-
1 硒结合蛋白1的结构
-
1.1 一级结构
SELENBP1基因在1997年被克隆,由于和小鼠56 ku硒结合蛋白(mouse 56 ku selenium-binding protein,mSP56)序列同源,人SELENBP1也被称为hSP56. SELENBP1基因序列全长 1 668 bp,开放阅读框长1 419 bp,编码472个氨基酸. 与mSP56序列相比,SELENBP1序列包括全部的翻译区以及5′非翻译区的15个碱基和3′非翻译区的234个碱基. 该蛋白质的分子质量为52.25 ku,接近于mSP56的分子质量52.36 ku,在SDS-PAGE凝胶中分子质量为56 k
u[3,4,5] . Beer等[6] 利用串联质谱和二维蛋白质印迹法在人肺中检测到了两种亚型的SELENBP1,其中与正常肺部相比,酸性异构体(457AA)在肺腺癌中表达水平较低,另有两种酸性更强的SELENBP1异构体仅在正常肺组织中观察到. 荧光原位杂交技术显示,人SELENBP1基因定位于1号染色体q21-22[3] . SELENBP1广泛分布于不同物种的组织和细胞中[3,4,5,6,7,8,9,10] ,人类、细菌和古细菌的系统发育树显示该蛋白质的序列具有很好的保守性[7] .RNA印迹显示,mSP56在小鼠肝、肺、肾中表达水平最高,其次是心脏,在肠和脾中表达最低,而在骨髓、肌肉和大脑中几乎不表
达[3] . SELENBP1在成人组织中具有最高的表达水平,主要分布于肾、十二指肠、肝、肺和脑组织中,在胎儿组织中主要表达于肝、肾、脾和心脏中;成人中表达水平较低的组织有睾丸、脾和胸腺,而胎儿组织中胃、胸腺和脑中表达水平较低[7] . 细胞分级分离试验表明,mSP56定位于细胞质中,为可溶性蛋白质[4,5] . 细菌的SELENBP1为铜依赖型甲硫醇氧化酶(methanethiol oxidase,MTO),定位于细菌细胞壁和细胞膜之间,为可溶性周质酶[6] . 免疫组化染色显示,人的SELENBP1定位于细胞核和细胞质中[4,9,10] . -
1.2 高级结构
由于SELENBP1的结构与功能之间的关系是未知的,Costantini
等[13] 于2011年对人SELENBP1进行了计算和实验研究. 结果表明,圆二色谱检测结果和三维结构模拟相似,SELENBP1是一个具有一些环状区域的α-β蛋白,由4个半胱氨酸(cysteines,Cys)残基组成2个二硫键,其中3个Cys残基深埋在蛋白质结构的内部,只有位于环状区的57位Cys残基暴露于溶剂中,被带电和疏水性残基包围,这与甲烷球菌(M.vannielii)[14] 的SELENBP1结构一致. 动力学模拟和Cys滴定表明,57位Cys残基为功能残基,有可能是硒的结合位点. 为了进一步研究57位Cys残基在SELENBP1中的作用,Yang等[15] 将Cys残基突变为甘氨酸残基(glycine,Gly),并在人结肠癌细胞中表达. 结果显示,Cys残基的突变会导致SELENBP1的半衰期由63 h减少为45 h,对亚硒酸盐的细胞毒性高度敏感,且会导致线粒体的损伤. 上述研究结果表明57位Cys残基在SELENBP1中的重要作用. 在其他物种中的研究发现,甲烷球菌SELENBP1硒的结合位点为59位Cys残基[14] . 硒的结合形式是未知的,因为在SDS聚丙烯酰胺凝胶电泳中硒仍然结合在蛋白质中,只有在极端pH条件下才会解离[4] . 而拟南芥SELENBP1重组蛋白的体外研究表明21和22位Cys残基可以结合1个硒原子形成一种R-S-Se(II)-S-R型复合物[9] .我们以超嗜热古菌Sulfolobus tokodaii(PDB ID: 2ECE)的SELENBP1为模板,用NCBI数据库中编号为UniProtKB/Swiss-Prot: Q13228.2的人SELENBP1蛋白序列在SWISS-MODEL蛋白质同源建模服务器中构建了人SELENBP1的三维结构(图1),其中57位Cys残基位于顶部的凹槽内,以碳骨架形式呈现. PredictProtein预测该蛋白质的α螺旋为1.48%,β折叠为34.75%,卷曲或环为63.77%. 精确的三维结构则需要利用实验的方法进行测定.
-
2 硒结合蛋白1的表达调控
大量研究发现,癌细胞中SELENBP1蛋白和mRNA水平均显著下
降[12,16] . 已确定SELENBP1在其5'非翻译区中含有2个CpG岛,其中一个接近于启动子,可以对SELENBP1启动子的调节产生影响. 最近研究表明,SELENBP1的表观遗传变化和表达减少之间存在着一定的关联. Yang等[17] 使用甲基化分析发现,SELENBP1表达水平减少与SELENBP1启动子的高甲基化相关,且癌症组织中SELENBP1的甲基化水平明显高于正常组织中. 这些结果表明,结肠癌中SELENBP1启动子的高甲基化可能是其表达减少的原因之一,在几种结肠癌细胞系中也观察到了相似的结果. 另外,体外研究发现,SELENBP1启动子的高甲基化会导致SELENBP1启动子转录活性的减少[17] . 进一步研究显示,用5'-氮杂-2'-脱氧胞苷(decitabine,DAC)处理人结肠癌细胞可以逆转SELENBP1启动子甲基化并刺激其表达[17] . 相反,用甲基化抑制剂处理A549肺腺癌细胞不影响SELENBP1的表达[6] . 在食管癌发展为腺癌中也观察到了SELENBP1启动子的高甲基化,另外,转录后机制似乎也可以调节SELENBP1蛋白水平,如SELENBP1 mRNA的选择性剪切也可能会减少基因表达[18] .为了研究SELENBP1是否受表观遗传修饰调控,结肠癌细胞系SW480、SW620和HT29细胞经DNA脱甲基化试剂(5-Aza-dC)、组蛋白去乙酰酶抑制剂(TSA)处理. 结果表明,TSA单独处理SW480和SW620细胞后,SELENBP1蛋白和mRNA水平均显著升高,而5-Aza-dC单独处理3种细胞后,SELENBP1蛋白和mRNA水平均没有发生显著变化. 两者联合处理后,3种细胞的SELENBP1 mRNA水平均显著升高,SW480和SW620细胞的SELENBP1蛋白显著升高,而HT29细胞的SELENBP1蛋白水平未发生显著变化. Jiang
等[19] 认为,SELENBP1蛋白的下调主要是由组蛋白去乙酰化引起.总之,SELENBP1蛋白的表达水平变化与SELENBP1启动子的甲基化水平、SELENBP1 mRNA的选择性剪切和组蛋白的乙酰化水平相关.
-
3 硒结合蛋白1的生物功能
-
3.1 蛋白质转运
有关SELENBP1与蛋白质转运之间的关系研究很少. Elazar
等[20] 从牛脑细胞质中纯化出一种具有重要转运活性的56 ku蛋白质,对其4种蛋白酶降解肽的测序显示,该蛋白质为胞质蛋白-SELENBP1. 在大肠杆菌中重组表达的SELENBP1也显示出了蛋白质转运活性,体外实验表明亲和纯化的抗SELENBP1多克隆抗体可以特异性地抑制高尔基体的蛋白质运输. SELENBP1主要定位于细胞质中,只有大约10%与膜有关. 亚细胞分级分离实验表明,该蛋白质与高尔基体外周膜有关. 只有一少部分SELENBP1与膜结合,说明SELENBP1仅与高尔基体膜瞬时结合. 但是SELENBP1的蛋白质运输能力与其结合硒的能力无关. 该研究表明,SELENBP1参与了高尔基体内蛋白质转运的后期阶段,即对接和融合[20] . 由于高尔基体对于蛋白质加工和包装至关重要,因此SELENBP1可能在调节蛋白质运输和分泌方面发挥重要作用. -
3.2 蛋白质降解
酵母双杂交筛选表明,与von Hippel-Lindau蛋白(pVHL)相互作用的去泛素化酶1(VDU1)为SELENBP1的伴侣蛋白,通过酵母双杂交分析和体外结合实验证实了SELENBP1和VDU1之间的相互作
用[21] . 最近发现,SELENBP1也可以与VDU2结合[22] . 共定位实验显示SELENBP1和VDU1共定位于LNCaP人前列腺癌细胞的核周区域. 全长的VDU1特异性地与结合硒的SELENBP1相互作用. 另外硒与SELENBP1的稳定结合,与传统的含硒半胱氨酸的硒蛋白不同. 这些发现表明,SELENBP1可能以依赖硒的方式在泛素化/去泛素化介导的蛋白质降解途径中发挥作用[21] . -
3.3 硫代谢
甲硫醇(methylmercaptan,MT,C
H3 SH)的产生和降解是硫的地球生物化学循环的主要途径. 在人体生理条件下,MT有3种来源[7,23,24] :肠道细菌合成含硫氨基酸、肠细胞中硫醇S-甲基转移酶对H2 S的甲基化、人体内源性的甲硫氨酸的氨基转移途径. 在病理条件下[7,25] ,由于MT被转化为二甲基硫醚(dimethylsulfide,DMS,CH3 SCH3 ),DMS的水平增加可导致高浓度的二甲基亚砜和二甲基砜,而参与这些转换的酶是未知的,肠道细菌被认为参与了该转换过程. 有趣的是,癌症患者会产生MT和DMS等主要的挥发性有机物. 肺癌和肝癌细胞系可以产生大量的DMS,且在肺癌组织中也有发现[7] .在好氧细菌中,MT可以被MTO降解. MTO的遗传基础研究的很少. Bugg
等[8] 首次在DMS降解细菌Hyphomicrobium sp. VS. 中确定了MTO及其编码基因(mtoX),MTO是一个同源四聚体金属酶,通过ICP质谱-氧合测定分析,记录MTO处于静止、还原和氧化状态时EPR光谱的变化以及螯合实验对酶活性的影响,确定Cu为MTO酶活性所必需. 研究发现,其为可溶性周质酶,是SELENBP1家族独特的一个成员,与人SELENBP1在氨基酸水平上有26%的相似度,许多细菌中与mtoX同源的基因都能够降解DMS[8] . 研究表明,MTO广泛分布于环境中,且在硫循环中起着关键的作用[8] . Pol等[7] 通过对5例由血液中DMS水平升高引起的口外口臭患者的研究发现,SELENBP1为人MTO,可催化甲硫醇转化为甲醛、H2 S和过氧化氢(H2 O2 ). 进一步生物信息学分析显示,MTO广泛存在于生物圈中,包括人、黑猩猩、鼠、中华按蚊、鱼类、线虫、细菌和酵母等[7,8] . -
3.4 调节缺氧诱导因子的稳定性
缺氧诱导因子(hypoxia-inducible factor-1 alpha,HIF1α)参与了能量代谢和肿瘤血管的生
成[26] ,其α亚基在常氧条件下通过其羟基化脯氨酸残基与pVHL(E3泛素连接酶复合物的组分,介导靶蛋白的泛素化依赖性蛋白质降解)的相互作用迅速降解[27] . 在缺氧条件下,HIF-1α未被羟基化,从而使其免受羟基化pVHL介导的蛋白质降解. 稳定的HIF-1α转移到细胞核中,通过与缺氧反应元件(hypoxia response elements,HREs)结合,可以激活许多细胞核基因,包括那些对细胞增殖、血管生成、糖酵解和红细胞生成有重要作用的基因[28] .最近研究发现,SELENBP1为HIF1α的靶基
因[29] . 低氧条件下,高表达SELENBP1的前列腺癌细胞在不改变HIF1α mRNA的情况下会显著减少HIF1α蛋白的表达,说明SELENBP1是HIF1α的负调节因子[22] . 而Fan等[30] 发现肝癌细胞经H2 O2 处理后,SELENBP1和HIF1α表达均增加,但SELENBP1基因沉默肝癌细胞经H2 O2 处理后HIF1α的表达并没有增加. 进一步研究表明[22] ,SELENBP1可以与pVHL相互作用蛋白VDU1和VDU2相结合,而VDU2可以通过其去泛素化活性稳定HIF-1α,导致缺氧反应基因表达的增加. 说明SELENBP1与VDU1和(或)VDU2的结合可以调节HIF-1α的稳定性,但是需要进一步研究SELENBP1与VDU1和(或)VDU2的相互作用对于HIF-1α的调节是否必需,或者SELENBP1对HIF-1α的负调节对于抑制癌细胞的恶性特征是否必需. 癌细胞中SELENBP1蛋白水平的显著下降[12,16] 增加了HIF-1α的稳定性,而HIF-1α又参与了能量代谢和肿瘤血管的生成[26] ,因此SELENBP1可以作为潜在的抗肿瘤基因产物. -
3.5 与谷胱甘肽过氧化物酶的相互作用
谷胱甘肽过氧化物酶1(glutathione peroxidase 1,GPX1)是含硒代半胱氨酸的硒蛋白,是一种普遍表达的酶,使用谷胱甘肽作为还原剂,去除氢过氧化物,降低其对细胞的损伤,与癌症的风险和发展有
关[31] . 而SELENBP1也与癌症的发生发展有关[12,16] . 因此GPX1与SELENBP1之间的关系和相互作用需要进一步的研究.研究发现,通过转染过表达载体增加人结肠直肠癌或乳腺癌细胞中SELENBP1的水平可以导致GPX1酶活的减少,在相同细胞中,GPX1的表达增加会导致SELENBP1的转录和翻译抑
制[31] . 通过免疫共沉淀和荧光共振能量转移测定了GPX1与SELENBP1的物理相互作用,发现SELENBP1与GPX1的硒部分相结合[31] . Fan等[30] 也发现肝癌细胞经H2 O2 处理后,GPX1与SELENBP1可以形成特殊的小体,共定位于细胞核中. 在小鼠肠上皮细胞和结肠直肠癌或乳腺癌细胞系中均观察到了硒对GPX1和SELENBP1的影响,GPX1水平以剂量依赖性增加,与SELENBP1水平的减少呈负相关. 这些结果显示了两种不同含硒蛋白质之间的相互作用,可以增强对硒和硒蛋白在人类癌症发生过程中的作用和机制的理解[31] . 在前列腺癌患者的前列腺组织中也观察到了GPX酶活与SELENBP1水平呈负相关[32] . 在肝癌细胞系中发现,SELENBP1在不改变GPX1蛋白质表达的情况下可以显著抑制GPX1的活性,临床样本中的研究发现SELENBP1表达降低和GPX1活性增加与肝癌患者的血管浸润有关. Olbrich等[7] 发现SELENBP1是一种可以催化产生H2 O2 的MTO,而H2 O2 可以被GPX1酶促转化,这可以揭示GPX1与SELENBP1之间的相互作用,两种酶的失调都可能导致局部H2 O2 浓度的失衡. 而H2 O2 浓度必须加以控制,因为它在氧化损伤和细胞信号中都具有双重作用. -
4 硒结合蛋白1与疾病的关系
-
4.1 SELENBP1与口臭
MT是一种具有低气味阈值的恶臭气体,在极低浓度下仍然可以被人的鼻子感觉到,它是引起人体口臭的主要挥发性含硫化合物之一.引起人体口臭的主要化合物还包括硫化氢(hydrogen sulfide,
H2 S)和DMS[7,33] . 口臭的来源可以是口内或口外[34,35,36] ,最常见的是口内口臭,由位于舌背或牙龈和牙周裂缝中的革兰氏阴性菌产生的MT和H2 S引起. 口外口臭在一般人群中的患病率为0.5%~3%,但是原因还不是很清楚,影响鼻子、鼻窦、扁桃体和食道的一些条件可引起口外口臭,但是有些人的口外口臭是血源性的. 血源性口臭中最常见的恶臭化合物是DMS. 研究发现SELENBP1中的双等位基因突变是新型常染色体-隐性恶臭综合征的根本原因[7] . SELENBP1为人MTO,可催化甲硫醇转化为甲醛、H2 S和H2 O2 ,当SELENBP1突变后,无法催化MT氧化,MT则被转化为DMS,含硫代谢物的积累则引起恶臭. 这种综合征可能是天生的新陈代谢错误,可通过饮食措施治疗. -
4.2 SELENBP1与癌症
大量研究表明,与正常组织相比,癌组织中SELENBP1的表达水平显著下降甚至丢
失[12,16,37] ,包括肺癌、食道癌、胃癌、肝癌、结肠癌、前列腺癌、卵巢癌和乳腺癌. SELENBP1表达降低也与肿瘤的发展有关[12] ,在Barrett食管(Barrett’s esophagus,BE)、BE低度不典型增生、BE高级别发育不良中SELENBP1表达水平减少,在食管腺癌中则显著减少. 同样,SELENBP1水平随胃癌进展逐渐减少. 在肺腺癌中,分化差的腺癌与中度和良好分化的腺癌相比,SELENBP1蛋白和mRNA水平均显著下降. 较低水平的SELENBP1也与结直肠癌和肺癌晚期有关. 并且SELENBP1的表达减少也与肿瘤临床预后不良有关[12,16,37] ,比如肺腺癌、胃癌、肝癌、结肠癌和乳腺癌等.有一些证据表明SELENBP1是一个肿瘤抑制因
子[12] . 在肺腺癌中,SELENBP1的表达减少会导致细胞增殖的增加和细胞分化的减少;在肝癌细胞系中发现,抑制SELENBP1的表达会增加细胞运动、促进细胞增殖和抑制细胞凋亡;相反,在结直肠癌细胞中过表达SELENBP1可以抑制癌细胞增殖和诱导细胞凋亡、减弱体外癌细胞迁移、并可以显著抑制裸鼠癌细胞的生长. 这些发现清楚地表明,SELENBP1可能具有肿瘤抑制功能.Miyaguch
i[38] 根据实验提出了一个模型,显示SELENBP1、G-肌动蛋白(G-actin)和F-肌动蛋白(F-actin)在快速延伸突起中的动态定位. 包括以下步骤:a. SELENBP1集中在细胞边缘的某些部位. SELENBP1的募集先于细胞形态的改变和新接种细胞中G-actin与F-actin分布的变化. 因此,SELENBP1的募集标志着细胞生长的位点. b. G-actin被招募到SELENBP1阳性前缘,而存在于那里的F-actin随着突出物延伸而变得更少. c. 招募的G-actin在距离SELENBP1阳性前缘一定距离处聚合到F-actin网络上. d. SELENBP1和G-actin从边缘消失,尖端突起的整个表面变为F-actin阳性,突起即停止延伸. SELENBP1可能会被新招募到细胞边缘的另一部分,在那里将发生下一次生长. Hamawy等[39] 也认为SELENBP1是一个细胞骨架相关蛋白. 而在癌细胞中SELENBP1的表达减少会促进细胞的迁移,表达增加则会抑制细胞增殖和促进细胞凋亡. SELENBP1与细胞骨架相关蛋白的相互作用及其在细胞骨架中的功能则需要深入研究.结合文献对SELENBP1、GPX1和HIF-1α在癌症发生发展中的作用,我们绘制了SELENBP1、GPX1和HIF-1α的相互作用及其对癌症发生发展的作用关系图(图2). 细胞中SELENBP1与VDU1/VDU2、GPX1蛋白之间的相互作用可能与SELENBP1的硒原子或酪氨酸磷酸化有
关[39] . 但还需要有直接的证据证明这一点. 癌症在发生发展过程中SELENBP1表达量不断减少[12] 、SELENBP1与VDU1/VDU2形成的蛋白质复合物减少、或VDU1/VDU2从复合物中解离、协同ROS增强HIF-1α的稳定性,促进[28] 癌症发展所需的糖酵解、血管生成、迁移和组织浸润等的发生. 同时,SELENBP1的减少也会促进癌细胞的迁移[12] ,但详细的机理不是很清楚. 癌细胞中SELENBP1的表达增加可以减少HIF-1α的表达[22] ,SELENBP1的表达减少与其启动子高甲基化和组蛋白去乙酰化有关[17,19] ,而是否与HIF-1α的表达增加有关还需要进一步研究. 另外,SELENBP1的表达减少会使得癌症组织中MT和DMS水平升高[7] ,也会提高GPX1的活性[31,32] ,清除癌细胞的活性氧(包括SELENBP1催化产生的H2 O2 ),以保证活性氧的水平不会升高到杀伤癌细胞的浓度而又可以促进HIF-1α的稳定. SELENBP1表达减少和GPX1活性升高有利于血管浸润的发生[30] . 而癌细胞中SELENBP1表达减少在高尔基体参与的蛋白质转运和分泌中的作用以及SELENBP1和GPX1形成的小体共定位于细胞核[30] 中的作用是未知的. 总之,SELENBP1、GPX1和HIF-1α均参与了癌症的发生发展,通过增加SELENBP1的表达和降低HIF-1α的稳定性均可以起到抑制癌症发展的作用. -
4.3 SELENBP1与精神分裂症
精神分裂症(schizophrenia,SZ)具有重要的遗传基础,但是它的生物学基础在很大程度上仍然是未知的,发病早期尝试分析血液和死亡后检测脑中特定神经化学物质的表达,有可能发现几个有希望的候选危险基因,但最终无法证实. 微阵列技术有望识别SZ的风险因素,但由于研究之间的方法学差异和Ⅰ型推断误差的高风险,尚未产生广泛可重复的结果.
Tsuang
等[40] 使用统计学和生物信息学的方法限制假阳性,建立了保守分析的方法并解释了SZ患者背外侧前额叶皮质的基因表达数据. 比较了脑与单独的SZ患者样本外周血细胞的基因表达谱,以确定在组织和群体中可以推广的疾病相关基因,并进一步证实了血液基因的表达用于检测有效的SZ生物标志物. 结果在大脑中发现了177个假定的SZ风险基因,其中28个映射到连锁的染色体位点,在血液中鉴定出123种SZ生物标志物,其中6种(BTG1、GSK3A、HLA-DRB1、HNRPA3、SELENBP1和SFRS1)和大脑中有相应的差异表达,并且验证了最强SZ生物标志物SELENBP1在血液和大脑神经元、胶质细胞中的差异表达,即SELENBP1在SZ患者的血液和大脑中显著上调. 通过对34名SZ患者的背外侧前额叶皮质(dlPFC),33名双相情感障碍患者(包括20名患有精神病史的患者)和34名正常对照受试者的mRNA进行实时荧光定量PCR检测,结果表明SELENBP1 mRNA在SZ患者大脑中比对照组上调,此外,SELENBP1基因表达与精神病诊断存在强烈正相关[41] . SELENBP1的升高在SZ患者大脑中的特征可能是一致的,这一发现可能成为诊断跨越精神病界限的一些共性的基础. Everall等[42] 进一步研究发现,升高的SELENBP1 mRNA广泛存在于SZ患者的整个前额皮质中,并且证实这种变化是SZ的一致特征而不是简单的药物效应. 在健康志愿者血液中血红蛋白的分子伴侣研究中发现,SELENBP1参与了血红蛋白和血影蛋白的相互作用[43] . Ogasawara等[44] 则从SZ患者血液红细胞中分离到了argpyrimidine修饰的56 ku蛋白,经液相质谱联用鉴定该蛋白质为SELENBP1. 总之,SELENBP1的表达升高与SZ存在一定的关联,可以通过血液中SELENBP1的检测提供SZ发病的早期识别、干预和预防工作. 未来的研究应该利用基于DNA的方法和SELENBP1作用的分子机制,以深入了解其对SZ和精神病症状的影响. -
4.4 SELENBP1与肾损伤
有关肾损伤与SELENBP1关系的研究最早报道于2005年. 通过器官移植治疗肾功能衰竭的患者非常成功. 尽管目前的免疫抑制剂能够改善短期移植物的存活率,但大多数移植物最终由于慢性移植肾肾病(chronic allograft nephropathy,CAN)而丧失. CAN的分子机制知之甚少,平滑肌细胞(smooth muscle cells,SMC)通过促进内膜增厚和血管腔变窄而在CAN的发病机制中起着主要作用. Hamawy
等[39] 的研究发现,与蛋白质运输和分泌有关的蛋白质SELENBP1主要定位于SMC. SELENBP1在体内呈高度的酪氨酸磷酸化. 在具有CAN的猴肾同种异体移植物中,在血管SMC中SELENBP1不表达或高度下调. 相反,SMC α肌动蛋白在相同同种异体移植物的血管SMC中高度表达,表明SELENBP1的减少不是由于SMC蛋白的全面减少导致的. 进一步研究发现,在CAN发病机制中涉及的4种生长因子中,只有TGF-β阻断了SELENBP1的表达,因此TGF-β可以调节CAN中SELENBP1的表达. Kim等[45] 以大鼠为研究对象,利用蛋白质组学鉴定和量化涉及肾毒性的潜在非侵入性生物标志物,发现在重金属暴露导致肾损伤后尿液中的SELENBP1显著增加. 在肾近端小管中SELENBP1被显著诱导表达,并且在HgCl2 暴露后其在受损细胞膜中的表达水平升高. 在使用NRK-52E细胞的体外实验中发现,SELENBP1在肾毒性处理后分泌到了培养基中. 在小鼠[46] 和植物[47] 中的研究也发现,SELENBP1的表达与氧化应激或重金属相关的解毒过程紧密相关. 说明SELENBP1参与了肾损伤的解毒过程. 因此,SELENBP1可用作肾损伤的敏感的早期诊断生物标志物. Kim等[48] 在急性肾损伤患者的尿液中检测到了SELENBP1,但在正常受试者中未检测到. 此外,尿液SELENBP1的检测水平比急性肾损伤患者中的另一种基于尿蛋白的生物标志物KIM-1的水平更明显,表明尿SELENBP1可以作为检测急性肾损伤的敏感生物标志物. -
5 总结与展望
虽然有关SELENBP1的生物功能及其与疾病发生发展的关系已有一定的报道,但其作用机理还不是很清楚,仍有很多问题需要深入研究.
a. 目前有关SELENBP1的三维结构只报道了X-Ray技术测定的超嗜热古菌(S. tokodaii)和NMR技术测定的甲烷球菌(M.vannielii)中SELENBP1的结构,而人SELENBP1的三维结构只是Raucci
等[13] 进行了三维结构模拟和动力学模拟,人SELENBP1三维结构的测定可以确定硒原子与SELENBP1的结合形式,确定其发挥功能的活性中心,对于理解硒原子在其发挥生物学功能和疾病发生发展中的作用至关重要.b. 研究表明SELENBP1可以与VDU1、VDU2或GPX1结合发挥生物功能,但在蛋白质相互结合过程中SELENBP1的硒原子和酪氨酸磷酸化是否发挥一定的功能,需要利用定点突变等方法结合蛋白质复合物的精确三维结构进行深入的研究.
c. 在SELENBP1与疾病关系的研究中发现,SELENBP1与口臭的关系是由于SELENBP1参与了MT的代谢过程,铜是细菌Hyphomicrobium sp. VS. SELENBP1的活性中心,但是其他物种,尤其是人SELENBP1的活性中心仍然是未知的. 在癌症中SELENBP1表达降低,而在精神分裂症和肾损伤中SELENBP1表达升高,这只是表面现象.SELENBP1在癌症、精神分裂症和肾损伤中的作用机理则需要深入的研究.
d. SELENBP1是一个细胞骨架相关的蛋白质.SELENBP1与细胞骨架相关蛋白质的相互作用及其在细胞骨架中功能的深入研究有助于深入理解其对癌细胞增殖、迁移和凋亡的调节.
-
参 考 文 献
-
1
Kryukov G V, Castellano S, Novoselov S V, et al. Characterization of mammalian selenoproteomes. Science, 2003, 300(5624): 1439-1443
-
2
Fairweather-Tait S J, Bao Y, Broadley M R, et al. Selenium in human health and disease. Antioxid Redox Signal, 2011, 14(7): 1337-1383
-
3
Chang P W, Tsui S K, Liew C, et al. Isolation, characterization, and chromosomal mapping of a novel cDNA clone encoding human selenium binding protein. J Cell Biochem, 1997, 64(2): 217-224
-
4
Bansal M P, Oborn C J, Danielson K G, et al. Evidence for two selenium-binding proteins distinct from glutathione peroxidase in mouse liver. Carcinogenesis, 1989, 10(3): 541-546
-
5
Bansal M P, Mukhopadhyay T, Scott J, et al. DNA sequencing of a mouse liver protein that binds selenium: implications for selenium’s mechanism of action in cancer prevention. Carcinogenesis, 1990, 11(11): 2071-2073
-
6
Chen G, Wang H, Miller C T, et al. Reduced selenium-binding protein 1 expression is associated with poor outcome in lung adenocarcinomas. J Pathol, 2004, 202(3): 321-329
-
7
Pol A, Renkema G H, Tangerman A, et al. Mutations in SELENBP1, encoding a novel human methanethiol oxidase, cause extraoral halitosis. Nat Genet, 2018, 50(1): 120-129
-
8
Eyice Ö, Myronova N, Pol A, et al. Bacterial SBP56 identified as a Cu-dependent methanethiol oxidase widely distributed in the biosphere. ISME J, 2017, 12(1): 145-160
-
9
Schild F, Kieffer-Jaquinod S, Palencia A, et al. Biochemical and biophysical characterization of the selenium-binding and reducing site in Arabidopsis thaliana homologue to mammals selenium-binding protein 1. J Biol Chem, 2014, 289(46): 31765-31776
-
10
Wu C L, Zhang W B, Mai K S, et al. Molecular cloning, characterization and mRNA expression of selenium-binding protein in abalone (Haliotis discus hannai Ino): Response to dietary selenium, iron and zinc. Fish Shellfish Immunol, 2010, 29(1): 117-125
-
11
Li T, Yang W, Li M, et al. Expression of selenium-binding protein 1 characterizes intestinal cell maturation and predicts survival for patients with colorectal cancer. Mol Nutr Food Res, 2008, 52(11): 1289-1299
-
12
Yang W, Diamond A M. Selenium-binding protein 1 as a tumor suppressor and a prognostic indicator of clinical outcome. Biomark Res, 2013, 1(1): 15
-
13
Raucci R, Colonna G, Guerriero E, et al. Structural and functional studies of the human selenium binding protein-1 and its involvement in hepatocellular carcinoma. Biochim Biophys Acta, 2011, 1814(4): 513-522
-
14
Suzuki M, Lee D Y, Inyamah N, et al. Solution NMR structure of selenium-binding protein from Methanococcus vannielii. J Biol Chem, 2008, 283(38): 25936-25943
-
15
Ying Q, Ansong E, Diamond A M, et al. A critical role for cysteine 57 in the biological functions of selenium binding protein-1. Int J Mol Sci, 2015, 16(11): 27599-27608
-
16
Wang Y, Fang W, Huang Y, et al. Reduction of selenium-binding protein 1 sensitizes cancer cells to selenite via elevating extracellular glutathione: a novel mechanism of cancer-specific cytotoxicity of selenite. Free Radic Biol Med, 2015, 79: 186-196
-
17
Pohl N M, Tong C, Fang W, et al. Transcriptional regulation and biological functions of selenium-binding protein 1 in colorectal cancer in vitro and in nude mouse xenografts. Plos One, 2009, 4(11): e7774
-
18
Silvers A L, Lin L, Bass A J, et al. Decreased selenium-binding protein 1 in esophageal adenocarcinoma results from posttranscriptional and epigenetic regulation and affects chemosensitivity. Clin Cancer Res, 2010, 16(7): 2009-2021
-
19
Wang N, Chen Y, Yang X, et al. Selenium-binding protein 1 is associated with the degree of colorectal cancer differentiation and is regulated by histone modification. Oncol Rep, 2014, 31(6): 2506-2514
-
20
Porat A, Sagiv Y, Elazar Z. A 56-kDa selenium-binding protein participates in intra-Golgi protein transport. J Biol Chem, 2000, 275(19): 14457-14465
-
21
Jeong J Y, Wang Y, Sytkowski A J. Human selenium binding protein-1 (hSP56) interacts with VDU1 in a selenium-dependent manner. Biochem Biophys Res Commun, 2009, 379(2): 583-588
-
22
Jeong J Y, Zhou J R, Gao C, et al. Human selenium binding protein-1 (hSP56) is a negative regulator of HIF-1α and suppresses the malignant characteristics of prostate cancer cells. BMB Rep, 2014, 47(7): 411-416
-
23
Blom H J, Tangerman A. Methanethiol metabolism in whole blood. J Lab Clin Med, 1988, 111(6): 606-610
-
24
Walker V, Mills G A, Fortune P M, et al. Neonatal encephalopathy with a pungent body odour. Arch Dis Child Fetal Neonatal Ed, 1997, 77(1): F65-F66
-
25
Engelke U F, Tangerman A, Willemsen M A, et al. Dimethyl sulfone in human cerebrospinal fluid and blood plasma confirmed by one-dimensional 1H and two-dimensional 1H-13C NMR. NMR Biomed, 2005, 18(5), 331-336
-
26
Carmeliet P, Dor Y, Herbert J M, et al. Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature, 1998, 394(6692): 485-490
-
27
Ivan M, Kondo K, Yang H, et al. HIF alpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science, 2001, 292(5516): 464-468
-
28
Semenza G L. Targeting HIF-1 for cancer therapy. Nat Rev Cancer, 2003, 3(10): 721-732
-
29
Scortegagna M, Martin R J, Kladney R D, et al. Hypoxia-inducible factor-1 alpha suppresses squamous carcinogenic progression and epithelial-mesenchymal transition. Cancer Res, 2009, 69(6): 2638-2646
-
30
Huang C, Ding G, Gu C, et al. Decreased selenium-binding protein 1 enhances glutathione peroxidase 1 activity and downregulates HIF-1α to promote hepatocellular carcinoma invasiveness. Clin Cancer Res, 2012, 18(11): 3042-3053
-
31
Fang W, Goldberg M L, Pohl N M, et al. Functional and physical interaction between the selenium-binding protein 1 (SBP1) and the glutathione peroxidase 1 selenoprotein. Carcinogenesis, 2010, 31(8): 1360-1366
-
32
Jerome-Morais A, Wright M E, Liu R, et al. Inverse association between glutathione peroxidase activity and both selenium-binding protein 1 levels and gleason score in human prostate tissue. Prostate, 2012, 72(9): 1006-1012
-
33
Tangerman A, Winkel E G. The portable gas chromatograph OralChroma: a method of choice to detect oral and extraoral halitosis. J Breath Res, 2008, 2(1): 017010
-
34
Tangerman A, Winkel E G. Intra- and extraoral halitosis: finding of a new form of extraoral blood-borne halitosis caused by dimethyl sulphide. J Clin Periodontol, 2007, 34(9): 748-755
-
35
Tangerman A, Winkel E G. Extraoral halitosis: an overview. J Breath Res, 2010, 4(1): 017003
-
36
Harvey-Woodworth C N. Dimethylsulphidemia: the significance of dimethyl sulphide in extraoral, blood borne halitosis. Br Dent J, 2013, 214(7): E20
-
37
Zhao C, Zeng H, Wu R T, et al. Loss of selenium-binding protein 1 decreases sensitivity to clastogens and intracellular selenium content in HeLa cells. Plos one, 2016, 11(7): e0158650
-
38
Miyaguchi K. Localization of selenium-binding protein at the tips of rapidly extending protrusions. Histochem Cell Boil, 2004, 121(5): 371-376
-
39
Torrealba J R, Colburn M, Golner S, et al. Selenium-binding protein 1 in smooth muscle cells is downregulated in a rhesus monkey model of chronic allograft nephropathy. Am J Transplant, 2005, 5(1): 58-67
-
40
Glatt S J, Everall I P, Kremen W S, et al. Comparative gene expression analysis of blood and brain provides concurrent validation of SELENBP1 up-regulation in schizophrenia. Proc Natl Acad Sci USA, 2005, 102(43): 15533-15538
-
41
Kanazawa T, Chana G, Glatt S J, et al. The utility of SELENBP1 gene expression as a bio-marker for major psychotic disorders: replication in schiz-ophrenia and extension to bipolar disorder with psychosis. Am J Med Genet B Neuropsychiatr Genet, 2008, 147B(6): 686-689
-
42
Udawela M, Money T T, Neo J, et al. SELENBP1 expression in the prefrontal cortex of subjects with schizophrenia. Transl Psychiatry, 2015, 5(8): e615
-
43
Basu A, Chakrabarti A. Hemoglobin interacting proteins and implications of spectrin hemoglobin interaction. J Proteomics, 2015, 128: 469-475
-
44
Ishida Y I, Kayama T, Kibune Y, et al. Identification of an argpyrimidine-modified protein in human red blood cells from schizophrenic patients: a possible biomarker for diseases involving carbonyl stress. Biochem Biophys Res Commun, 2017, 493(1): 573-577
-
45
Lee E K, Shin Y J, Park E Y, et al. Selenium-binding protein 1: a sensitive urinary biomarker to detect heavy metal-induced nephrotoxicity. Arch Toxicol, 2017, 91(4): 1635-1648
-
46
Jamba L, Nehru B, Bansal M P. Redox modulation of selenium binding proteins by cadmium exposures in mice. Mol Cell Biochem, 1997, 177(1-2): 169-175
-
47
Valassakis C, Livanos P, Minopetrou M, et al. Promoter analysis and functional implications of the selenium binding protein (SBP) gene family in Arabidopsis thaliana. J Plant Physiol, 2018, 224-225: 19-29
-
48
Kim K S, Yang H Y, Song H, et al. Identification of a sensitive urinary biomarker, selenium-binding protein 1, for early detection of acute kidney injury. J Toxicol Environ Health A, 2017, 80(9): 453-464
-
1
摘要
硒结合蛋白1(SELENBP1)是1989年发现的定位于细胞质和细胞核的一种结合硒原子的含硒蛋白质. 以往的研究表明,SELENBP1在高尔基体中蛋白质的转运、泛素化/去泛素化介导的蛋白质降解、硫代谢、调节缺氧诱导因子的稳定性等方面发挥着重要作用. 也与口臭、癌症、精神分裂症和肾损伤等疾病的发生发展密切相关. 本文对SELENBP1的生物功能及其与疾病关系的最新研究进展进行了综述和展望.
Abstract
Selenium-binding protein 1 (SELENBP1) is a selenium-containing protein localized in the cytoplasm and nucleus discovered in 1989. Previous studies have shown that SELENBP1 plays an important role in protein transport in Golgi, ubiquitination/deubiquitination-mediated protein degradation, sulfur metabolism, and regulation the stability of hypoxia-inducible factor (HIF). It is also closely related to the development of diseases such as halitosis, cancer, schizophrenia and kidney damage. In this paper, the recent research progress on the biological function of SELENBP1 and its relationship with disease is reviewed and prospected.
硒是哺乳动物和人体所必需的一种微量元素,主要以硒代半胱氨酸的形式存在于蛋白质中,硒的主要生物功能是通过硒蛋白实现的. 目前,通过生物信息学和实验的方法已从人类基因组中发现了25种硒蛋
以往和最近的研究表明,SELENBP1的生物功能包括:参与高尔基体中蛋白质的转运、参与泛素化/去泛素化介导的蛋白质降解、参与硫代谢、调节缺氧诱导因子的稳定性等;另外,SELENBP1也与口臭、癌症、精神分裂症和肾损伤等疾病的发生发展密切相关.