简单的GM3和GD3取[18]. 在一项人工构建的模型鼠脑损伤的实验中,海马体、丘脑等脑区的GM2含量在脑损伤之后会显著上升,并同时伴随着神经节苷脂的合成前体神经酰胺的明显消[19],脑内简单的神经节苷脂如GM2和GM3含量的升高,预示着脑损伤的发生与脑内修复机制的启动,这些改变与神经细胞死亡过程中发生的溶酶体降解和星形胶质细胞增生过程相一致.

    新生儿摄入高神经节苷脂含量的饮食会显著地增长体重并加速认知能力的发[20],在脑部所遭受的后天损伤修复中,外源补充的神经节苷脂同样具有十分明显的效果,例如在修复新生儿大脑因缺氧所造成的损伤中外服神经节苷脂疗效显[21],而铅中毒所导致的神经系统损伤在单一神经节苷脂GM1的治疗下也可以被逆[22]. 在这些损伤的修复过程中,外源神经节苷脂表现出类似神经营养因子的特性,其服用的量与服用后新分化成熟的神经细胞与神经胶质细胞的数量呈正相关;海马体神经细胞中,GM1协同KCl能诱发脑源性神经营养因子前体(pro brain derived neurotrophic factor,pro-BDNF)和成熟BDNF的生成,GT1b则能促进成熟BDNF的释[23],这也是GM1等神经节苷脂在神经系统疾病中能起到保护和修复神经细胞的主要机理之一. 此外,定位于胞膜上的神经节苷脂还可以促进各种激酶复合物的形成并由此干预下游的各种信号通路,影响神经生长因子(nerve growth factor)一类的细胞因子的生成,进而对神经系统施加保[24]. 在脊椎动物中,GM3是另一种与中枢神经系统发育息息相关的神经节苷脂,GM3能在神经系统中诱导神经细胞分化并调节细胞生长,此外还能选择性地抑制星形胶质细胞前体和其他神经母细胞的增殖并诱导其凋亡,这种对于神经细胞增殖的抑制作用主要是通过细胞周期蛋白依赖性激酶抑制1B(cyclin-dependent kinase inhibitor 1B)所介[25]. 因为GM3具有对星形胶质细胞前体的凋亡诱导作用,因此增加了其作为脑肿瘤治疗药物的潜力.

  • 2 病变脑部的神经节苷脂

    2

    神经节苷脂对于脑内各项生理功能的影响十分巨大,因此脑部神经节苷脂发生的变化会深刻地影响大脑神经系统的健康和疾病的发生. 许多脑内疾病是直接由于脑内神经节苷脂改变而导致,但也有一些非脑内疾病能影响到脑内神经节苷脂,进而导致比原疾病更为致命的次生脑疾. 以下就脑内常见的几类神经节苷脂相关脑部疾病予以概括,以期总结出看似发病机制相去甚远的各种脑病之间的共性.

  • 2.1 脑炎

    2.1

    在不同脑部疾病的发展中,患者脑部各区域的神经节苷脂含量与种类会发生一定的改变,一些简单的神经节苷脂相关疾病,如神经节苷脂的代谢异常,表现在本应在溶酶体内水解的神经节苷脂异常累积,一系列神经节苷脂贮积病如台萨氏病(Tay-Sachs),均是这一过程的结[26]. 但在一些更复杂的脑部疾病中,神经节苷脂在疾病进展中的角色更多与其在膜结构上的理化性质改变相关,若神经细胞等细胞胞膜表面膜脂比例和种类发生改变,便有可能导致膜结构的物理与化学性质异变,从而引起大脑的各种病理变化. 若胞膜上神经节苷脂缺乏,则会引起脂筏和鞘糖脂富集域的结构破坏,其破坏程度随着神经节苷脂的缺陷程度逐步加深,神经节苷脂GM2/GD2合成酶敲除小鼠的脂质筏标记物caveolin-1和flotillin-1在缺乏神经节苷脂的情况下会有明显的分散趋势,这预示着脂筏的解体,与之相伴的还有IL-1β等炎性细胞因子和肿瘤坏死因 子α(TNFα)含量的明显上[27]. 大多数缺乏神经节苷脂所导致的炎症主要是因为脂筏结构受损,进而导致一定程度的炎症反应. 但在另一些情况下,神经节苷脂也起到抗炎的效用,例如在炎症反应中诱导白细胞与内皮细胞黏附的促炎细胞因子——血管内皮生长因子(vascular endothelial growth factor,VEGF)会被GM3阻抗,GM3在炎症条件下通过蛋白激酶B(protein kinase B)激活细胞核因子κB(NF-κB),进而影响与VEGF功能密切相关的黏附分子1(ICAM-1)和血管细胞黏附分子1(VCAM-1),最终起到抗炎的作[28].

    比克斯塔夫脑干炎(Bickerstaff brainstem encephalitis,BBE)是一种极具代表性的发病机制与神经节苷脂相关的脑炎,以眼肌麻痹为主要症状. BBE的发生与发展往往与GQ1b抗体上调关系密切,携带GQ1b抗原的微生物感染可诱导易感患者产生抗GQ1b抗体,抗GQ1b抗体进入脑干并与GQ1b结合,会导致BBE的发生,费舍尔综合征(Fisher syndrome)的发病机制也与之类[29]. 值得注意的是,BBE与格林-巴利综合症(Guillain-Barré syndrome,GBS)这种脱髓鞘疾病拥有某些相似之处,均有类似的周围神经病变和脑脊液蛋白质细胞分离现象,这在一定程度上表明了在某些脑部炎症中,抗神经节苷脂抗体与脑部神经节苷脂的结合所造成的损伤如脱髓鞘也是炎症发生的一个重要机制.

  • 2.2 神经退行性病变

    2.2

    神经节苷脂在一些神经退行性疾病患者特定脑区的代谢会发生明显的改变,这种改变会进一步导致富集神经节苷脂的膜性结构域/脂筏的理化性质改变,从而对神经退行性疾病的进展产生巨大影响. 脂筏中的鞘糖脂(尤其是神经节苷脂)之间相互作用的改变,与膜蛋白之间相互作用的改变,都可能会导致疾病相关蛋白质的聚合与错误折叠,如帕金森病中的α突触核蛋白(α-synuclein,αS)、亨廷顿病(Huntington's disease,HD)中的亨廷顿蛋白、肌萎缩侧索硬化症中的铜-锌超氧化物歧化[30].

    阿尔茨海默病(Alzheimer's disease,AD)是一种十分常见并极大影响老年人生活质量的神经退行性病变,与大脑正常老化所引起的一系列症状不同的是,AD病人的大脑颞叶和额叶皮质神经细胞的突触部分会发生更明显的损[31]. 目前对于此现象的主要假说是,由β-和γ-分泌酶(secretase)所消化的淀粉样前体蛋白(amyloid precursor protein,APP)所生成的淀粉状β蛋白(amyloid β-protein,Aβ)形成的寡聚体沉积在神经细胞表面,造成直接的突触的损[32]. AD病人脑组织液和脑脊液中可检测到大量的游离Aβ单体,却很难检测到Aβ寡聚物,这是因为Aβ寡聚物具有更强的疏水性,使其更容易结合于细胞膜或其他疏水表面,而沉积在神经细胞膜表面Aβ寡聚物目前被视为AD发病的一个主因. 值得注意的是,Aβ寡聚物在神经细胞膜表面上最主要的结合受体便是GM1,在AD病人的大脑中,常发现一种GM1和Aβ的复合物“GAβ”含量丰富,为内源性Aβ,尤其是毒性最强的Aβ42,它能极其紧密地与膜表面的GM1结[33]. 去除了GM1的唾液酸残基有助于缓解AD模型鼠的海马体中Aβ寡聚物对长时程增强作用(long-term potentiation)的抑[34],这表明GM1上的唾液酸残基有可能是Aβ真正的结合受体. 此外,GM3和GM2也被证实能够在一定程度上促进Aβ寡聚物的结[35].

    然而,另一项研究表明,膜表面更高的鞘磷脂而非GM1含量才是影响Aβ易与胞膜结合的原因.与具有较高GM1含量的人工膜相比,具有更高鞘磷脂含量的人工膜有更强的刚性. 更强的刚性有助于降低双层膜与Aβ42蛋白N端亲水区的相互作用,进而使得Aβ42蛋白N端更易于形成β折叠,可溶的Aβ转化为高β折叠的形式会形成不溶的纤维状蛋白质,进而增强Aβ在突触表面的沉积能力,高β折叠形式的Aβ能通过Arg上的氢键结合在膜[36].

    在另一种极其常见的神经退行性病变帕金森病(Parkinson's disease,PD)中,大量的实验与临床研究证实GM1在这种因脑黑质多巴胺能神经元(dopaminergic neuron,DN)变性死亡而导致纹状体多巴胺(dopamine,DA)含量显著性减少的疾病中有良好的效[37]. GM1服用者中,纹状体区域DA的损失明显减[38],而B4galnt1基因缺陷小鼠因为GM1缺失,会发展出类似PD症状. 此外在一项使用霍乱弧菌(VCS)提取唾液酸酶作为药物的实验中,利用VCS唾液酸酶能将脑内GD1a、GD1b和GT1b加速转化为GM1的酶转化法在治疗PD的过程中取得了较好的疗效,这种低成本的方法同样也被证实能提升纹状体DA含[39]. GM1对于PD的作用机制,主要是因为GM1减少IL-1β的表达和增加IL-1Ra表达从而抑制炎症反应,进而缓解PD的症[40]. 脑内ganglio-系列的神经节苷脂含量下降,除了导致DN的死亡以外,还会导致胶质细胞神经营养因子(glial derived neurotrophic factor,GDNF)的缺失. GDNF对于运动神经元的存活不可或缺,GDNF的缺失在PD发病过程中会引发进一步的神经病[41]. GM1同样也在治疗HD这种以运动、认知和精神问题为特征的疾病起到很好的作用,HD模型鼠的脑神经节苷脂含量低于正常水平,而引入外源GM1可以纠正HD模型小鼠YAC128的运动障碍,并降低突变的亨廷顿蛋白水[42].

    另一些研究表明,GM1并不一定会改善神经退行性疾病. 与PD发病密切相关的αS在与膜脂结合时,会折叠成富含螺旋的结构,螺旋状αS能穿透细胞膜形成低聚离子通道,扰乱细胞内钙流. 该蛋白质首先与星形胶质细胞表面的神经节苷脂GM3或神经元中的GM1相互作用,并诱导包含一段对胆固醇具有高亲和力的小肽(氨基酸67~78)的螺旋结构域折[43],胆固醇/αS复合物倾斜的几何结构有助于这种低聚离子通道的形成. 另一项以神经母细胞瘤细胞中分离出外泌体(exosomes)为工具来研究它们对αS聚集能力影响的实验表明,外泌体中存在的磷脂类,包括磷脂酰胆碱、磷脂酰丝氨酸、磷脂酰乙醇胺、磷脂酰肌醇、GM2,均能抑制αS的聚集,但GM1或GM3却会加速其聚[44]. 值得注意的是,作为AD和PD这两种最常见的神经退行性病变的主要发病相关蛋白质,Aβ和αS通过一个共同的环状结构(Aβ的第5~16肽和αS的第34~45肽,12肽长度残基)与特定的神经节苷脂相互作用,表现出一定的序列同源[45]. 这种共性在多种神经退行性疾病的研究中均具有潜在的治疗应用价值,因为这些疾病的相关分子大多以细胞表面的神经节苷脂作为结合受体.

  • 2.3 脑瘤

    2.3

    脑瘤中通常会过表达只在正常神经组织中高表达的b-、c- 两系列复杂神经节苷脂,而一些修饰过的简单神经节苷脂如N-乙酰GM3和N-羟乙酰GM3也是在肿瘤组织中表达的相关抗原,这些新表达的复杂神经节苷脂在神经外胚层肿瘤的侵袭与转移中起到了关键作[46]. 神经节苷脂对于肿瘤的影响具有双面性,一方面可以增强肿瘤细胞的黏附与迁徙能力,另一方面却又能通过不同的信号通路来抵抗肿瘤的生长. 神经节苷脂能通过抑制肿瘤组织血管的增生来减缓肿瘤的生长,其中最值得注意的莫过于与VEGF有相反作用的GM3和GD1a[47]. GM3是一种天然的血管生成抑制因子,能与表皮生长因子(epidermal growth factor,EGF)或VEGF受体相互作用,这种拮抗作用使得GM3拥有了极大的治疗肿瘤的潜力. 而另一种有抗癌作用的神经节苷脂GD1a从肿瘤细胞表面脱落有可能会诱发肿瘤组织新血管生[48],GD1a还能通过促进膜表面特定膜性结构域的分子含量的改变来影响细胞的黏附和迁徙,例如肿瘤细胞的迁徙能力会因GD1a诱导高表达窖蛋白1(caveolin-1)和基质相互作用分子1(stromal interaction molecule 1)而减[49]. 人体可以利用神经节苷脂来抵抗癌细胞生长和扩散,但与此同时癌细胞也可以利用神经节苷脂来进行转移和黏附. 癌细胞膜表面的神经节苷脂便具有促进肿瘤细胞黏附在细胞外基质的作用,将其清除后能降低肿瘤细胞的黏附能力,其末端的唾液酸残基对肿瘤细胞黏附及细胞趋化性侵袭至为重[50,51],是肿瘤细胞黏附的关键性基团. 此外,缺乏营养的癌细胞也可以使用神经节苷脂上的唾液酸维持细胞表面的糖基[52]. 一些癌细胞还能通过外泌神经节苷脂使自身与正常细胞相结合,例如神经母细胞瘤细胞(neuroblastoma tumor cell)外泌的神经节苷脂能促进自身与血小板结合,并利用血小板对细胞外基质胶原的黏附,使得肿瘤细胞在血管中阻滞,形成局灶性肿[53].

    胶质瘤(glioma)是一种源自神经胶质细胞的肿瘤,也是大脑最常见的一种分化低、恶性程度高的肿瘤. 在胶质瘤细胞的增殖与扩散过程中,神经节苷脂也扮演着一个至关重要的角色. 星形胶质细胞中的GD3多富集于膜表面的脂筏与膜性结构域,此区域同时也存在大量的血小板衍生因子受体α (platelet-derived growth factor recepter α, PDGFRα). PDGFRα是GD3偶联分子,并且能与Src激酶家族Yes激酶共沉淀,抗YES siRNA介导的基因沉默证明了Yes激酶在星形胶质细胞的细胞侵袭中起着关键作用. 定位于胶质瘤的板状伪足的GD3,PDGFRα结合Yes使其磷酸化并最终形成三元复合物,激活Yes信号通路,含GD3的星形胶质细胞的生长和侵袭能力也会随着Yes激酶的磷酸化水平的提高而提[54]. GD2也被证明在胶质瘤侵袭过程中起到与GD3类似的作[55]. 其次胶质瘤细胞还能通过外泌神经节苷脂诱导免疫细胞的凋亡,例如人胶质母细胞瘤细胞系可以通过分泌神经节苷脂引起外周血中T细胞的凋亡. 在这一进程中,胶质母细胞瘤细胞衍生的神经节苷脂GM2通过直接与肿瘤坏死因子受体(tumor necrosis factor receptor,TNFR)结合来激活半胱天冬酶(cysteinyl aspartate specific proteinase, Caspase)途径诱导T细胞凋亡,GM2在T细胞中诱导Caspase-3、-9和-8的活化,同时激活Caspase的外源性和内源性通路,介导T细胞凋[56]. 此外,神经节苷脂还能促进细胞的自噬,用神经节苷脂混合物孵育星型胶质细胞,会增加自噬反应标志物GFP-LC3的分布,同时还能检测到自噬泡(autophagic vacuoles)的形成,通过自噬抑制剂抑剂3-甲基腺嘌呤(3-methyladenine)敲除beclin 1/ atg6或atg7基因可以抑制由神经节苷脂所诱导的细胞凋[57]. 但在一项缺血性脑卒中的研究中,外源注射的GM1能减轻脑部损伤并缓解由梗死所导致的神经功能障碍,这种功能主要是通过GM1抑制受损组织的自噬活性来实[58]. 在健康组织中,GM3抑制中枢神经系统细胞增殖并诱导细胞凋亡,利用GM3治疗可以显著减少人胶质母细胞瘤原代培养的细胞数量,而且在各种类型的胶质瘤中都具有明显的抑制生长效[59],这再次证明了GM3具有作为一种脑瘤治疗药物的潜力.

  • 2.4 脑部感染

    2.4

    神经节苷脂在感染性疾病中也发挥着多种作用,例如甲型流感病毒能识别上皮细胞表面的神经节苷脂唾液酸残基,并将其作为受体入侵宿主细胞. 但在一些情况下,外部病原体的感染对于脑部的影响更多的是通过自身携带的神经节苷脂抗原来发挥作用,其中最典型的的例子为寨卡(Zika)病毒. 2015年爆发于南美的Zika疫情是由一种以蚊子为媒介传播的黄病毒属单链RNA病毒所导致的. 该病毒具有强烈的嗜神经特点,多聚集在胎儿脑部神经细胞中增殖,使得Zika幼儿患者脑部萎缩并形成小头的表征. 但这些表征并非是由病毒直接引起,而更多的是因为脑部免疫细胞所产生的免疫反应以及炎性因子的分泌共同导[60]. 值得注意的是,在Zika病毒感染的急性期,GD3自身抗体水平会明显升高,通过自身免疫反应,GD3抗体可能会在Zika病毒感染期结合神经细胞膜表面的神经节苷脂,促进神经系统的病[61]. 自体免疫反应使周围神经系统产生紊乱,通常表现为运动性神经病变或炎性脱髓鞘病变,能产生相似症状的病原体还有EB病毒、支原体肺炎、嗜血杆菌等,所有这些病原体都有与周围神经组织共同的糖链抗原序列,这些外源的感染与抗神经节苷脂抗体的产生密切相关. 此外,GD3还能调节IL-15所诱导的小胶质细胞促炎反应,由于小胶质细胞在中枢神经系统的炎症发生中起着重要作用,所以GD3抗体存在可能会阻止GD3与IL-15的相互作用,进而影响在Zika病毒感染过程中中枢神经系统组织损伤所导致的炎[62].

  • 3 神经节苷脂在病变脑部的一般作用模式

    3

    大脑中神经节苷脂异常所引发的疾病貌似千差万别,但万变不离其宗,该类疾病大多拥有着类似的几种发病机制. 在某些简单的脑内疾病中神经节苷脂仅有单一的作用方式与致病机制,但有些疾病中神经节苷脂却能通过数种作用方式来影响病情进展,比如前文所提到的脑胶质瘤既可以通过膜表面的GD3来增强侵袭能力,又可以通过分泌GM2来诱导免疫细胞的凋亡. 通过对常见的数种脑内疾病进行类比和总结,可以归纳出神经节苷脂对于这些疾病的一般作用模式.

  • 3.1 影响脂筏和信号转导

    3.1

    神经退行性疾病、脑肿瘤等脑部疾病患者疾病相关细胞的膜表面神经节苷脂会极大地影响这些疾病的发展,由于神经节苷脂在脑中的丰富含量以及其在神经系统中的重要作用,很多疾病发病的直接病因便直接关联于此. 然而神经节苷脂并非是依靠单一的分子,而是通过在胞膜上形成一定的结构域例如脂筏来调控信号转导、膜翻转和与蛋白质结合等生理过[63]. 一般情况下,脂筏完整性的丧失通常与大脑衰老的进程密切相关,这一过程伴随着明显的神经节苷脂与胆固醇水平的降低,在很多脑内疾病中均有类似的现象. 脂筏结构的破坏会影响许多信号通路的正常运转,并引发炎症和凋亡,这些次生的症状在很多神经节苷脂相关疾病中均有表现. 此外,定位于胞膜上的神经节苷脂在脑部还通过影响细胞黏附、细胞识别、细胞分化和增殖等方式来影响疾病的进[64].

    脑部神经节苷脂发挥其作用的一个主要方式便是调控膜蛋白活性和信号传导. 神经节苷脂在膜上影响疾病相关信号通路主要通过两个途径发生:一是通过招募或驱逐相关蛋白质受体以及激活离子通道,对富含鞘糖脂的膜性结构域和脂筏发挥影响,增强或抑制通路中蛋白质-蛋白质相互作用进而影响下游通路的蛋白质活[65],例如上文所提到的GD3通过招募PDGFRα来增强胶质瘤的侵袭能力(图2a);二是神经节苷脂可以作为共受体在胞膜上以特定的方向将下游通路配体暴露给主受体,再者神经节苷脂还可以通过与相关受体的特异性相互作用影响和调节膜受体的节[66]. 神经节苷脂还能简单地作为一些疾病相关蛋白质,如Aβ的结合受体,供这些有害蛋白质结合在胞膜表面进而使得疾病发生,此外还有一些关于朊蛋白(prion protein,PrPC)转化为朊病毒的研究报道指出,富集于神经细胞脂筏的PrPC的毒性转化也可能与神经节苷脂相[67].

  • 3.2 引发自身免疫

    3.2
    图2
                            神经节苷脂影响脑疾的几种模式

    图2 神经节苷脂影响脑疾的几种模式

    Fig. 2 Patterns of gangliosides for effects of brain diseases

    注:(a)神经节苷脂影响脂筏与信号转导:在胶质瘤细胞中GD3将脂筏外的PDGFRα招募到脂筏内,与Yes激酶生成三元复合物,激活下游通[54]. (b)神经节苷脂引发自身免疫:携带GQ1b抗原的病原体侵入人体后被免疫细胞识别,产生抗GQ1b抗体,GQ1b 抗体随体液游离至神经元并与其外膜上的GQ1b 结合,造成膜溶解和脱髓鞘等症状,发生BBE和GBS[29]. (c)外泌游离神经节苷脂:胶质母细胞瘤通过外泌的GM2识别T细胞TNFR,进而诱导T细胞凋[56].

    神经节苷脂自身抗体的生成在各种神经紊乱的发病机制中起着关键的作用,在上述的多种不同类别的脑部神经系统疾病如GBS、BBE和Zika之中,均有类似的发病机制. 首先宿主被携带某种神经节苷脂抗原的病原体感染(如GBS和BBE中的携带GQ1b抗原的数种微生物与Zika中携带GD3抗原的Zika病毒),紧接着自身免疫系统识别上述抗原,并呈递给淋巴B细胞产生抗神经节苷脂抗体,最终抗神经节苷脂抗体随着体液扩散到致病部位靶点与之结合(这个靶点通常为神经细胞膜表面的神经节苷脂),引起一系列神经系统运动性神经病变和炎性脱髓鞘(图2b),这一类疾病可以被统称为神经节苷脂自身抗体疾病.

    但在某些情况下,体液中循环的神经节苷脂引发自身免疫产生的神经节苷脂抗体也有可能有益于肿瘤自身,肿瘤微环境中高浓度的某些种类的神经节苷脂能极大地增强其生存能力. 在这种情况下,较高浓度的神经节苷脂抗体可以降低体内微环境中神经节苷脂的含量,进而提高免疫能力并延缓肿瘤的增殖.

  • 3.3 外泌游离神经节苷脂

    3.3

    在多种脑瘤中,癌细胞可以通过外泌神经节苷脂来影响外部环境并干扰正常细胞的工作,例如上文所述的神经母细胞瘤通过分泌神经节苷脂促进自身与血小板的结合使自身黏附于血管,以及人胶质母细胞瘤细胞通过分泌神经节苷脂引起外周血的T细胞凋亡(图2c).

  • 4 总结

    4

    寻求脑部疾病的治愈之路十分坎坷,很多针对于疾病相关蛋白质与核酸之类的传统研究靶点慢慢陷入了一个瓶颈,例如前两年号称能清除Aβ从而治愈阿尔茨海默病的茄尼醇单抗(Solanezumab)在14年后被证明无临床治疗意[68]. 所以在寻求治愈脑部疾病的道路上亟待寻求一个新的突破点,广泛分布于大脑的神经节苷脂无疑是突破点之一. 本文通过分析病理情况下大脑中的神经节苷脂的变化与其介导的各项病理进程机制与通路的进展,归纳概括了一般情况下神经节苷脂对于常见脑部及神经系统疾病的影响机制,以期为脑内疾病的诊断和治疗提供一个新的思路.

  • 参 考 文 献

    • 1

      Yu R K, Tsai Y T, Ariga T, et al. Structures, biosynthesis, and functions of gangliosides--an overview. J Oleo Sci, 2011, 60(10): 537-544

    • 2

      Kolter T, Proia R L, Sandhoff K. Combinatorial ganglioside biosynthesis. J Biol Chem, 2002, 277(29): 25859-25862

    • 3

      Giraudo C G, Maccioni H J. Ganglioside glycosyltransferases organize in distinct multienzyme complexes in CHO-K1 cells. J Biol Chem, 2003, 278(41): 40262-40271

    • 4

      Regina Todeschini A, Hakomori S I. Functional role of glycosphingolipids and gangliosides in control of cell adhesion, motility, and growth, through glycosynaptic microdomains. Biochim Biophys Acta, 2008, 1780(3): 421-433

    • 5

      Salcedo J, Barbera R, Matencio E, et al. Gangliosides and sialic acid effects upon newborn pathogenic bacteria adhesion: an in vitro study. Food Chem, 2013, 136(2): 726-734

    • 6

      Palmano K, Rowan A, Guillermo R, et al. The role of gangliosides in neurodevelopment. Nutrients, 2015, 7(5): 3891-3913

    • 7

      Mlinac K, Jovanov Milosevic N, Heffer M, et al. Neuroplastin expression in the hippocampus of mice lacking complex gangliosides. J Mol Neurosci, 2012, 48(1): 161-166

    • 8

      Han X. Lipidomics for studying metabolism. Nat Rev Endocrinol, 2016, 12(11): 668-679

    • 9

      Vajn K, Viljetic B, Degmecic I V, et al. Differential distribution of major brain gangliosides in the adult mouse central nervous system. Plos One, 2013, 8(9): e75720

    • 10

      Ledeen R, Wu G. GM1 in the nuclear envelope regulates nuclear calcium through association with a nuclear sodium-calcium exchanger. J Neurochem, 2007, 103 Suppl1:126-134

    • 11

      Fewou S N, Plomp J J, Willison H J. The pre-synaptic motor nerve terminal as a site for antibody-mediated neurotoxicity in autoimmune neuropathies and synaptopathies. J Anat, 2014, 224(1): 36-44

    • 12

      Ritter G, Fortunato S R, Cohen L, et al. Induction of antibodies reactive with GM2 ganglioside after immunization with lipopolysaccharides from Camplyobacter jejuni. Int J Cancer, 1996, 66(2): 184-190

    • 13

      Pan B, Fromholt S E, Hess E J, et al. Myelin-associated glycoprotein and complementary axonal ligands, gangliosides, mediate axon stability in the CNS and PNS: neuropathology and behavioral deficits in single- and double-null mice. Exp Neurol, 2005, 195(1): 208-217

    • 14

      Mandal C, Schwartz-Albiez R, Vlasak R. Functions and biosynthesis of O-acetylated sialic acids. Top Curr Chem, 2015, 366:1-30

    • 15

      Mlinac K, Fabris D, Vukelic Z, et al. Structural analysis of brain ganglioside acetylation patterns in mice with altered ganglioside biosynthesis. Carbohydr Res, 2013, 382:1-8

    • 16

      Chen H Y, Challa A K, Varki A. 9-O-acetylation of exogenously added ganglioside GD3. The GD3 molecule induces its own O-acetylation machinery. J Biol Chem, 2006, 281(12): 7825-7833

    • 17

      Handa Y, Ozaki N, Honda T, et al. GD3 synthase gene knockout mice exhibit thermal hyperalgesia and mechanical allodynia but decreased response to formalin-induced prolonged noxious stimulation. Pain, 2005, 117(3): 271-279

    • 18

      Yao D, Mcgonigal R, Barrie J A, et al. Neuronal expression of GalNAc transferase is sufficient to prevent the age-related neurodegenerative phenotype of complex ganglioside-deficient mice. J Neurosci, 2014, 34(3): 880-891

    • 19

      Woods A S, Colsch B, Jackson S N, et al. Gangliosides and ceramides change in a mouse model of blast induced traumatic brain injury. ACS Chem Neurosci, 2013, 4(4): 594-600

    • 20

      Ryan J M, Rice G E, Mitchell M D. The role of gangliosides in brain development and the potential benefits of perinatal supplementation. Nutr Res, 2013, 33(11): 877-887

    • 21

      Zhu X, Li H, Zhang C. Clinical effects of Ganglioside and fructose-1, 6-diphosphate on neonatal heart and brain injuries after Asphyxia. Pak J Med Sci, 2017, 33(5): 1199-1204

    • 22

      She J Q, Wang M, Zhu D M, et al. Monosialoanglioside (GM1) prevents lead-induced neurotoxicity on long-term potentiation, SOD activity, MDA levels, and intracellular calcium levels of hippocampus in rats. Naunyn Schmiedebergs Arch Pharmacol, 2009, 379(5): 517-524

    • 23

      Lim S T, Esfahani K, Avdoshina V, et al. Exogenous gangliosides increase the release of brain-derived neurotrophic factor. Neuropharmacology, 2011, 60(7-8): 1160-1167

    • 24

      Fukuda Y, Fukui T, Hikichi C, et al. Neurotropin promotes NGF signaling through interaction of GM1 ganglioside with Trk neurotrophin receptor in PC12 cells. Brain Res, 2015, 1596:13-21

    • 25

      Nakatsuji Y, Miller R H. Selective cell-cycle arrest and induction of apoptosis in proliferating neural cells by ganglioside GM3. Exp Neurol, 2001, 168(2): 290-299

    • 26

      Sandhoff K, Harzer K. Gangliosides and gangliosidoses: principles of molecular and metabolic pathogenesis. J Neurosci, 2013, 33(25): 10195-10208

    • 27

      Ohmi Y, Tajima O, Ohkawa Y, et al. Gangliosides are essential in the protection of inflammation and neurodegeneration via maintenance of lipid rafts: elucidation by a series of ganglioside-deficient mutant mice. J Neurochem, 2011, 116(5): 926-935

    • 28

      Kim S J, Chung T W, Choi H J, et al. Monosialic ganglioside GM3 specifically suppresses the monocyte adhesion to endothelial cells for inflammation. Int J Biochem Cell Biol, 2014, 46:32-38

    • 29

      Shahrizaila N, Yuki N. Bickerstaff brainstem encephalitis and Fisher syndrome: anti-GQ1b antibody syndrome. J Neurol Neurosurg Psychiatry, 2013, 84(5): 576-583

    • 30

      Ariga T. Pathogenic role of ganglioside metabolism in neurodegenerative diseases. J Neurosci Res, 2014, 92(10): 1227-1242

    • 31

      Mucke L, Selkoe D J. Neurotoxicity of amyloid beta-protein: synaptic and network dysfunction. Cold Spring Harb Perspect Med, 2012, 2(7): a006338

    • 32

      Grimm M O, Zinser E G, Grosgen S, et al. Amyloid precursor protein (APP) mediated regulation of ganglioside homeostasis linking Alzheimer's disease pathology with ganglioside metabolism. Plos One, 2012, 7(3): e34095

    • 33

      Hong S, Ostaszewski B L, Yang T, et al. Soluble abeta oligomers are rapidly sequestered from brain ISF in vivo and bind GM1 ganglioside on cellular membranes. Neuron, 2014, 82(2): 308-319

    • 34

      Yanagisawa K. GM1 ganglioside and Alzheimer's disease. Glycoconj J, 2015, 32(3-4): 87-91

    • 35

      Caughlin S, Hepburn J D, Park D H, et al. Increased expression of simple ganglioside species GM2 and GM3 detected by MALDI imaging mass spectrometry in a combined rat model of abeta toxicity and stroke. Plos One, 2015, 10(6): e0130364

    • 36

      Owen M C, Kulig W, Poojari C, et al. Physiologically-relevant levels of sphingomyelin, but not GM1, induces a beta-sheet-rich structure in the amyloid-beta(1-42) monomer. Biochim Biophys Acta, 2018, pii: S0005-273618)30106-8. doi: 10.1016/j.bbamem.2018.03.026

    • 37

      Schneider J S, Gollomp S M, Sendek S, et al. A randomized, controlled, delayed start trial of GM1 ganglioside in treated Parkinson's disease patients. J Neurol Sci, 2013, 324(1-2): 140-148

    • 38

      Schneider J S, Sendek S, Daskalakis C, et al. GM1 ganglioside in Parkinson's disease: results of a five year open study. J Neurol Sci, 2010, 292(1-2): 45-51

    • 39

      Schneider J S, Cambi F, Gollomp S M, et al. GM1 ganglioside in Parkinson's disease: pilot study of effects on dopamine transporter binding. J Neurol Sci, 2015, 356(1-2): 118-123

    • 40

      Xu R, Zhou Y, Fang X, et al. The possible mechanism of Parkinson's disease progressive damage and the preventive effect of GM1 in the rat model induced by 6-hydroxydopamine. Brain Res, 2014, 1592:73-81

    • 41

      Ba X H. Therapeutic effects of GM1 on Parkinson's disease in rats and its mechanism. Int J Neurosci, 2016, 126(2): 163-167

    • 42

      Alpaugh M, Galleguillos D, Forero J, et al. Disease-modifying effects of ganglioside GM1 in Huntington's disease models. EMBO Mol Med, 2017, 9(11): 1537-1557

    • 43

      Fantini J, Yahi N. The driving force of alpha-synuclein insertion and amyloid channel formation in the plasma membrane of neural cells: key role of ganglioside- and cholesterol-binding domains. Adv Exp Med Biol, 2013, 991:15-26

    • 44

      Grey M, Dunning C J, Gaspar R, et al. Acceleration of alpha-synuclein aggregation by exosomes. J Biol Chem, 2015, 290(5): 2969-2982

    • 45

      Yahi N, Fantini J. Deciphering the glycolipid code of Alzheimer's and Parkinson's amyloid proteins allowed the creation of a universal ganglioside-binding peptide. Plos One, 2014, 9(8): e104751

    • 46

      Groux-Degroote S, Rodriguez-Walker M, Dewald J H, et al. Gangliosides in cancer cell signaling. Prog Mol Biol Transl Sci, 2018, 156:197-227

    • 47

      Mukherjee P, Faber A C, Shelton L M, et al. Thematic review series: sphingolipids. Ganglioside GM3 suppresses the proangiogenic effects of vascular endothelial growth factor and ganglioside GD1a. J Lipid Res, 2008, 49(5): 929-938

    • 48

      Hyuga S, Kawasaki N, Hyuga M, et al. Ganglioside GD1a inhibits HGF-induced motility and scattering of cancer cells through suppression of tyrosine phosphorylation of c-Met. Int J Cancer, 2001, 94(3): 328-334

    • 49

      Wang L, Takaku S, Wang P, et al. Ganglioside GD1a regulation of caveolin-1 and Stim1 expression in mouse FBJ cells: augmented expression of caveolin-1 and Stim1 in cells with increased GD1a content. Glycoconj J, 2006, 23(5-6): 303-315

    • 50

      Bull C, Boltje T J, Van Dinther E A, et al. Targeted delivery of a sialic acid-blocking glycomimetic to cancer cells inhibits metastatic spread. ACS Nano, 2015, 9(1): 733-745

    • 51

      王艳萍,王征,朱健,等. 鞘糖脂研究进展. 生命科学. 2011, 23(06): 583-591

      Wang Y P, Wang Z, Zhu J,et al. Chinese Bulletin of Life Sciences,2011, 23(06): 583-591

    • 52

      Badr H A, Alsadek D M, Mathew M P, et al. Nutrient-deprived cancer cells preferentially use sialic acid to maintain cell surface glycosylation. Biomaterials, 2015, 70:23-36

    • 53

      Fang L H, Lucero M, Kazarian T, et al. Effects of neuroblastoma tumor gangliosides on platelet adhesion to collagen. Clin Exp Metastasis, 1997, 15(1): 33-40

    • 54

      Ohkawa Y, Momota H, Kato A, et al. Ganglioside GD3 enhances invasiveness of gliomas by forming a complex with platelet-derived growth factor receptor alpha and Yes kinase. J Biol Chem, 2015, 290(26): 16043-16058

    • 55

      Iwasawa T, Zhang P, Ohkawa Y, et al. Enhancement of malignant properties of human glioma cells by ganglioside GD3/GD2. Int J Oncol, 2018, 52(4): 1255-1266

    • 56

      Mahata B, Biswas S, Rayman P, et al. GBM derived gangliosides induce T cell apoptosis through activation of the caspase cascade involving both the extrinsic and the intrinsic pathway. Plos One, 2015, 10(7): e0134425

    • 57

      Hwang J, Lee S, Lee J T, et al. Gangliosides induce autophagic cell death in astrocytes. Br J Pharmacol, 2010, 159(3): 586-603

    • 58

      Li L, Tian J, Long M K, et al. Protection against experimental stroke by ganglioside GM1 is associated with the inhibition of autophagy. Plos One, 2016, 11(1): e0144219

    • 59

      Noll E N, Lin J, Nakatsuji Y, et al. GM3 as a novel growth regulator for human gliomas. Exp Neurol, 2001, 168(2): 300-309

    • 60

      Leis A A, Stokic D S. Zika virus and Guillain-Barre syndrome: is there sufficient evidence for causality? Front Neurol,2016, 7: 170

    • 61

      Koike H. Zika virus and Guillain-Barre syndrome. Brain Nerve, 2018, 70(2): 113-120

    • 62

      Nico D, Conde L, Rivera-Correa J L, et al. Prevalence of IgG autoantibodies against GD3 ganglioside in acute Zika virus infection. Front Med (Lausanne), 2018, 5:25

    • 63

      Sonnino S, Aureli M, Mauri L, et al. Membrane lipid domains in the nervous system. Front Biosci (Landmark Ed), 2015, 20: 280-302

    • 64

      Marin R, Diaz M. Estrogen interactions with lipid rafts related to neuroprotection. Impact of brain aging and menopause. Front Neurosci, 2018, 12: 128

    • 65

      Furukawa K, Ohmi Y, Ohkawa Y, et al. Regulatory mechanisms of nervous systems with glycosphingolipids. Neurochem Res, 2011, 36(9): 1578-1586

    • 66

      Mollinedo F, Gajate C. Lipid rafts as major platforms for signaling regulation in cancer. Adv Biol Regul, 2015, 57:130-146

    • 67

      Botto L, Cunati D, Coco S, et al. Role of lipid rafts and GM1 in the segregation and processing of prion protein. Plos One, 2014, 9(5): e98344

    • 68

      Doody R S, Thomas R G, Farlow M, et al. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer's disease. N Engl J Med, 2014, 370(4): 311-321

张宸

机 构:西北大学生命科学学院功能糖组学实验室,西安 710069

Affiliation:Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, China

杜昊骐

机 构:西北大学生命科学学院功能糖组学实验室,西安 710069

Affiliation:Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, China

李铮

机 构:西北大学生命科学学院功能糖组学实验室,西安 710069

Affiliation:Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, China

角 色:通讯作者

Role:Corresponding author

电 话:86-29-88304104

邮 箱:zhengli@nwu.edu.cn

分类简写结构
Ganglio-GgGalβ1-3GalNAcβ1-4Galβ1-4Glcβ1-Cer
Lacto-LcGalβ1-3GlcNacβ1-3Galβ1-4Glcβ1-Cer
Neolacto-nLcGalβ1-4GlcNacβ1-3Galβ1-4Glcβ1-Cer
Globo-GbGalNacβ1-3Galα1-4Galβ1-4Glcβ1-Cer
Isoglobo-iGbGalNAcβ1-3Galα1-3Galβ1-4Glcβ1-Cer
html/pibbcn/20180233/alternativeImage/763fdc5d-9f49-4cd1-95f1-60c4fed94cdf-F001.jpg
html/pibbcn/20180233/alternativeImage/763fdc5d-9f49-4cd1-95f1-60c4fed94cdf-F002.jpg

表1 神经节苷脂核心糖链结构

Table 1 The core structures of ganglioside oligosaccharide chains

图1 神经节苷脂影响脑内神经系统的机制

Fig. 1 Mechanism of intracerebral nerve influenced by ganglioside

图2 神经节苷脂影响脑疾的几种模式

Fig. 2 Patterns of gangliosides for effects of brain diseases

image /

无注解

(a)Ca2+通过NCX/GM1复合物由核质向核间隙/内质网转移,紧接着通过钙调控通道转移至胞质与CaM结合,激活PKII,PKII使突触蛋白磷酸化,最终影响神经递质释[10].(b)神经元轴突与髓鞘依靠MAG来维持连[13].

(a)神经节苷脂影响脂筏与信号转导:在胶质瘤细胞中GD3将脂筏外的PDGFRα招募到脂筏内,与Yes激酶生成三元复合物,激活下游通[54]. (b)神经节苷脂引发自身免疫:携带GQ1b抗原的病原体侵入人体后被免疫细胞识别,产生抗GQ1b抗体,GQ1b 抗体随体液游离至神经元并与其外膜上的GQ1b 结合,造成膜溶解和脱髓鞘等症状,发生BBE和GBS[29]. (c)外泌游离神经节苷脂:胶质母细胞瘤通过外泌的GM2识别T细胞TNFR,进而诱导T细胞凋[56].

  • 参 考 文 献

    • 1

      Yu R K, Tsai Y T, Ariga T, et al. Structures, biosynthesis, and functions of gangliosides--an overview. J Oleo Sci, 2011, 60(10): 537-544

    • 2

      Kolter T, Proia R L, Sandhoff K. Combinatorial ganglioside biosynthesis. J Biol Chem, 2002, 277(29): 25859-25862

    • 3

      Giraudo C G, Maccioni H J. Ganglioside glycosyltransferases organize in distinct multienzyme complexes in CHO-K1 cells. J Biol Chem, 2003, 278(41): 40262-40271

    • 4

      Regina Todeschini A, Hakomori S I. Functional role of glycosphingolipids and gangliosides in control of cell adhesion, motility, and growth, through glycosynaptic microdomains. Biochim Biophys Acta, 2008, 1780(3): 421-433

    • 5

      Salcedo J, Barbera R, Matencio E, et al. Gangliosides and sialic acid effects upon newborn pathogenic bacteria adhesion: an in vitro study. Food Chem, 2013, 136(2): 726-734

    • 6

      Palmano K, Rowan A, Guillermo R, et al. The role of gangliosides in neurodevelopment. Nutrients, 2015, 7(5): 3891-3913

    • 7

      Mlinac K, Jovanov Milosevic N, Heffer M, et al. Neuroplastin expression in the hippocampus of mice lacking complex gangliosides. J Mol Neurosci, 2012, 48(1): 161-166

    • 8

      Han X. Lipidomics for studying metabolism. Nat Rev Endocrinol, 2016, 12(11): 668-679

    • 9

      Vajn K, Viljetic B, Degmecic I V, et al. Differential distribution of major brain gangliosides in the adult mouse central nervous system. Plos One, 2013, 8(9): e75720

    • 10

      Ledeen R, Wu G. GM1 in the nuclear envelope regulates nuclear calcium through association with a nuclear sodium-calcium exchanger. J Neurochem, 2007, 103 Suppl1:126-134

    • 11

      Fewou S N, Plomp J J, Willison H J. The pre-synaptic motor nerve terminal as a site for antibody-mediated neurotoxicity in autoimmune neuropathies and synaptopathies. J Anat, 2014, 224(1): 36-44

    • 12

      Ritter G, Fortunato S R, Cohen L, et al. Induction of antibodies reactive with GM2 ganglioside after immunization with lipopolysaccharides from Camplyobacter jejuni. Int J Cancer, 1996, 66(2): 184-190

    • 13

      Pan B, Fromholt S E, Hess E J, et al. Myelin-associated glycoprotein and complementary axonal ligands, gangliosides, mediate axon stability in the CNS and PNS: neuropathology and behavioral deficits in single- and double-null mice. Exp Neurol, 2005, 195(1): 208-217

    • 14

      Mandal C, Schwartz-Albiez R, Vlasak R. Functions and biosynthesis of O-acetylated sialic acids. Top Curr Chem, 2015, 366:1-30

    • 15

      Mlinac K, Fabris D, Vukelic Z, et al. Structural analysis of brain ganglioside acetylation patterns in mice with altered ganglioside biosynthesis. Carbohydr Res, 2013, 382:1-8

    • 16

      Chen H Y, Challa A K, Varki A. 9-O-acetylation of exogenously added ganglioside GD3. The GD3 molecule induces its own O-acetylation machinery. J Biol Chem, 2006, 281(12): 7825-7833

    • 17

      Handa Y, Ozaki N, Honda T, et al. GD3 synthase gene knockout mice exhibit thermal hyperalgesia and mechanical allodynia but decreased response to formalin-induced prolonged noxious stimulation. Pain, 2005, 117(3): 271-279

    • 18

      Yao D, Mcgonigal R, Barrie J A, et al. Neuronal expression of GalNAc transferase is sufficient to prevent the age-related neurodegenerative phenotype of complex ganglioside-deficient mice. J Neurosci, 2014, 34(3): 880-891

    • 19

      Woods A S, Colsch B, Jackson S N, et al. Gangliosides and ceramides change in a mouse model of blast induced traumatic brain injury. ACS Chem Neurosci, 2013, 4(4): 594-600

    • 20

      Ryan J M, Rice G E, Mitchell M D. The role of gangliosides in brain development and the potential benefits of perinatal supplementation. Nutr Res, 2013, 33(11): 877-887

    • 21

      Zhu X, Li H, Zhang C. Clinical effects of Ganglioside and fructose-1, 6-diphosphate on neonatal heart and brain injuries after Asphyxia. Pak J Med Sci, 2017, 33(5): 1199-1204

    • 22

      She J Q, Wang M, Zhu D M, et al. Monosialoanglioside (GM1) prevents lead-induced neurotoxicity on long-term potentiation, SOD activity, MDA levels, and intracellular calcium levels of hippocampus in rats. Naunyn Schmiedebergs Arch Pharmacol, 2009, 379(5): 517-524

    • 23

      Lim S T, Esfahani K, Avdoshina V, et al. Exogenous gangliosides increase the release of brain-derived neurotrophic factor. Neuropharmacology, 2011, 60(7-8): 1160-1167

    • 24

      Fukuda Y, Fukui T, Hikichi C, et al. Neurotropin promotes NGF signaling through interaction of GM1 ganglioside with Trk neurotrophin receptor in PC12 cells. Brain Res, 2015, 1596:13-21

    • 25

      Nakatsuji Y, Miller R H. Selective cell-cycle arrest and induction of apoptosis in proliferating neural cells by ganglioside GM3. Exp Neurol, 2001, 168(2): 290-299

    • 26

      Sandhoff K, Harzer K. Gangliosides and gangliosidoses: principles of molecular and metabolic pathogenesis. J Neurosci, 2013, 33(25): 10195-10208

    • 27

      Ohmi Y, Tajima O, Ohkawa Y, et al. Gangliosides are essential in the protection of inflammation and neurodegeneration via maintenance of lipid rafts: elucidation by a series of ganglioside-deficient mutant mice. J Neurochem, 2011, 116(5): 926-935

    • 28

      Kim S J, Chung T W, Choi H J, et al. Monosialic ganglioside GM3 specifically suppresses the monocyte adhesion to endothelial cells for inflammation. Int J Biochem Cell Biol, 2014, 46:32-38

    • 29

      Shahrizaila N, Yuki N. Bickerstaff brainstem encephalitis and Fisher syndrome: anti-GQ1b antibody syndrome. J Neurol Neurosurg Psychiatry, 2013, 84(5): 576-583

    • 30

      Ariga T. Pathogenic role of ganglioside metabolism in neurodegenerative diseases. J Neurosci Res, 2014, 92(10): 1227-1242

    • 31

      Mucke L, Selkoe D J. Neurotoxicity of amyloid beta-protein: synaptic and network dysfunction. Cold Spring Harb Perspect Med, 2012, 2(7): a006338

    • 32

      Grimm M O, Zinser E G, Grosgen S, et al. Amyloid precursor protein (APP) mediated regulation of ganglioside homeostasis linking Alzheimer's disease pathology with ganglioside metabolism. Plos One, 2012, 7(3): e34095

    • 33

      Hong S, Ostaszewski B L, Yang T, et al. Soluble abeta oligomers are rapidly sequestered from brain ISF in vivo and bind GM1 ganglioside on cellular membranes. Neuron, 2014, 82(2): 308-319

    • 34

      Yanagisawa K. GM1 ganglioside and Alzheimer's disease. Glycoconj J, 2015, 32(3-4): 87-91

    • 35

      Caughlin S, Hepburn J D, Park D H, et al. Increased expression of simple ganglioside species GM2 and GM3 detected by MALDI imaging mass spectrometry in a combined rat model of abeta toxicity and stroke. Plos One, 2015, 10(6): e0130364

    • 36

      Owen M C, Kulig W, Poojari C, et al. Physiologically-relevant levels of sphingomyelin, but not GM1, induces a beta-sheet-rich structure in the amyloid-beta(1-42) monomer. Biochim Biophys Acta, 2018, pii: S0005-273618)30106-8. doi: 10.1016/j.bbamem.2018.03.026

    • 37

      Schneider J S, Gollomp S M, Sendek S, et al. A randomized, controlled, delayed start trial of GM1 ganglioside in treated Parkinson's disease patients. J Neurol Sci, 2013, 324(1-2): 140-148

    • 38

      Schneider J S, Sendek S, Daskalakis C, et al. GM1 ganglioside in Parkinson's disease: results of a five year open study. J Neurol Sci, 2010, 292(1-2): 45-51

    • 39

      Schneider J S, Cambi F, Gollomp S M, et al. GM1 ganglioside in Parkinson's disease: pilot study of effects on dopamine transporter binding. J Neurol Sci, 2015, 356(1-2): 118-123

    • 40

      Xu R, Zhou Y, Fang X, et al. The possible mechanism of Parkinson's disease progressive damage and the preventive effect of GM1 in the rat model induced by 6-hydroxydopamine. Brain Res, 2014, 1592:73-81

    • 41

      Ba X H. Therapeutic effects of GM1 on Parkinson's disease in rats and its mechanism. Int J Neurosci, 2016, 126(2): 163-167

    • 42

      Alpaugh M, Galleguillos D, Forero J, et al. Disease-modifying effects of ganglioside GM1 in Huntington's disease models. EMBO Mol Med, 2017, 9(11): 1537-1557

    • 43

      Fantini J, Yahi N. The driving force of alpha-synuclein insertion and amyloid channel formation in the plasma membrane of neural cells: key role of ganglioside- and cholesterol-binding domains. Adv Exp Med Biol, 2013, 991:15-26

    • 44

      Grey M, Dunning C J, Gaspar R, et al. Acceleration of alpha-synuclein aggregation by exosomes. J Biol Chem, 2015, 290(5): 2969-2982

    • 45

      Yahi N, Fantini J. Deciphering the glycolipid code of Alzheimer's and Parkinson's amyloid proteins allowed the creation of a universal ganglioside-binding peptide. Plos One, 2014, 9(8): e104751

    • 46

      Groux-Degroote S, Rodriguez-Walker M, Dewald J H, et al. Gangliosides in cancer cell signaling. Prog Mol Biol Transl Sci, 2018, 156:197-227

    • 47

      Mukherjee P, Faber A C, Shelton L M, et al. Thematic review series: sphingolipids. Ganglioside GM3 suppresses the proangiogenic effects of vascular endothelial growth factor and ganglioside GD1a. J Lipid Res, 2008, 49(5): 929-938

    • 48

      Hyuga S, Kawasaki N, Hyuga M, et al. Ganglioside GD1a inhibits HGF-induced motility and scattering of cancer cells through suppression of tyrosine phosphorylation of c-Met. Int J Cancer, 2001, 94(3): 328-334

    • 49

      Wang L, Takaku S, Wang P, et al. Ganglioside GD1a regulation of caveolin-1 and Stim1 expression in mouse FBJ cells: augmented expression of caveolin-1 and Stim1 in cells with increased GD1a content. Glycoconj J, 2006, 23(5-6): 303-315

    • 50

      Bull C, Boltje T J, Van Dinther E A, et al. Targeted delivery of a sialic acid-blocking glycomimetic to cancer cells inhibits metastatic spread. ACS Nano, 2015, 9(1): 733-745

    • 51

      王艳萍,王征,朱健,等. 鞘糖脂研究进展. 生命科学. 2011, 23(06): 583-591

      Wang Y P, Wang Z, Zhu J,et al. Chinese Bulletin of Life Sciences,2011, 23(06): 583-591

    • 52

      Badr H A, Alsadek D M, Mathew M P, et al. Nutrient-deprived cancer cells preferentially use sialic acid to maintain cell surface glycosylation. Biomaterials, 2015, 70:23-36

    • 53

      Fang L H, Lucero M, Kazarian T, et al. Effects of neuroblastoma tumor gangliosides on platelet adhesion to collagen. Clin Exp Metastasis, 1997, 15(1): 33-40

    • 54

      Ohkawa Y, Momota H, Kato A, et al. Ganglioside GD3 enhances invasiveness of gliomas by forming a complex with platelet-derived growth factor receptor alpha and Yes kinase. J Biol Chem, 2015, 290(26): 16043-16058

    • 55

      Iwasawa T, Zhang P, Ohkawa Y, et al. Enhancement of malignant properties of human glioma cells by ganglioside GD3/GD2. Int J Oncol, 2018, 52(4): 1255-1266

    • 56

      Mahata B, Biswas S, Rayman P, et al. GBM derived gangliosides induce T cell apoptosis through activation of the caspase cascade involving both the extrinsic and the intrinsic pathway. Plos One, 2015, 10(7): e0134425

    • 57

      Hwang J, Lee S, Lee J T, et al. Gangliosides induce autophagic cell death in astrocytes. Br J Pharmacol, 2010, 159(3): 586-603

    • 58

      Li L, Tian J, Long M K, et al. Protection against experimental stroke by ganglioside GM1 is associated with the inhibition of autophagy. Plos One, 2016, 11(1): e0144219

    • 59

      Noll E N, Lin J, Nakatsuji Y, et al. GM3 as a novel growth regulator for human gliomas. Exp Neurol, 2001, 168(2): 300-309

    • 60

      Leis A A, Stokic D S. Zika virus and Guillain-Barre syndrome: is there sufficient evidence for causality? Front Neurol,2016, 7: 170

    • 61

      Koike H. Zika virus and Guillain-Barre syndrome. Brain Nerve, 2018, 70(2): 113-120

    • 62

      Nico D, Conde L, Rivera-Correa J L, et al. Prevalence of IgG autoantibodies against GD3 ganglioside in acute Zika virus infection. Front Med (Lausanne), 2018, 5:25

    • 63

      Sonnino S, Aureli M, Mauri L, et al. Membrane lipid domains in the nervous system. Front Biosci (Landmark Ed), 2015, 20: 280-302

    • 64

      Marin R, Diaz M. Estrogen interactions with lipid rafts related to neuroprotection. Impact of brain aging and menopause. Front Neurosci, 2018, 12: 128

    • 65

      Furukawa K, Ohmi Y, Ohkawa Y, et al. Regulatory mechanisms of nervous systems with glycosphingolipids. Neurochem Res, 2011, 36(9): 1578-1586

    • 66

      Mollinedo F, Gajate C. Lipid rafts as major platforms for signaling regulation in cancer. Adv Biol Regul, 2015, 57:130-146

    • 67

      Botto L, Cunati D, Coco S, et al. Role of lipid rafts and GM1 in the segregation and processing of prion protein. Plos One, 2014, 9(5): e98344

    • 68

      Doody R S, Thomas R G, Farlow M, et al. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer's disease. N Engl J Med, 2014, 370(4): 311-321