en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
WiluszJ E, SunwooH, SpectorD L. Long noncoding RNAs: functional surprises from the RNA world. Genes & Development, 2009, 23(13): 1494-1504
参考文献 2
ZhouJ, YangL, ZhongT, et al. H19 lncRNA alters DNA methylation genome wide by regulating S-adenosylhomocysteine hydrolase. Nature Communications, 2015, 6: 10221
参考文献 3
DingG, LiW, LiuJ, et al. LncRNA GHET1 activated by H3K27 acetylation promotes cell tumorigenesis through regulating ATF1 in hepatocellular carcinoma. Biomedicine & Pharmacotherapy , 2017, 94: 326-331
参考文献 4
LiuJ Y, YaoJ, LiX M, et al. Pathogenic role of lncRNA-MALAT1 in endothelial cell dysfunction in diabetes mellitus. Cell Death & Disease, 2014, 5: e1506
参考文献 5
PavlakiI, AlammariF, SunB, et al. The long non-coding RNA paupar promotes KAP1-dependent chromatin changes and regulates olfactory bulb neurogenesis. The EMBO Journal, 2018, 37(10), pii: e98219. doi: 10.15252/embj.201798219
参考文献 6
LoewenG, JayawickramarajahJ, ZhuoY, et al. Functions of lncRNA HOTAIR in lung cancer. Journal of Hematology & Oncology, 2014, 7:90
参考文献 7
YanF, WangX, ZengY. 3D genomic regulation of lncRNA and Xist in X chromosome. Seminars in Cell & Developmental Biology, 2018
参考文献 8
NitscheA, RoseD, FasoldM, et al. Comparison of splice sites reveals that long noncoding RNAs are evolutionarily well conserved. Rna, 2015, 21(5): 801-812
参考文献 9
HaertyW, PontingC P. Unexpected selection to retain high GC content and splicing enhancers within exons of multiexonic lncRNA loci. Rna, 2015, 21(3): 333-346
参考文献 10
BradleyR K, MerkinJ, LambertN J, et al. Alternative splicing of RNA triplets is often regulated and accelerates proteome evolution. Plos Biology, 2012, 10(1): e1001229
参考文献 11
MaugeriA, Van DrielM A, Van De PolD J, et al. The 2588G-->C mutation in the ABCR gene is a mild frequent founder mutation in the Western European population and allows the classification of ABCR mutations in patients with Stargardt disease. American Journal of Human Genetics, 1999, 64(4): 1024-1035
参考文献 12
HuiL, ZhangX, WuX, et al. Identification of alternatively spliced mRNA variants related to cancers by genome-wide ESTs alignment. Oncogene, 2004, 23(17): 3013-3023
参考文献 13
ShiY, ShaG, SunX. Genome-wide study of NAGNAG alternative splicing in Arabidopsis. Planta, 2014, 239(1): 127-138
参考文献 14
SunX, LinS M, YanX. Computational evidence of NAGNAG alternative splicing in human large intergenic noncoding RNA. BioMed Research International, 2014, 2014:736798
参考文献 15
MillsJ D, ChenJ, KimW S, et al. Long intervening non-coding RNA 00320 is human brain-specific and highly expressed in the cortical white matter. Neurogenetics, 2015, 16(3): 201-213
参考文献 16
MazarJ, RosadoA, ShelleyJ, et al. The long non-coding RNA GAS5 differentially regulates cell cycle arrest and apoptosis through activation of BRCA1 and p53 in human neuroblastoma. Oncotarget, 2017, 8(4): 6589-6607
参考文献 17
BavarvaJ H, TaeH, SettlageR E, et al. Characterizing the genetic basis for nicotine induced cancer development: a transcriptome sequencing study. Plos One, 2013, 8(6): e67252
参考文献 18
RoglerL E, KosmynaB, MoskowitzD, et al. Small RNAs derived from lncRNA RNase MRP have gene-silencing activity relevant to human cartilage-hair hypoplasia. Human Molecular Genetics, 2014, 23(2): 368-382
参考文献 19
YuanJ H, LiuX N, WangT T, et al. The MBNL3 splicing factor promotes hepatocellular carcinoma by increasing PXN expression through the alternative splicing of lncRNA-PXN-AS1. Nature Cell Biology, 2017, 19(7): 820-832
参考文献 20
XueM, ChenW, XiangA, et al. Hypoxic exosomes facilitate bladder tumor growth and development through transferring long non-coding RNA-UCA1. Molecular Cancer, 2017, 16(1): 143
参考文献 21
GrahamL D, PedersenS K, BrownG S, et al. Colorectal neoplasia differentially expressed (CRNDE), a novel gene with elevated expression in colorectal adenomas and adenocarcinomas. Genes & Cancer, 2011, 2(8): 829-840
参考文献 22
YuL, ChenM, ZhaoD, et al. The H19 gene imprinting in normal pregnancy and pre-eclampsia. Placenta, 2009, 30(5): 443-447
参考文献 23
ZuckerwiseL, LiJ, LuL, et al. H19 long noncoding RNA alters trophoblast cell migration and invasion by regulating TbetaR3 in placentae with fetal growth restriction. Oncotarget, 2016, 7(25): 38398-38407
参考文献 24
YingW, JingliF, WeiS W, et al. Genomic imprinting status of IGF-II and H19 in placentas of fetal growth restriction patients. Journal of Genetics, 2010, 89(2): 213-216
参考文献 25
LiX, MaC, ZhangL, et al. LncRNAAC132217.4, a KLF8-regulated long non-coding RNA, facilitates oral squamous cell carcinoma metastasis by upregulating IGF2 expression. Cancer Letters, 2017, 407:45-56
参考文献 26
AisembergJ, BarianiM V, VercelliC A, et al. Lipopolysaccharide-induced murine embryonic resorption involves nitric oxide-mediated inhibition of the NAD+-dependent 15-hydroxyprostaglandin dehydrogenase. Reproduction, 2012, 144(4): 447-454
参考文献 27
MajewskaM, LipkaA, PauksztoL, et al. Preliminary RNA-seq analysis of long non-coding RNAs expressed in human term placenta. International Journal of Molecular Sciences, 2018, 19(7), pii: E1894. doi: 10.3390/ijms19071894
参考文献 28
王宇, 陈葳, 王帆, 等. lncRNA-UCA1不同剪接变体在膀胱癌中的作用研究.中华医学会第九次全国检验医学学术会议暨中国医院协会临床检验管理专业委员会第六届全国临床检验实验室管理学术会议, 2011, 中国北京.
WangY, ChenW, WangF, et al. The 9th National Laboratory Medicine Academic Conference of the Chinese Medical Association and the 6th National Laboratory Management Academic Conference of the Clinical Laboratory Management Committee of the Chinese Hospital Association, 2011, Beijing, China
参考文献 29
KhalilA M, GuttmanM, HuarteM, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA, 2009, 106(28): 11667-11672
参考文献 30
FurneyS J, PedersenM, GentienD, et al. SF3B1 mutations are associated with alternative splicing in uveal melanoma. Cancer Discovery, 2013, 3(10): 1122-1129
参考文献 31
SmithC M, SteitzJ A. Classification of gas5 as a multi-small-nucleolar-RNA (snoRNA) host gene and a member of the 5'-terminal oligopyrimidine gene family reveals common features of snoRNA host genes. Molecular and Cellular Biology, 1998, 18(12): 6897-6909
参考文献 32
YeK, WangS, ZhangH, et al. Long noncoding RNA GAS5 suppresses cell growth and epithelial-mesenchymal transition in osteosarcoma by regulating the miR-221/ARHI pathway. Journal of Cellular Biochemistry, 2017, 118(12): 4772-4781
参考文献 33
RenganathanA, Kresoja-RakicJ, EcheverryN, et al. GAS5 long non-coding RNA in malignant pleural mesothelioma. Molecular Cancer, 2014, 13:119
参考文献 34
GreletS, LinkL A, HowleyB, et al. A regulated PNUTS mRNA to lncRNA splice switch mediates EMT and tumour progression. Nature Cell Biology, 2017, 19(9): 1105-1115
参考文献 35
KeniryA, OxleyD, MonnierP, et al. The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nature Cell Biology, 2012, 14(7): 659-665
参考文献 36
SabenJ, ZhongY, MckelveyS, et al. A comprehensive analysis of the human placenta transcriptome. Placenta, 2014, 35(2): 125-131
参考文献 37
TaylorD H, ChuE T, SpektorR, et al. Long non-coding RNA regulation of reproduction and development. Molecular Reproduction and Development, 2015, 82(12): 932-956
参考文献 38
GaoW L, LiuM, YangY, et al. The imprinted H19 gene regulates human placental trophoblast cell proliferation via encoding miR-675 that targets Nodal Modulator 1 (NOMO1). RNA Biology, 2012, 9(7): 1002-1010
参考文献 39
SongX, LuoX, GaoQ, et al. Dysregulation of lncRNAs in placenta and pathogenesis of preeclampsia. Current Drug Targets, 2017, 18(10): 1165-1170
参考文献 40
GiabicaniE, BrioudeF, Le BoucY, et al. Imprinted disorders and growth. Annales d'Endocrinologie, 2017, 78(2): 112-113
参考文献 41
GongJ, LiuC, LiuW, et al. LNCediting: a database for functional effects of RNA editing in lncRNAs. Nucleic Acids Research, 2017, 45(D1): D79-D84
参考文献 42
BardouF, ArielF, SimpsonC G, et al. Long noncoding RNA modulates alternative splicing regulators in Arabidopsis. Developmental Cell, 2014, 30(2): 166-176
参考文献 43
YinQ F, YangL, ZhangY, et al. Long noncoding RNAs with snoRNA ends. Molecular Cell, 2012, 48(2): 219-230
目录 contents

    摘要

    长链非编码RNA(lncRNA)选择性剪接是指剪除未成熟lncRNA中的内含子,并将外显子连接起来生成成熟lncRNA的过程. 在各类疾病发生和发展过程中,异常的选择性剪接起着重要作用. lncRNA选择性剪接直接参与膀胱癌、结直肠癌、肝癌、神经母细胞瘤等多种肿瘤的发病机制,且与胚胎发育、软骨毛发发育、多系统萎缩症等紧密相关. 在此,我们对lncRNA选择性剪接的起因、调控机制以及对疾病影响的研究进展进行综述. 此外,本文还介绍了两个与lncRNA 选择性剪接相关的数据库(SpliceMap和LNCediting).

    Abstract

    lncRNA alternative splicing refers to the process of cleavage of introns in immature lncRNA and ligation of exons to generate mature lncRNA. Abnormal alternative splicing plays an important role in the development and progression of various diseases. lncRNA alternative splicing is directly involved in the pathogenesis of bladder cancer, colorectal cancer, liver cancer, neuroblastoma, and other tumors, as well as embryonic development, cartilage hair development, and multiple system atrophy. Here, we reviewed the causes, regulatory mechanisms, and research advances in the effects of lncRNA alternative splicing. In addition, two databases related to lncRNA alternative splicing (SpliceMap and LNCediting) are described.

    长链非编码RNA(long non-coding RNA,lncRNA)是一类长度在200 nt以上且不具有蛋白质编码潜能的RNA分子,其表达水平的调控与胚胎的生长发育过程有关,具有组织和细胞特异[1]. lncRNA按照编码基因的位置被分为3个部分,即基因间区lncRNA(intergenic lncRNA,lincRNA)、内含子区lncRNA(intronic lncRNA)和反义编码区lncRNA(antisense lncRNA). lncRNA可以通过与DNA、RNA及蛋白质结合,参与基因的转录前、转录中、转录后(调控mRNA选择性剪接,ceRNA)及转录后翻译(参与蛋白质磷酸化)等过程的调控. lncRNA本身的转录过程也会受到调控,包括lncRNA基因的甲基化、组蛋白乙酰化或甲基化、lncRNA的选择性剪接[2,3]. lncRNA通过选择性剪接可生成不同的转录本,从而在生命过程中发挥重要的作用. 同样地,lncRNA也可以同时含有一个(如MALAT1PAUPAR)或多个(如HOTAIR、XIST)外显[4,5,6,7]. lncRNA被认为执行了重要的调控功能,从而与疾病发展息息相关. 本文分析和总结了lncRNA选择性剪接的最新研究进展,并整理及比较了SpliceMap和LNCediting这两个主要的lncRNA选择性剪接数据库.

  • 1 lncRNA选择性剪接位点

    1

    Nitsche[8]通过剪接位点的保守性来追踪lncRNA的进化过程,结果显示85%以上的人类lncRNA早就已经存在于胎盘哺乳动物的分化过程中,并且数百种lncRNA可以追溯到更久之前. 此外,他们还观察到了内含子/外显子结构的快速变化. 该研究结论认为,lncRNA基因是脊椎动物基因组进化过程中的古老组成部分,并且拥有意想不到的进化可塑性. Haerty[9]在果蝇、斑马鱼、矛尾鱼、小鼠和人类中均发现,单外显子的lncRNA的GC含量仅略高于它们未转录的侧面序列,却显著低于多外显子lncRNA. 相较于单外显子的lncRNA,发现多外显子的lncRNA的GC含量和蛋白质编码基因更加相近,且包含外显子剪接增强子从而提高相邻剪接位点活性的序列. NAGNAG选择性剪接在生命过程中起着重要作用,并且代表了一种高度适应性的基因转录翻译后调控系[10]. 之前,对NAGNAG的研究主要集中在mRNA[11,12]. 2014年,Shi[13]在探索拟南芥中NAGNAG受体的动态特征时,鉴定出两种来自相同NAGNAG受体且均位于非编码RNA中的同种型,从而验证了NAGNAG选择性剪接的存在. 之后,Sun[14]首次在人类组织中研究位于lncRNA上NAGNAG的选择性剪接机制. 他们使用NCBI SRA数据集(E-MTAB-513和GSE30554),在lncRNA中发现31个NAGNAG选择性剪接位点. 大部分含有NAGNAG 受体的lncRNA外显子都比相应的蛋白质编码基因的外显子要长. GC编码的存在参与剪接位点的选择,NAGNAG lncRNA亚型的表达水平具有组织特异[14]. 由此可见,lncRNA的选择性剪接很可能与GC含量及NAGNAG受体存在有关.

  • 2 lncRNA选择性剪接与疾病的关系

    2

    近几年来,lncRNA选择性剪接与人类疾病的关系被逐渐揭示. lncRNA的选择性剪接能够产生不同的转录本,从而对众多的生物学过程产生影响,在细胞周期调控、表观遗传调控、干细胞的自我更新、胚胎的生长发育以及肿瘤等疾病的发生和发展过程中发挥重要作用(图1、表1).

    图1
                            lncRNA选择性剪接和疾病之间的关系

    图1 lncRNA选择性剪接和疾病之间的关系

    Fig.1 The relationship between lncRNA alternative splicing and disease

    表1 lncRNA选择性剪接和疾病之间的关系

    Table 1 The relationship between lncRNA alternative splicing and disease

    lncRNA基因组区域结果相关疾病

    linc00320[15]

    第2外显子

    与正常大脑相比,无论是在灰质还是白质组织中,多系统萎缩症患者大脑中linc00320-002的表达水平均出现显著提高的现象

    多系统萎缩

    GAS5[16]

    第7外显子末端

    GAS5的C2剪接变体在MYCN扩增细胞系(CHLA-122和SMS-KAN)中表达显著提高,从而促进疾病的发生

    神经母细胞瘤

    NEAT1[17]

    ~

    尼古丁暴露组的上皮细胞与正常组上皮细胞(MCF-10A)相比较,NEAT1(Hs01008264_s1)的表达水平显著下降,且出现选择性剪接的现象

    尼古丁暴露

    RMRP-S1

    RMRP-S2[18]

    ~

    RNase MRP的点突变可引起软骨毛发发育缺陷病,与正常对照相比,软骨毛发发育缺陷患者的成纤维细胞和B细胞中RMRP-S1S2的表达量明显降低

    软骨毛发发育

    PXN-AS1[19]

    第4外显子

    可变剪切因子MBNLS通过lncRNA-PXN-AS1的选择性剪接可以增加癌基因PXN表达从而促进肝癌的发生

    肝癌

    UCA1[20]

    ~

    与膀胱正常组织相比,lncRNA UCA1在肿瘤组织中呈高表达,从而调节细胞的增值、侵袭、转移及凋亡等过程

    膀胱癌

    CRNDE[21]第4外显子CRNDE表达在结直肠癌、胶质瘤及白血病等多种肿瘤中出现上调的现象结直肠癌
    H19[22,23,24]女性胎盘第27号外显子H19表达异常可能会导致早发型子痫前期及胎儿发育迟缓

    胎盘和胚胎发育

    AC132217.4[25]

    男性胎盘第15号外显子

    AC132217.4能够影响3’-UTR区域及增强子的表达水平,增加mRNA的稳定性及提高IGF2循环生长因子的表达水平,从而促进胎盘及胎儿生长

    RP11-440I14.3[26]

    女性胎盘第5号和

    7号外显子

    RP11-440I14.3能够抑制前列素E2和前列素D2的活性,从而影响生殖、分化及炎症等生物学过程
    AC005154.6[27]男性胎盘第13号外显子AC005154.6表达异常与胎盘和胚胎的发育相关
    表1
                    lncRNA选择性剪接和疾病之间的关系
  • 2.1 肿瘤中的lncRNA选择性剪接

    2.1
  • 2.1.1 膀胱癌中lncRNA的选择性剪接

    2.1.1

    lncRNA的功能异常,使肿瘤相关基因表观遗传修饰发生改变,进而促进肿瘤的发生. 与膀胱正常组织相比,lncRNA UCA1在肿瘤组织中呈高表达,可调节细胞的增殖、侵袭、转移及凋亡等过[20]. 王宇[28]应用电子克隆和cDNA末端快速扩增技术发现,相较于UCA1-long form,UCA1-short form对膀胱癌细胞UM-UC-2表现出较强的恶性潜力.

  • 2.1.2 结直肠癌中lncRNA的选择性剪接

    2.1.2

    lncRNA基因CRNDE在大肠癌的早期被激活,但其调节和功能不明,被认为是结直肠肿瘤差异表达的基因记号,能表达出多种剪接变异体且具有组织特异性表达模式. CRNDE的转录产物与染色质修饰复合物相互作用,通过表观遗传修饰水平的改变来调节基因的表达. CRNDE选择性剪接产生的转录产物可作为多梳抑制复合物2和CoREST染色质修饰复合物的分子支[29]. CRNDE的表达水平在结直肠癌、胶质瘤及白血病等多种肿瘤中均出现上调的现象. 到目前为止,已知的CRNDE的选择性剪接产物至少有10种,结直肠癌细胞系和结直肠癌组织中CRNDE的同种型转录产物被定量后,Graham[21]根据CRNDE的表达量将其分成CRNDE-a、-b、-d、-e、-f、-h-j 7种转录本亚型,发现在结直肠肿瘤最早期,除CRNDE-d以外,CRNDE的其他转录产物表达量在90%以上的肿瘤中都出现显著性上调的现象. 另外,根据CRNDE-h的表达水平可以有效地区分正常黏膜和腺[21]. 因为结直肠腺瘤发展成恶性肿瘤的潜力可以通过息肉切除术来终止,所以在临床筛查腺瘤中使用诸如此类的生物标志物,不仅可以提供结直肠癌的早期检测,而且还可以实际预防结直肠癌. 此外,Furney[30]SF3B1野生型黑色素肿瘤中观察到第4号外显子的所有碱基的reads数目接近均匀,但在SF3B1突变型肿瘤中该外显子的3'末端的reads数目出现富集. 该现象暗示,lncRNA CRNDE第4号外显子上可能存在选择性剪接位点. 通过qRT-PCR,他们在58例SF3B1野生型黑色素肿瘤和16例突变型黑色素肿瘤中验证了CRNDE第4号外显子上选择性剪接位点的存在. 由此可见,SF3B1突变情况受lncRNA CRNDE选择性剪接的影响,这些基因可能在黑色素瘤的病因学中起作用. 综上,lncRNA CRNDE的选择性剪切机制在结直肠癌及黑色素瘤中扮演着重要角色.

  • 2.1.3 肝癌中lncRNA的选择性剪接

    2.1.3

    可变剪切因子MBNLS通过lncRNA-PXN-AS1的选择性剪接可以增加癌基因PXN的表达从而促进肝癌的发生. Yuan[19]发现剪切因子MBNL3可调控lncRNA-PXN-AS1的选择性剪接,产生2种不同的剪接异构体. 在MBNL3存在时,lncRNA-PXN-AS1的第4外显子会留在成熟的非编码RNA中,命名为lncRNA-PXN-AS1-L,而敲除MBNL3后,第4外显子会被剪掉,命名为lncRNA-PXN-AS1-S. 通过对这2个lncRNA的深入分析,研究人员发现PXN-AS1-L是通过结合PXN mRNA的3′UTR,保护了PXN mRNA免受miR-24-AGO2复合物降解,从而提高了PXN的表达丰度. 与PXN-AS1-L相反,PXN-AS1-S则通过结合PXN mRNA的CDS区域,抑制了PXN mRNA的翻译延伸,从而降低PXN蛋白在体内的含量. MBNL3则是通过诱导lncRNA-PXN-AS1的4号外显子表达,间接地提高PXN的表达丰度. 由此可见,lncRNA不同的剪接异构体很可能具有截然相反的生物学功能.

  • 2.1.4 神经母细胞瘤中lncRNA的选择性剪接

    2.1.4

    生长阻滞特异性转录本5(lncRNA- GAS5)最早是从NIH 3T3小鼠成纤维细胞中分离出来的,含有12个外显子、10个C/D box snoRNA及1个保守的5′末端寡嘧啶[31],该转录本至少含有29种剪接变异体(10个lncRNA及19个未处理的序列). GAS5的过度表达能够抑制肿瘤的增殖、迁移和上皮-间质转化(epithelial-mesenchymal transition,EMT[32]. 据报道,在原代恶性胸膜间皮瘤(MPM)细胞系中发现,部分GAS5剪接变体可诱导生长停滞和细胞凋[33],但目前关于这些变体具体功能特征的研究并不多. 除GAS5剪接变体-001(全长)之外,Mazar[16]在神经母细胞瘤中还发现了3种未见报道的变体(C2、C3和C4). 与FL产物不同,C2剪接变体从7号外显子末端(77 bp外显子)丢失了39个碱基对,C3剪接变体不包含9号、10号外显子,C4剪接变体不但完全丧失10号外显子,且具有与C2中相同的7号外显子的39 bp缺失. 在SK-N-AS细胞中,FL和C3剪接变体的表达较高,而在IMR-32细胞中C2和C4剪接变体的表达较高. 进一步的研究发现,C2剪接变体在MYCN扩增细胞系(CHLA-122和SMS-KAN)中表达均显著提高,在非MYCN扩增的细胞系(LA-N-6和CHLA-15)中表达却有所下降. 由此可见,在MYCN扩增和未扩增的神经母细胞瘤细胞系之间,GAS5剪接变体表达的模式存在差异.

  • 2.1.5 肿瘤上皮-间质转化过程中lncRNA的选择性剪接

    2.1.5

    EMT是肿瘤侵袭和转移的首要步骤,而E盒结合锌指蛋白(zinc finger E-box binding protein,ZEB)正是EMT最主要的转录因子之一. 异质性核糖核蛋白E1(hnRNP E1)通过与蛋白磷酸酶1核靶向亚基protein(phosphatase 1 nuclear targeting subunit,PNUTS)前体第12外显子中的核酸结构元件结合,通过抑制PNUTS的选择性剪接,产生PNUTS mRNA(NM_002714.3). 当hnRNP E1从该结构元件释放则会促进PNUTS选择性剪接产生lncRNA-PNUTS(NR_072994.1). lncRNA-PNUTS进入细胞后可以吸附miR-205从而促进EMT标志基因,即miR-205靶基因ZEB的表[34]. PNUTS通过选择性剪接产生PNUTS mRNA和lncRNA-PNUTS,这2个剪接异构体具有不同的生物学功能.

    这些新发现的肿瘤相关 lncRNA 的异常剪接现象及其生物学作用给肿瘤研究带来了新的机遇与挑战,也成为肿瘤临床诊断和治疗面临的新课题.

  • 2.2 其他疾病中的lncRNA选择性剪接

    2.2

    lncRNA在胎盘的形成及功能方面发挥着重要作用. H19是一种在哺乳动物胚胎时期高表达的胎盘组织特异性lncRNA[35,36,37],与人类胚胎滋养层细胞增殖、胎盘发[38,39]及胎儿生长的调节有[22,40]. H19表达异常可能会导致早发型子痫前期及胎儿发育迟[22,23,24]. 在怀孕期间,IGF2循环生长因子能够促进胎盘及胎儿的生长,AC132217.4能够影响3′ UTR区域及增强子的表达水平,增加mRNA的稳定性及提高IGF2循环生长因子的表达水[25]. RP11-440I14.3位于羟基前列腺素脱氢酶(HPGD)的顺式位置,能够抑制前列素E2(PGE2)和前列素D2(PGD2)的活性,从而影响生殖、分化等生物学过[26]. 在子宫中,前列腺素与感染引起的妊娠停止紧密相关. Majewska[27]在人足月胎盘中进行lncRNA表达谱的研究,发现在所有选择性剪接调节中,H19、AC132217.4、RP11-440I14.3AC005154.6的外显子具有显著的性别差异. 在女性胎盘中发现,H19第27号外显子表达出现上调的现象,此外还有RP11-440I14.3的第5号和7号外显子的可变表达. 在男性胎盘中,AC132217.4第15号外显子和AC005154.6的第13号外显子表达水平出现上调现象. 因此,胎盘中所检测到的这些lncRNA的选择性剪接,其功能与胎盘和胚胎发育相关,需要进一步研究lncRNA的表达谱是否会影响正常或病理性的妊娠过程.

    lncRNAs的转录后加工过程显示,lncRNAs还可以作为miRNA的一种来源. Rogler[18]发现miRNAs(RMRP-S1RMRP-S2)来源于线粒体RNA处理核糖核酸内切酶(RNase MRP)组成的268 nt的lncRNAs. RNase MRP的点突变可引起软骨毛发发育缺陷病,令人惊讶的是与疾病发生相关的点突变都位于RMRP-S1S2上,miRNAs的二级结构因这些点突变的发生而产生变化. 与正常对照相比,软骨毛发发育缺陷患者的成纤维细胞和B细胞中RMRP-S1S2的表达量明显降低. Pathway分析确定受RMRP-S1S2调控的基因与大多数的软骨毛发发育缺陷患者表型连锁,而且显著富集在骨骼肌发育、毛发发育、造血细胞分化等通路中. RMRP-S1S2通过对靶基因的调控,参与选择性RNA剪接、细胞增殖和分化. 因此,lncRNA可通过自身选择性剪接产生miRNAs参与到疾病发生的分子机制中.

    Mills[15]在对16个人体组织的RNA-seq数据集(SRA091951、SRA512485、SRA602249)进行分析的过程中发现,linc00320含有3种剪接变体(linc00320-002、linc00320-006linc00320-007). 每个linc00320剪接变体均保留相同的5′端和3′端的外显子,而linc00320-002却保留了独特的第2外显子. 在多系统萎缩症大脑的白质中,以剪接变体linc00320-002的表达量为主,且该剪接变体在白质中的表达水平显著高于灰质中的表达水平. 与正常大脑相比,无论是灰质还是白质组织中,多系统萎缩症患者大脑中linc00320-002的表达水平均出现显著提高的现象,另外2种剪接变体(linc00320-006linc00320-007)的表达并没有发现出任何差[15]. linc00320-002很可能参与多系统萎缩症的发生机制,且是组织分化的重要影响因素. 在linc00320的剪接变体中,第2外显子的保留是linc00320-002剪接变体区别于另外2种剪接变体的主要特征,由此可见,lincRNA的选择性剪接可以直接影响疾病的发生过程.

    另外,Bavarva[17]发现尼古丁暴露组的上皮细胞与正常组上皮细胞(MCF-10A)相比较,lncRNA NEAT1(Hs01008264_s1)的表达水平显著下降,且出现选择性剪接的现象. 该现象表明,尼古丁暴露很可能是导致NEAT1出现选择性剪接的重要原因.

    综上所述,lncRNA的选择性剪接与胚胎发育、软骨毛发发育、多系统萎缩症等紧密相关,且极可能受尼古丁暴露等环境因素的影响.

  • 3 lncRNA选择性剪接数据库的比较

    3

    基于对lncRNA选择性剪接的研究,目前主要有Nitsche[8]提供的公共网络服务SpliceMap(http://splicemap.bioinf.uni-leipzig.de)及Gong[41]提供的LNCediting数据库(http://bioinfo.life.hust.edu.cn/LNCediting/)(表2).

    表2 SpliceMap和LNCediting数据库的特征比较

    Table 2 Feature comparison between SpliceMap and LNCediting database

    lncRNASpliceMapLNCediting

    收录物种

    人类、黑猩猩、苏门达腊猩猩、小鼠、

    大鼠、牛、马、犬

    人类、小鼠、恒河猴、果蝇

    lncRNA数目543剪接位点191 991个RNA编辑位点
    数据类型基因组和转录组剪接位点的数据lncRNA转录本中的RNA编辑位点数据
    特异性

    定制工具

    有(预测RNA编辑位点分别对lncRNA结构和miRNA-lncRNA

    相互作用的影响)

    研究内容对进化保守剪接位点进行比较(低水平序列守恒)RNA编辑在lncRNA中的功能效应数据库
    结果形成概览图不形成概览图
    表2
                    SpliceMap和LNCediting数据库的特征比较

    SpliceMap于2012年创建完成,一共包括543个剪接位点,跨域人类、黑猩猩、苏门达腊猩猩、小鼠、大鼠、牛、马、犬六个物种,可以做关于lncRNA选择性剪接的研究,允许检索多组直系同源剪接位点,对于给定基因组间隔或一组单独的剪接位点,SpliceMap数据库可用于产生进化保守剪接位点的概览图.

    LNCediting数据库于2016年创建,一共包括了191 991个RNA编辑位点,可以为人类、小鼠、恒河猴和果蝇的lncRNA的RNA编辑功能预测提供全面的资源. LNCediting数据库通过lncRNA编辑位点的结构变化和可能受编辑位点影响的lncRNA-miRNA的结合位点来预测lncRNA中选择性剪接的功能效[41]. 用户可以通过LNCediting数据库浏览或搜索,lncRNAs中的编辑位点、编辑站点对RNA二级结构的影响、影响lncRNA -miRNA相互作用的编辑位点(丢失或增加)、miRNA表达数据以确定功能编辑站点的优先级、预测lncRNAs中特定编辑位点的功能.

    SpliceMap较LNCediting数据库创建的早,且收录的物种较全面,可制作基因组和转录组数据剪接位点的比较图,并利用MaxEntScan评分来评估剪接位点的守恒率. 预测蛋白质编码剪接位点的保守性表明了该方法的特异性且剪接位点的保守性,为保守的lncRNAs数量提供了下限值. 而LNCediting数据库则是通过收集lncRNA转录本中的RNA编辑位点数据,使用两种定制工具(预测RNA编辑位点分别对lncRNA结构以及miRNA-lncRNA相互作用的影响)来预测RNA编辑在lncRNA中的功能效应. 这两个lncRNA选择性剪接数据库是根据不同层面创建的,SpliceMap主要用于查询,而LNCediting则主要用于功能预测. 所以,两者具有不同的研究用途.

  • 4 展望

    4

    前体mRNA经过剪接之后,除了会产生成熟且具有编码功能的mRNA之外,同时还会产生lncRNA、miRNA等非编码RNA. 其中lncRNA在结构上与mRNA具有一定的相似性,并且可以与DNA、RNA和蛋白质相互作用,参与多种生物学过程的调控. 研究表明,lncRNA能够参与表观遗传模式调控及染色质重塑,参与及调节不同RNA相关酶复合物的作用而发挥功[42]. lncRNA通过选择性剪接机制,产生不同的产物,从而发挥特定的生理学效应,对疾病的发生发展产生影响. 但相对于mRNA选择性剪接,lncRNA在这方面的研究较为匮乏. 比如,sno-lncRNA是一类新型的lncRNA,它们的序列中包含完整的snoRNA序列,并且该序列对sno-lncRNA的稳定性和亚细胞定位至关重[43],但对于这类新型的lncRNA相关的选择性剪接机制研究却不多. 总而言之,lncRNA上的选择性剪接事件的发生,受众多因素的调控及影响,构建完善的lncRNA选择性剪接调控网络,是研究选择性剪接调控机制的有效途径,而构建相关数据库将有效节约研究资本及推进研究进展.

  • 参 考 文 献

    • 1

      Wilusz J E, Sunwoo H, Spector D L. Long noncoding RNAs: functional surprises from the RNA world. Genes & Development, 2009, 23(13): 1494-1504

    • 2

      Zhou J, Yang L, Zhong T, et al. H19 lncRNA alters DNA methylation genome wide by regulating S-adenosylhomocysteine hydrolase. Nature Communications, 2015, 6: 10221

    • 3

      Ding G, Li W, Liu J, et al. LncRNA GHET1 activated by H3K27 acetylation promotes cell tumorigenesis through regulating ATF1 in hepatocellular carcinoma. Biomedicine & Pharmacotherapy , 2017, 94: 326-331

    • 4

      Liu J Y, Yao J, Li X M, et al. Pathogenic role of lncRNA-MALAT1 in endothelial cell dysfunction in diabetes mellitus. Cell Death & Disease, 2014, 5: e1506

    • 5

      Pavlaki I, Alammari F, Sun B, et al. The long non-coding RNA paupar promotes KAP1-dependent chromatin changes and regulates olfactory bulb neurogenesis. The EMBO Journal, 2018, 37(10), pii: e98219. doi: 10.15252/embj.201798219

    • 6

      Loewen G, Jayawickramarajah J, Zhuo Y, et al. Functions of lncRNA HOTAIR in lung cancer. Journal of Hematology & Oncology, 2014, 7:90

    • 7

      Yan F, Wang X, Zeng Y. 3D genomic regulation of lncRNA and Xist in X chromosome. Seminars in Cell & Developmental Biology, 2018

    • 8

      Nitsche A, Rose D, Fasold M, et al. Comparison of splice sites reveals that long noncoding RNAs are evolutionarily well conserved. Rna, 2015, 21(5): 801-812

    • 9

      Haerty W, Ponting C P. Unexpected selection to retain high GC content and splicing enhancers within exons of multiexonic lncRNA loci. Rna, 2015, 21(3): 333-346

    • 10

      Bradley R K, Merkin J, Lambert N J, et al. Alternative splicing of RNA triplets is often regulated and accelerates proteome evolution. Plos Biology, 2012, 10(1): e1001229

    • 11

      Maugeri A, Van Driel M A, Van De Pol D J, et al. The 2588G-->C mutation in the ABCR gene is a mild frequent founder mutation in the Western European population and allows the classification of ABCR mutations in patients with Stargardt disease. American Journal of Human Genetics, 1999, 64(4): 1024-1035

    • 12

      Hui L, Zhang X, Wu X, et al. Identification of alternatively spliced mRNA variants related to cancers by genome-wide ESTs alignment. Oncogene, 2004, 23(17): 3013-3023

    • 13

      Shi Y, Sha G, Sun X. Genome-wide study of NAGNAG alternative splicing in Arabidopsis. Planta, 2014, 239(1): 127-138

    • 14

      Sun X, Lin S M, Yan X. Computational evidence of NAGNAG alternative splicing in human large intergenic noncoding RNA. BioMed Research International, 2014, 2014:736798

    • 15

      Mills J D, Chen J, Kim W S, et al. Long intervening non-coding RNA 00320 is human brain-specific and highly expressed in the cortical white matter. Neurogenetics, 2015, 16(3): 201-213

    • 16

      Mazar J, Rosado A, Shelley J, et al. The long non-coding RNA GAS5 differentially regulates cell cycle arrest and apoptosis through activation of BRCA1 and p53 in human neuroblastoma. Oncotarget, 2017, 8(4): 6589-6607

    • 17

      Bavarva J H, Tae H, Settlage R E, et al. Characterizing the genetic basis for nicotine induced cancer development: a transcriptome sequencing study. Plos One, 2013, 8(6): e67252

    • 18

      Rogler L E, Kosmyna B, Moskowitz D, et al. Small RNAs derived from lncRNA RNase MRP have gene-silencing activity relevant to human cartilage-hair hypoplasia. Human Molecular Genetics, 2014, 23(2): 368-382

    • 19

      Yuan J H, Liu X N, Wang T T, et al. The MBNL3 splicing factor promotes hepatocellular carcinoma by increasing PXN expression through the alternative splicing of lncRNA-PXN-AS1. Nature Cell Biology, 2017, 19(7): 820-832

    • 20

      Xue M, Chen W, Xiang A, et al. Hypoxic exosomes facilitate bladder tumor growth and development through transferring long non-coding RNA-UCA1. Molecular Cancer, 2017, 16(1): 143

    • 21

      Graham L D, Pedersen S K, Brown G S, et al. Colorectal neoplasia differentially expressed (CRNDE), a novel gene with elevated expression in colorectal adenomas and adenocarcinomas. Genes & Cancer, 2011, 2(8): 829-840

    • 22

      Yu L, Chen M, Zhao D, et al. The H19 gene imprinting in normal pregnancy and pre-eclampsia. Placenta, 2009, 30(5): 443-447

    • 23

      Zuckerwise L, Li J, Lu L, et al. H19 long noncoding RNA alters trophoblast cell migration and invasion by regulating TbetaR3 in placentae with fetal growth restriction. Oncotarget, 2016, 7(25): 38398-38407

    • 24

      Ying W, Jingli F, Wei S W, et al. Genomic imprinting status of IGF-II and H19 in placentas of fetal growth restriction patients. Journal of Genetics, 2010, 89(2): 213-216

    • 25

      Li X, Ma C, Zhang L, et al. LncRNAAC132217.4, a KLF8-regulated long non-coding RNA, facilitates oral squamous cell carcinoma metastasis by upregulating IGF2 expression. Cancer Letters, 2017, 407:45-56

    • 26

      Aisemberg J, Bariani M V, Vercelli C A, et al. Lipopolysaccharide-induced murine embryonic resorption involves nitric oxide-mediated inhibition of the NAD+-dependent 15-hydroxyprostaglandin dehydrogenase. Reproduction, 2012, 144(4): 447-454

    • 27

      Majewska M, Lipka A, Paukszto L, et al. Preliminary RNA-seq analysis of long non-coding RNAs expressed in human term placenta. International Journal of Molecular Sciences, 2018, 19(7), pii: E1894. doi: 10.3390/ijms19071894

    • 28

      王宇, 陈葳, 王帆, 等. lncRNA-UCA1不同剪接变体在膀胱癌中的作用研究.中华医学会第九次全国检验医学学术会议暨中国医院协会临床检验管理专业委员会第六届全国临床检验实验室管理学术会议, 2011, 中国北京.

      Wang Y, Chen W, Wang F, et al. The 9th National Laboratory Medicine Academic Conference of the Chinese Medical Association and the 6th National Laboratory Management Academic Conference of the Clinical Laboratory Management Committee of the Chinese Hospital Association, 2011, Beijing, China

    • 29

      Khalil A M, Guttman M, Huarte M, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA, 2009, 106(28): 11667-11672

    • 30

      Furney S J, Pedersen M, Gentien D, et al. SF3B1 mutations are associated with alternative splicing in uveal melanoma. Cancer Discovery, 2013, 3(10): 1122-1129

    • 31

      Smith C M, Steitz J A. Classification of gas5 as a multi-small-nucleolar-RNA (snoRNA) host gene and a member of the 5'-terminal oligopyrimidine gene family reveals common features of snoRNA host genes. Molecular and Cellular Biology, 1998, 18(12): 6897-6909

    • 32

      Ye K, Wang S, Zhang H, et al. Long noncoding RNA GAS5 suppresses cell growth and epithelial-mesenchymal transition in osteosarcoma by regulating the miR-221/ARHI pathway. Journal of Cellular Biochemistry, 2017, 118(12): 4772-4781

    • 33

      Renganathan A, Kresoja-Rakic J, Echeverry N, et al. GAS5 long non-coding RNA in malignant pleural mesothelioma. Molecular Cancer, 2014, 13:119

    • 34

      Grelet S, Link L A, Howley B, et al. A regulated PNUTS mRNA to lncRNA splice switch mediates EMT and tumour progression. Nature Cell Biology, 2017, 19(9): 1105-1115

    • 35

      Keniry A, Oxley D, Monnier P, et al. The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nature Cell Biology, 2012, 14(7): 659-665

    • 36

      Saben J, Zhong Y, Mckelvey S, et al. A comprehensive analysis of the human placenta transcriptome. Placenta, 2014, 35(2): 125-131

    • 37

      Taylor D H, Chu E T, Spektor R, et al. Long non-coding RNA regulation of reproduction and development. Molecular Reproduction and Development, 2015, 82(12): 932-956

    • 38

      Gao W L, Liu M, Yang Y, et al. The imprinted H19 gene regulates human placental trophoblast cell proliferation via encoding miR-675 that targets Nodal Modulator 1 (NOMO1). RNA Biology, 2012, 9(7): 1002-1010

    • 39

      Song X, Luo X, Gao Q, et al. Dysregulation of lncRNAs in placenta and pathogenesis of preeclampsia. Current Drug Targets, 2017, 18(10): 1165-1170

    • 40

      Giabicani E, Brioude F, Le Bouc Y, et al. Imprinted disorders and growth. Annales d'Endocrinologie, 2017, 78(2): 112-113

    • 41

      Gong J, Liu C, Liu W, et al. LNCediting: a database for functional effects of RNA editing in lncRNAs. Nucleic Acids Research, 2017, 45(D1): D79-D84

    • 42

      Bardou F, Ariel F, Simpson C G, et al. Long noncoding RNA modulates alternative splicing regulators in Arabidopsis. Developmental Cell, 2014, 30(2): 166-176

    • 43

      Yin Q F, Yang L, Zhang Y, et al. Long noncoding RNAs with snoRNA ends. Molecular Cell, 2012, 48(2): 219-230

季慧慧

机 构:宁波大学医学院,浙江省病理生理学技术研究重点实验室,宁波 315211

Affiliation:Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China

赵永杰

机 构:新疆医科大学第一附属医院老年病科,乌鲁木齐 830054

Affiliation:Department of Geriatrics, the First Affiliated Hospital of Xinjiang Medical University, Ürümqi 830054, China

郑中华

机 构:宁波大学医学院,浙江省病理生理学技术研究重点实验室,宁波 315211

Affiliation:Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China

段世伟

机 构:宁波大学医学院,浙江省病理生理学技术研究重点实验室,宁波 315211

Affiliation:Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China

角 色:通讯作者

Role:Corresponding author

电 话:18858014376

邮 箱:duanshiwei@nbu.edu.cn

Introduction:Tel:18858014376, E-mail:duanshiwei@nbu.edu.cn

html/pibbcn/20180240/alternativeImage/ef0fc3f0-967b-4cca-b0e5-23dd0801a2e4-F001.jpg
lncRNA基因组区域结果相关疾病

linc00320[15]

第2外显子

与正常大脑相比,无论是在灰质还是白质组织中,多系统萎缩症患者大脑中linc00320-002的表达水平均出现显著提高的现象

多系统萎缩

GAS5[16]

第7外显子末端

GAS5的C2剪接变体在MYCN扩增细胞系(CHLA-122和SMS-KAN)中表达显著提高,从而促进疾病的发生

神经母细胞瘤

NEAT1[17]

~

尼古丁暴露组的上皮细胞与正常组上皮细胞(MCF-10A)相比较,NEAT1(Hs01008264_s1)的表达水平显著下降,且出现选择性剪接的现象

尼古丁暴露

RMRP-S1

RMRP-S2[18]

~

RNase MRP的点突变可引起软骨毛发发育缺陷病,与正常对照相比,软骨毛发发育缺陷患者的成纤维细胞和B细胞中RMRP-S1S2的表达量明显降低

软骨毛发发育

PXN-AS1[19]

第4外显子

可变剪切因子MBNLS通过lncRNA-PXN-AS1的选择性剪接可以增加癌基因PXN表达从而促进肝癌的发生

肝癌

UCA1[20]

~

与膀胱正常组织相比,lncRNA UCA1在肿瘤组织中呈高表达,从而调节细胞的增值、侵袭、转移及凋亡等过程

膀胱癌

CRNDE[21]第4外显子CRNDE表达在结直肠癌、胶质瘤及白血病等多种肿瘤中出现上调的现象结直肠癌
H19[22,23,24]女性胎盘第27号外显子H19表达异常可能会导致早发型子痫前期及胎儿发育迟缓

胎盘和胚胎发育

AC132217.4[25]

男性胎盘第15号外显子

AC132217.4能够影响3’-UTR区域及增强子的表达水平,增加mRNA的稳定性及提高IGF2循环生长因子的表达水平,从而促进胎盘及胎儿生长

RP11-440I14.3[26]

女性胎盘第5号和

7号外显子

RP11-440I14.3能够抑制前列素E2和前列素D2的活性,从而影响生殖、分化及炎症等生物学过程
AC005154.6[27]男性胎盘第13号外显子AC005154.6表达异常与胎盘和胚胎的发育相关
lncRNASpliceMapLNCediting

收录物种

人类、黑猩猩、苏门达腊猩猩、小鼠、

大鼠、牛、马、犬

人类、小鼠、恒河猴、果蝇

lncRNA数目543剪接位点191 991个RNA编辑位点
数据类型基因组和转录组剪接位点的数据lncRNA转录本中的RNA编辑位点数据
特异性

定制工具

有(预测RNA编辑位点分别对lncRNA结构和miRNA-lncRNA

相互作用的影响)

研究内容对进化保守剪接位点进行比较(低水平序列守恒)RNA编辑在lncRNA中的功能效应数据库
结果形成概览图不形成概览图

图1 lncRNA选择性剪接和疾病之间的关系

Fig.1 The relationship between lncRNA alternative splicing and disease

表1 lncRNA选择性剪接和疾病之间的关系

Table 1 The relationship between lncRNA alternative splicing and disease

表2 SpliceMap和LNCediting数据库的特征比较

Table 2 Feature comparison between SpliceMap and LNCediting database

image /

无注解

无注解

无注解

  • 参 考 文 献

    • 1

      Wilusz J E, Sunwoo H, Spector D L. Long noncoding RNAs: functional surprises from the RNA world. Genes & Development, 2009, 23(13): 1494-1504

    • 2

      Zhou J, Yang L, Zhong T, et al. H19 lncRNA alters DNA methylation genome wide by regulating S-adenosylhomocysteine hydrolase. Nature Communications, 2015, 6: 10221

    • 3

      Ding G, Li W, Liu J, et al. LncRNA GHET1 activated by H3K27 acetylation promotes cell tumorigenesis through regulating ATF1 in hepatocellular carcinoma. Biomedicine & Pharmacotherapy , 2017, 94: 326-331

    • 4

      Liu J Y, Yao J, Li X M, et al. Pathogenic role of lncRNA-MALAT1 in endothelial cell dysfunction in diabetes mellitus. Cell Death & Disease, 2014, 5: e1506

    • 5

      Pavlaki I, Alammari F, Sun B, et al. The long non-coding RNA paupar promotes KAP1-dependent chromatin changes and regulates olfactory bulb neurogenesis. The EMBO Journal, 2018, 37(10), pii: e98219. doi: 10.15252/embj.201798219

    • 6

      Loewen G, Jayawickramarajah J, Zhuo Y, et al. Functions of lncRNA HOTAIR in lung cancer. Journal of Hematology & Oncology, 2014, 7:90

    • 7

      Yan F, Wang X, Zeng Y. 3D genomic regulation of lncRNA and Xist in X chromosome. Seminars in Cell & Developmental Biology, 2018

    • 8

      Nitsche A, Rose D, Fasold M, et al. Comparison of splice sites reveals that long noncoding RNAs are evolutionarily well conserved. Rna, 2015, 21(5): 801-812

    • 9

      Haerty W, Ponting C P. Unexpected selection to retain high GC content and splicing enhancers within exons of multiexonic lncRNA loci. Rna, 2015, 21(3): 333-346

    • 10

      Bradley R K, Merkin J, Lambert N J, et al. Alternative splicing of RNA triplets is often regulated and accelerates proteome evolution. Plos Biology, 2012, 10(1): e1001229

    • 11

      Maugeri A, Van Driel M A, Van De Pol D J, et al. The 2588G-->C mutation in the ABCR gene is a mild frequent founder mutation in the Western European population and allows the classification of ABCR mutations in patients with Stargardt disease. American Journal of Human Genetics, 1999, 64(4): 1024-1035

    • 12

      Hui L, Zhang X, Wu X, et al. Identification of alternatively spliced mRNA variants related to cancers by genome-wide ESTs alignment. Oncogene, 2004, 23(17): 3013-3023

    • 13

      Shi Y, Sha G, Sun X. Genome-wide study of NAGNAG alternative splicing in Arabidopsis. Planta, 2014, 239(1): 127-138

    • 14

      Sun X, Lin S M, Yan X. Computational evidence of NAGNAG alternative splicing in human large intergenic noncoding RNA. BioMed Research International, 2014, 2014:736798

    • 15

      Mills J D, Chen J, Kim W S, et al. Long intervening non-coding RNA 00320 is human brain-specific and highly expressed in the cortical white matter. Neurogenetics, 2015, 16(3): 201-213

    • 16

      Mazar J, Rosado A, Shelley J, et al. The long non-coding RNA GAS5 differentially regulates cell cycle arrest and apoptosis through activation of BRCA1 and p53 in human neuroblastoma. Oncotarget, 2017, 8(4): 6589-6607

    • 17

      Bavarva J H, Tae H, Settlage R E, et al. Characterizing the genetic basis for nicotine induced cancer development: a transcriptome sequencing study. Plos One, 2013, 8(6): e67252

    • 18

      Rogler L E, Kosmyna B, Moskowitz D, et al. Small RNAs derived from lncRNA RNase MRP have gene-silencing activity relevant to human cartilage-hair hypoplasia. Human Molecular Genetics, 2014, 23(2): 368-382

    • 19

      Yuan J H, Liu X N, Wang T T, et al. The MBNL3 splicing factor promotes hepatocellular carcinoma by increasing PXN expression through the alternative splicing of lncRNA-PXN-AS1. Nature Cell Biology, 2017, 19(7): 820-832

    • 20

      Xue M, Chen W, Xiang A, et al. Hypoxic exosomes facilitate bladder tumor growth and development through transferring long non-coding RNA-UCA1. Molecular Cancer, 2017, 16(1): 143

    • 21

      Graham L D, Pedersen S K, Brown G S, et al. Colorectal neoplasia differentially expressed (CRNDE), a novel gene with elevated expression in colorectal adenomas and adenocarcinomas. Genes & Cancer, 2011, 2(8): 829-840

    • 22

      Yu L, Chen M, Zhao D, et al. The H19 gene imprinting in normal pregnancy and pre-eclampsia. Placenta, 2009, 30(5): 443-447

    • 23

      Zuckerwise L, Li J, Lu L, et al. H19 long noncoding RNA alters trophoblast cell migration and invasion by regulating TbetaR3 in placentae with fetal growth restriction. Oncotarget, 2016, 7(25): 38398-38407

    • 24

      Ying W, Jingli F, Wei S W, et al. Genomic imprinting status of IGF-II and H19 in placentas of fetal growth restriction patients. Journal of Genetics, 2010, 89(2): 213-216

    • 25

      Li X, Ma C, Zhang L, et al. LncRNAAC132217.4, a KLF8-regulated long non-coding RNA, facilitates oral squamous cell carcinoma metastasis by upregulating IGF2 expression. Cancer Letters, 2017, 407:45-56

    • 26

      Aisemberg J, Bariani M V, Vercelli C A, et al. Lipopolysaccharide-induced murine embryonic resorption involves nitric oxide-mediated inhibition of the NAD+-dependent 15-hydroxyprostaglandin dehydrogenase. Reproduction, 2012, 144(4): 447-454

    • 27

      Majewska M, Lipka A, Paukszto L, et al. Preliminary RNA-seq analysis of long non-coding RNAs expressed in human term placenta. International Journal of Molecular Sciences, 2018, 19(7), pii: E1894. doi: 10.3390/ijms19071894

    • 28

      王宇, 陈葳, 王帆, 等. lncRNA-UCA1不同剪接变体在膀胱癌中的作用研究.中华医学会第九次全国检验医学学术会议暨中国医院协会临床检验管理专业委员会第六届全国临床检验实验室管理学术会议, 2011, 中国北京.

      Wang Y, Chen W, Wang F, et al. The 9th National Laboratory Medicine Academic Conference of the Chinese Medical Association and the 6th National Laboratory Management Academic Conference of the Clinical Laboratory Management Committee of the Chinese Hospital Association, 2011, Beijing, China

    • 29

      Khalil A M, Guttman M, Huarte M, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA, 2009, 106(28): 11667-11672

    • 30

      Furney S J, Pedersen M, Gentien D, et al. SF3B1 mutations are associated with alternative splicing in uveal melanoma. Cancer Discovery, 2013, 3(10): 1122-1129

    • 31

      Smith C M, Steitz J A. Classification of gas5 as a multi-small-nucleolar-RNA (snoRNA) host gene and a member of the 5'-terminal oligopyrimidine gene family reveals common features of snoRNA host genes. Molecular and Cellular Biology, 1998, 18(12): 6897-6909

    • 32

      Ye K, Wang S, Zhang H, et al. Long noncoding RNA GAS5 suppresses cell growth and epithelial-mesenchymal transition in osteosarcoma by regulating the miR-221/ARHI pathway. Journal of Cellular Biochemistry, 2017, 118(12): 4772-4781

    • 33

      Renganathan A, Kresoja-Rakic J, Echeverry N, et al. GAS5 long non-coding RNA in malignant pleural mesothelioma. Molecular Cancer, 2014, 13:119

    • 34

      Grelet S, Link L A, Howley B, et al. A regulated PNUTS mRNA to lncRNA splice switch mediates EMT and tumour progression. Nature Cell Biology, 2017, 19(9): 1105-1115

    • 35

      Keniry A, Oxley D, Monnier P, et al. The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nature Cell Biology, 2012, 14(7): 659-665

    • 36

      Saben J, Zhong Y, Mckelvey S, et al. A comprehensive analysis of the human placenta transcriptome. Placenta, 2014, 35(2): 125-131

    • 37

      Taylor D H, Chu E T, Spektor R, et al. Long non-coding RNA regulation of reproduction and development. Molecular Reproduction and Development, 2015, 82(12): 932-956

    • 38

      Gao W L, Liu M, Yang Y, et al. The imprinted H19 gene regulates human placental trophoblast cell proliferation via encoding miR-675 that targets Nodal Modulator 1 (NOMO1). RNA Biology, 2012, 9(7): 1002-1010

    • 39

      Song X, Luo X, Gao Q, et al. Dysregulation of lncRNAs in placenta and pathogenesis of preeclampsia. Current Drug Targets, 2017, 18(10): 1165-1170

    • 40

      Giabicani E, Brioude F, Le Bouc Y, et al. Imprinted disorders and growth. Annales d'Endocrinologie, 2017, 78(2): 112-113

    • 41

      Gong J, Liu C, Liu W, et al. LNCediting: a database for functional effects of RNA editing in lncRNAs. Nucleic Acids Research, 2017, 45(D1): D79-D84

    • 42

      Bardou F, Ariel F, Simpson C G, et al. Long noncoding RNA modulates alternative splicing regulators in Arabidopsis. Developmental Cell, 2014, 30(2): 166-176

    • 43

      Yin Q F, Yang L, Zhang Y, et al. Long noncoding RNAs with snoRNA ends. Molecular Cell, 2012, 48(2): 219-230