en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
ChenX, VarkiA. Advances in the biology and chemistry of sialic acids. ACS Chemical Biology, 2010, 5(2): 163-176
参考文献 2
刘志东, 王荫榆, 郭本恒,等. 唾液酸的研究进展.食品工业科技, 2010(4): 368-373
Liu Z D, Wang Y Y, Guo B H,et al. Science and Technology of Food Industry,2010(4): 368-373
参考文献 3
SchauerR. Achievements and challenges of sialic acid research. Glycoconjugate Journal, 2000, 17(7-9): 485-499
参考文献 4
张嘉宁, 汪淑晶. 唾液酸生物学与人类健康和疾病.生命科学, 2011, 23(7): 678-684
Zhang J N, Wang S J. Chinese Bulletin of Life Sciences, 2011, 23(7): 678-684
参考文献 5
KimS, OhD B, KangH A, et al. Features and applications of bacterial sialidases. Applied Microbiology & Biotechnology, 2011, 91(1): 1-15
参考文献 6
ten BruggencateS J, Bovee-OudenhovenI M, FeitsmaA L, et al. Functional role and mechanisms of sialyllactose and other sialylated milk oligosaccharides. Nutrition Reviews, 2014, 72(6):377-389
参考文献 7
WarwasM L, YeungJ H, IndurugallaD, et al. Cloning and characterization of a sialidase from the filamentous fungus, Aspergillus fumigatus. Glycoconjugate Journal, 2010, 27(5):533-548
参考文献 8
TaylorG. Sialidases: structures, biological significance and therapeutic potential. Current Opinion in Structural Biology, 1996, 6(6): 830-827
参考文献 9
JugeN, TailfordL, OwenC D. Sialidases from gut bacteria: a mini-review. Biochemical Society Transactions, 2016, 44(1): 166-175
参考文献 10
SchauerR, KamerlingJ P. The chemistry and biology of Trypanosomal trans-sialidases: virulence factors in Chagas disease and sleeping sickness. ChemBioChem, 2011, 12(15):2246-2264
参考文献 11
TiralongoE, SchraderS, LangeH, et al. Two trans-sialidase forms with different sialic acid transfer and sialidase activities from Trypanosoma congolense. Journal of Biological Chemistry, 2003, 278(26): 23301-23310
参考文献 12
ParisG, RatierL, AmayaM F, et al. A sialidase mutant displaying trans-sialidase activity. Journal of Molecular Biology, 2005, 345(4): 923-934
参考文献 13
LuoY, LiS C, ChouMY, et al. The crystal structure of an intramolecular trans-sialidase with a NeuAc alpha 2-3Gal specificity. Structure, 1998, 6(4): 521-530
参考文献 14
GutH, KingS J, WalshM A. Structural and functional studies of Streptococcus pneumoniae neuraminidase B: an intramolecular trans-sialidase. FEBS Letters, 2008, 582(23-24): 3348-3352
参考文献 15
TailfordL E, OwenC D, WalshawJ, et al. Discovery of intramolecular trans-sialidases in human gut microbiota suggests novel mechanisms of mucosal adaptation. Nature Communications, 2015, 6(7624): 7624(DOI: 10.1038/ncomms8624)
参考文献 16
KimS, OhD B, KwonO, et al. Identification and functional characterization of the NanH extracellular sialidase from Corynebacterium diphtheriae. Journal of Biochemistry, 2010, 147(4): 523-533
参考文献 17
CámaraM, BoulnoisG J, AndrewP W, et al. A neuraminidase from Streptococcus pneumoniae has the features of a surface protein. Infection & Immunity, 1994, 62(9): 3688-3695
参考文献 18
XuG, PotterJ A, RussellR J, et al. Crystal structure of the NanB sialidase from Streptococcus pneumoniae. Journal of Molecular Biology, 2008, 384(2): 436-449
参考文献 19
BuschiazzoA, AmayaM F, CremonaM L, et al. The crystal structure and mode of action of trans-sialidase, a key enzyme in Trypanosoma cruzi pathogenesis. Molecular Cell, 2002, 10(4):757-768
参考文献 20
NordvangR T, NyffeneggerC, HolckJ, et al. It all starts with a sandwich: identification of sialidases with trans-glycosylation activity. PLoS One, 2016, 11(7): e0158434
参考文献 21
王亚娟, 邢国文. 唾液酸酶和唾液酸糖基转移酶的结构、功能与催化反应研究进展.有机化学, 2011, 31(8): 1157-1168
Wang Y J, Xing G W. Chinese Journal of Organic Chemistry, 2011, 31(8): 1157-1168
参考文献 22
GubarevaL V, KaiserL, HaydenF G. Influenza virus neuraminidase inhibitors. Lancet, 2000, 355(9206): 827-835
参考文献 23
RoggentinP, SchauerR, HoyerL L, et al. The sialidase superfamily and its spread by horizontal gene transfer. Molecular Microbiology, 1993, 9(5): 915-921
参考文献 24
CorfieldT. Bacterial sialidases-roles in pathogenicity and nutrition. Glycobiology,1992,2(6): 509-521
参考文献 25
LiY T, NakagawaH, RossS A, et al. A novel sialidase which releases 2,7-anhydro-alpha-N-acetylneuraminic acid from sialoglycoconjugates. Journal of Biological Chemistry, 1990, 265(35): 21629-21633
参考文献 26
MontiE, PretiA, VenerandoB, BorsaniG. Recent development in mammalian sialidase molecular biology. Neurochemical Research, 2002, 27(7-8): 649-663
参考文献 27
ParkK H, KimM G, AhnH J, et al. Structural and biochemical characterization of the broad substrate specificity of Bacteroides thetaiotaomicron commensal sialidase. Biochimica Et Biophysica Acta Proteins & Proteomics, 2013, 1834(8): 1510-1519
参考文献 28
LeeY, YounH S, LeeJ G, et al. Crystal structure of the catalytic domain of Clostridium perfringens neuraminidase in complex with a non-carbohydrate-based inhibitor, 2-(cyclohexylamino)ethanesulfonic acid. Biochemical & Biophysical Research Communications, 2017, 486(2): 470-475
参考文献 29
NewsteadS L, PotterJ A, WilsonJ C, et al. The Structure of Clostridium perfringens NanI sialidase and its catalytic intermediates. Journal of Biological Chemistry, 2008, 283(14):9080-9088
参考文献 30
RoggentinP, KleineidamR G, SchauerR. Diversity in the properties of two sialidase isoenzymes produced by Clostridium perfringens spp. Biological Chemistry Hoppe-Seyler, 1995, 376(9): 569-576
参考文献 31
AisakaK, UwajimaT. Production of neuraminidase by micromonospora viridifaciens. Fems Microbiology Letters, 1987, 44(2): 289-291
参考文献 32
CrennellS J, GarmanE F, LaverW G, et al. Crystal structure of a bacterial sialidase (from Salmonella typhimurium LT2) shows the same fold as an influenza virus neuraminidase. Proc Natl Acad Sci U S A, 1993, 90(21): 9852-9856
参考文献 33
OwenC D, LukacikP, PotterJ A, et al. Streptococcus pneumoniae NanC: structural insights into the specificity and mechanism of a sialidase that produces a sialisede inhibitor. Journal of Biological Chemistry, 2015, 290(46): 27736-27748
参考文献 34
CrennellS, GarmanE, LaverG, et al. Crystal structure of Vibrio cholerae neuraminidase reveals dual lectinlike domains in addition to the catalytic domain. Structure, 1994, 2(6): 535-544
参考文献 35
WilbrinkM H, ten KateG A, van LeeuwenS S, et al. Galactosyl-lactose sialylation using Trypanosoma cruzi trans-sialidase as the biocatalyst and bovine κ-casein-derived glycomacropeptide as the donor substrate. Applied & Environmental Microbiology, 2014, 80(19): 5984-5991
参考文献 36
Pontes-De-CarvalhoL C, TomlinsonS, NussenzweigV. Trypanosoma rangeli, sialidase lacks trans-sialidase activity. Molecular & Biochemical Parasitology, 1993, 62(1): 19-25
参考文献 37
PokornáJ, PachlP, KarlukovaE, et al. Kinetic, thermodynamic, and structural analysis of drug resistance mutations in neuraminidase from the 2009 Pandemic Influenza Virus. Viruses, 2018, 10(7): 339-353
参考文献 38
VimrE, LichtensteigerC. To sialylate, or not to sialylate: that is the question. Trends in Microbiology, 2002, 10(6): 254-257
参考文献 39
VimrE R, KalivodaK A, DeszoE L, et al. Diversity of microbial sialic acid metabolism. Microbiology & Molecular Biology Reviews, 2004, 68(1): 132-153
参考文献 40
McguckinM A, LindénS K, SuttonP, et al. Mucin dynamics and enteric pathogens. Nature Reviews Microbiology, 2011, 9(4):265-278
参考文献 41
MarcobalA, SouthwickA M, EarleK A, et al. A refined palate: bacterial consumption of host glycans in the gut. Glycobiology, 2013, 23(9): 1038-1046
参考文献 42
TailfordL E, CrostE H, KavanaughD, et al. Mucin glycan foraging in the human gut microbiome. Frontiers in Genetics, 2015, 6(6):81(DOI: 10.3389/fgene.2015.00081)
参考文献 43
RobinsonL S, LewisW G, LewisA L. The sialate O-acetylesterase EstA from gut Bacteroidetes species enables sialidase-mediated cross-species foraging of 9-O-acetylated sialoglycans. Journal of Biological Chemistry, 2017, 292(28): 11861-11872
参考文献 44
PlumbridgeJ, VimrE. Convergent pathways for utilization of the amino sugars, N-acetylglucosamine, N-acetylmannosamine, and, N-acetylneuraminic acid by Escherichia coli. Journal of Bacteriology, 1999, 181(1): 47-54
参考文献 45
NakayamaimaohjiH, IchimuraM, IwasaT, et al. Characterization of a gene cluster for sialoglycoconjugate utilization in Bacteroides fragilis. Journal of Medical Investigation, 2012, 59(1-2): 79-94
参考文献 46
MarcobalA, BarbozaM, SonnenburgE D, et al. Bacteroides in the infant gut consume milk oligosaccharides via mucus-utilization pathways. Cell Host & Microbe, 2011, 10(5): 507-514
参考文献 47
SebaihiaM, WrenB W, MullanyP, et al. The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nature Genetics, 2006, 38(7): 779-786
参考文献 48
VimrE R, KalivodaK A, DeszoE L, et al. Diversity of microbial sialic acid metabolism. Microbiology and Molecular Biology Reviews, 2004, 68(1): 132-153
参考文献 49
MiyagiT, YamaguchiK. Mammalian sialidases: physiological and pathological roles in cellular functions. Glycobiology, 2012, 22(7):880-896
参考文献 50
BuschiazzoA, AlzariP M. Structural insights into sialic acid enzymology. Current Opinion in Chemical Biology, 2008, 12(5):565-572
参考文献 51
MiyagiT, WadaT, YamaguchiK, et al. Sialidase and malignancy: a minireview. Glycoconjugate Journal, 2003, 20(3): 189-198
参考文献 52
SchengrundC L, LauschR N, RosenbergA. Sialidase activity in transformed cells. Journal of Biological Chemistry, 1973, 248(12):4424-4428
参考文献 53
BosmannH B, HallT C. Enzyme activity in invasive tumors of human breast and colon. Proc Natl Acad Sci U S A, 1974, 71(5):1833-1837
参考文献 54
CorfieldA P, HigaH, PaulsonJ C, et al. The specificity of viral and bacterial sialidases for alpha(2-3)- and alpha(2-6)-linked sialic acids in glycoproteins. Biochimica Et Biophysica Acta, 1983, 744(2): 121-126
参考文献 55
ChouM Y, LiS C, KisoM, et al. Purification and characterization of sialidase L, a NeuAc alpha 2-3Gal-specific sialidase. Journal of Biological Chemistry, 1994, 269(29): 18821-18826
参考文献 56
WeijersC A, FranssenM C, VisserG M. Glycosyltransferase-catalyzed synthesis of bioactive oligosaccharides. Biotechnology Advances, 2008, 26(5): 436-456
参考文献 57
IchikawaY, LiuJ L C, ShenG J. A highly efficient multienzyme system for the one-step synthesis of a sialyl trisaccharide: in situ generation of sialic acid and N-acetyllactosamine coupled with regeneration of UDP-glucose, UDP-galactose and CMP-sialic acid. Journal of America Chemistry Society, 1991, 113(16): 6300-6302
参考文献 58
MaruI, OhtaY, OkamotoK, et al. Synthesis of sialyllactose from N-acetylneuraminic acid and lactose by a neuraminidase from Arthrobacter ureafaciens. Bioscience Biotechnology and Biochemistry, 1992, 56(10): 1557-1561
参考文献 59
JoachimThiem, BerndSauerbrei. Chemoenzymatic syntheses of sialyloligosaccharides with immobilized sialidase. Angewandte Chemie International Edition, 1991, 30(11): 1503-1505
参考文献 60
AjisakaK, FujimotoH, IsomuraM. Regioselective transglycosylation in the synthesis of oligosaccharides: comparison of β-galactosidases and sialidases of various origins. Carbohydrate Research, 1994, 259(1): 103-115
参考文献 61
GuoL, ChenX, XuL, et al. Enzymatic synthesis of 6'-sialyllactose, a dominant sialylated human milk oligosaccharide, by a novel exo-α-sialidase from Bacteroides fragilis NCTC9343. Applied & Environmental Microbiology, 2018, 84(13):pii:e00071-18
参考文献 62
ZeunerB, JersC, MikkelsenJ D, et al. Methods for improving enzymatic trans-glycosylation for synthesis of human milk oligosaccharide biomimetics. Journal of Agricultural & Food Chemistry, 2014, 62(40): 9615-9631
参考文献 63
ZeunerB, LuoJ, NyffeneggerC, et al. Optimizing the biocatalytic productivity of an engineered sialidase from Trypanosoma rangeli for 3'-sialyllactose production. Enzyme & Microbial Technology 2014, 55: 85-93
参考文献 64
HolckJ, LarsenD M, MichalakM, et al. Enzyme catalysed production of sialylated human milk oligosaccharides and galactooligosaccharides by Trypanosoma cruzi trans-sialidase. New Biotechnology, 2014, 31(2): 156-165
参考文献 65
SinghS, ScigelovaM, HallbergM L, et al. Synthesis of sialyloligosaccharides using the trans-sialidase from Trypanosoma cruzi: novel branched and disialylated products from digalactoside acceptors. Chemical Conmmunications, 2000,31(38): 1013-1014
参考文献 66
McjarrowP, GarmanJ, HarveyS. Dairy process and product. International Patent WO2003/049547 A2, 2003
参考文献 67
SchmidtD, SauerbreiB, ThiemJ. Chemoenzymatic synthesis of sialyl oligosaccharides with sialidases employing transglycosylation methodology. Journal of Organic Chemistry, 2000, 65(25): 8518-8526
参考文献 68
LeeS G, ShinD H, KimB G. Production of sialyloligosaccharides by trans-sialidase catalyzed reaction using fetuin as a sialic acid donor. Enzyme & Microbial Technology, 2002, 31(6):742-746
参考文献 69
NyffeneggerC, NordvangR T, JersC, et al. Design of Trypanosoma rangeli sialidase mutants with improved trans-sialidase activity. Plos One, 2017, 12(2): e0171585
参考文献 70
MakimuraYutaka, IshidaHideharu, KondoAkihiro, et al. Regioselective α2-3-sialylation of leand leby sialidase-catalyzed transglycosylation. Journal of Carbohydrate Chemistry, 1998, 17(6): 975-979
参考文献 71
JersC, MichalakM, LarsenD M, et al. Rational design of a new Trypanosoma rangeli trans-sialidase for efficient sialylation of glycans. PLoS One, 2014, 9(1): e83902
参考文献 72
Pierdominici-SottileG, PalmaJ, RoitbergA E. Free-energy computations identify the mutations required to confer trans-sialidase activity into Trypanosoma rangeli sialidase. Proteins, 2014, 82(3): 424-435
参考文献 73
UrashimaT, TaufikE, FukudaK, et al. Recent advances in studies on milk oligosaccharides of cows and other domestic farm animals. Bioscience Biotechnology and Biochemistry, 2013, 77(3): 455-466
目录 contents

    摘要

    唾液酸苷酶(EC.3.2.1.18)是一类重要的糖苷水解酶,在动物和微生物中广泛存在.该类酶催化寡糖或糖缀合物上非还原末端唾液酸水解,具有重要的生物学功能,如参与溶酶体降解代谢物、癌症发生、微生物致病等多种生理和病理过程.除了水解活性外,有的唾液酸苷酶还具有转糖基活性,能够以唾液酸单糖或糖苷为糖基供体,催化唾液酸转移到受体分子上,一步合成寡糖和糖苷化合物.这种合成活性对于唾液酸相关糖链的大量获得具有重要意义,有利于推动该类寡糖的基础研究及其在食品和医药中的应用.本文综述了唾液酸苷酶的结构和催化机理、生理功能、转糖基作用及其在寡糖合成中的应用.

    Abstract

    Sialidases (EC.3.2.1.18) are an important class of glycosidases that are widely found in animals and microorganisms. These enzymes catalyze the cleavage of the terminal sialic acid from various oligosaccharides and sialoglycoconjugates, and play important roles in diverse biological processes such as lysosomal catabolism, tumorigenesis and microbial pathogenesis. Generally, sialidases cleave glycosidic linkages. Under appropriate reaction conditions in vitro, however, the enzymes can catalyze the formation of the glycosidic linkages by transglycosylation reaction. This synthesis activity is important for the large acquisition of sialosides, which would be helpful to promote the basic research on their functions as well as their applications in food and pharmaceutical industries. This paper reviews the structure and catalytic mechanism of sialidases, physiological function, transglycosylation and their application in oligosaccharide synthesis.

    唾液酸家族由九碳α-酮糖醛酸及其衍生物组[1],根据5位碳上连接基团的不同可分为4类:去氨基神经氨酸(KDN)、神经氨酸(Neu)、N-乙酰神经氨酸(Neu5Ac)和N-羟乙酰神经氨酸(Neu5Gc)(图 1 ),其中后2种为主要存在形[2]. 唾液酸羟基能被乙酰基、甲基、巯基和磷酸基团广泛修饰而形成不同的类[3,4]. 唾液酸常存在于各种真核生物糖复合物(如糖蛋白和鞘糖脂)糖链非还原末端,通常以α2-3或α2-6糖苷键与半乳糖、N-乙酰半乳糖胺或N-乙酰葡萄糖胺相连形成糖复合物,也可以α2-8和/或α2-9键连接成线性同聚[5]. 在生物体内,唾液酸主要以唾液酸复合物形式存在,极少数以游离态存在. 例如,在人乳寡糖中,超过70%以唾液酸寡糖形式存在,约17%~28%结合在糖蛋白中,仅2%~3%以游离态存[6].

    图1
                            四类唾液酸结构

    图1 四类唾液酸结构

    Fig. 1 Four forms of sialic acid

    唾液酸苷酶(exo-α-sialidase,EC.3.2.1.18)催化寡糖、糖蛋白、糖脂等分子非还原末端唾液酸水解,参与许多重要的生理和病理过程,包括溶酶体降解代谢物、细胞分化、癌症发生,以及微生物营养获取、病原微生物致病等过[7]. 该类酶广泛存在于病毒、细菌、真菌、原生动物、鸟类和哺乳动物[8]. 有的唾液酸苷酶在体外还具有转糖基活性,能一步催化糖链合成反应,步骤简单且底物相对便宜,对于大量合成唾液酸相关寡糖进行生物学功能研究具有重要意义. 本文综述了唾液酸苷酶的分类、生理功能、结构与催化机理、转糖基作用及其在寡糖合成中的应用.

  • 1 唾液酸苷酶的分类及结构特征

    1

    唾液酸苷酶家族按照氨基酸序列相似性,主要分为3个家族,即GH 33、GH 34和GH 83(http://www.cazy.org). GH 33家族大多数为细菌来源的唾液酸苷酶,还包括一些简单的真核生物来源的酶;GH 34家族为一些病毒来源的唾液酸苷酶,包括流感病毒和新城疫病毒;GH 83家族包括来源于病毒的血球凝集素唾液酸苷酶.

    根据催化机理和底物特异性,唾液酸苷酶分为3类:水解唾液酸苷酶、转唾液酸苷酶(trans-sialidase)和分子内转唾液酸苷酶(intramolecular trans-sialidase,IT-sialidase[9]. 水解唾液酸苷酶主要水解糖复合物末端唾液酸,具有广泛的底物特异性,能够去除糖链末端α2-3、α2-6和α2-8键型的唾液酸;转唾液酸苷酶能通过转糖基作用将供体末端唾液酸转移到糖受体分子中,在锥虫属中研究较多,包括克氏锥虫(Trypanosoma cruzi[10]、布氏锥虫(Trypanosoma brucei[10]、刚果锥虫(Trypanosoma congolense[11]和工程化的让氏锥虫(Trypanosoma rangeli[12]. 克氏锥虫(T. cruzi)的唾液酸苷酶TcTS是第一个被鉴定的转唾液酸苷酶,为一种糖基磷脂酰肌醇锚定蛋白(glycosylphosphatidylinositol anchored proteins, GPI-APs),主要的生理学作用是去除宿主末端唾液酸并将其转移到自身胞外黏蛋白上,对宿主细胞的黏附和浸染具有重要作用,大多作用于α2-3糖苷键,对α2-6和α2-8键型也有微弱水解作[12]. 分子内转唾液酸苷酶严格作用于α2-3键型,在唾液酸分子内发生基团转移,生成2,7-苷-神经氨酸(2,7-anhydro-Neu5Ac),目前为止,仅有3种分子内转唾液酸苷酶被报道,包括来自北美水蛭(Macrobdella decora)的NanL[13]、肺炎链球菌(Streptococcus pneumonia)的NanB[14]和来自活泼瘤胃球菌(Ruminococcus gnavus)的RgNanH[15].

    已发现的唾液酸苷酶单体分子质量从40~ 150 ku不等,由催化结构域和其他一些结构域组成,包括信号肽序列、膜锚定区和底物结合模块(carbohydrate binding modules,CBMs)[5]. 大多数的唾液酸苷酶是分泌蛋白,信号肽在分泌过程中被切除;有的蛋白质存在跨膜域,为膜蛋白. CBMs存在于唾液酸苷酶的N端或C端,能够识别寡聚糖末端唾液酸,提高酶与底物结合能力,也有一些唾液酸苷酶没有任何CBMs[5]. 在催化结构域中,通常有4~6个重复的天冬氨酸盒子(Asp-box、Ser/Thr-x-Asp-x-Gly-x-Thr-Trp/Phe;x 代表任意氨基酸)(图2). 这些重复序列存在于唾液酸苷酶β折叠上,远离活性中心位点,其功能尚未明确,可能在底物结合中具有一定作用. 除此之外,FRIP(Phe-Arg-Ile/Leu-Pro)特征结构通常存在于唾液酸苷酶第一个天冬氨酸盒子上游(图2),该结构中的精氨酸与另外两个高度保守精氨酸形成精氨酸催化三联体,在唾液酸羧基定位中具有重要作[16]. 已发现的唾液酸苷酶催化域三维结构高度相似,即均为6片4次反向平行的β折叠(图3a),且活性中心也显示出高度相似性,其中,亲核体氨基酸(酪氨酸)和酸碱催化氨基酸(天冬氨酸)以及精氨酸催化三联体具有高度保守性(图2,图3b[17].

    图2
                            不同来源唾液酸苷酶序列比对

    图2 不同来源唾液酸苷酶序列比对

    Fig. 2 The sequence alignment of sialidases from different sources

    注:比对的唾液酸苷酶序列包括来自细菌多形拟杆菌(Bacteroides thetaiotaomicron)的exo-α-唾液酸苷酶BTSA(Genbank no. AAO75562.1)、真菌烟曲霉(Aspergillus fumigatus)的exo-α-唾液酸苷酶KDNase(GenBank no. EAL89414.2)、高等生物Homo sapiensexo-α-唾液酸苷酶Neu2(GenBank no. CAB41449.1)、克氏锥虫的转唾液酸苷酶TcTS(GenBank no. AAA66352.1)和活泼瘤胃球菌的分子内转唾液酸苷酶RgNanH(GenBank no. ETD19277.1). 方框中标识出保守的FRIP结构域和天冬氨酸盒子,菱形代表精氨酸三联体,三角形代表酸碱催化氨基酸天冬氨酸,箭头代表亲核体酪氨酸,五角星代表保守的谷氨酸.

    图3
                            唾液酸苷酶三维结构

    图3 唾液酸苷酶三维结构

    Fig. 3 The three dimensional structure of sialidases

    注:(a)典型的唾液酸苷酶三维结构比对,紫色为来自产气芽孢梭菌(Clostridium perfringens)的exo-α-唾液酸苷酶NanI(PDB: 2BF6),蓝色为活泼瘤胃球菌的分子内转唾液酸苷酶RgNanH(PDB: 4X4A),黄色为克氏锥虫的转唾液酸苷酶TcTS(PDB: 1S0I).(b)唾液酸苷酶NanI、RgNanH和TcTS 的活性氨基酸对比,亲核体酪氨酸、酸碱催化天冬氨酸、保守谷氨酸以及精氨酸催化三联体均在空间结构上保守.(c)唾液酸苷酶TcTS突变酶(PDB: 1S0I)催化中心的活性氨基酸与底物3′唾液酸乳糖的相互作用,包括亲核酪氨酸Y342、酸碱催化天冬氨酸D59A、保守谷氨酸E357以及精氨酸催化三联体R35、R245、R314.

  • 2 唾液酸苷酶的催化机理

    2

    唾液酸苷酶催化的反应一般遵循双置换反应机制,反应过程中形成共价的唾液酸-酶中间物,产生异头中心构型不变的反应产物,为构型保持酶. 活性中心的关键氨基酸包含一个酪氨酸残基、谷氨酸残基和天冬氨酸残基,其中酪氨酸作为催化亲核体,临近谷氨酸提供碱催化辅助亲核体攻击唾液酸C2位,天冬氨酸作为广义酸碱催[9]. 活性中心中还有其他一些氨基酸在底物结合中起到重要作[18],如精氨酸三联体与唾液酸羧基通过氢键相互作用对其进行固定.

    反应进行时,亲核体酪氨酸首先被邻近谷氨酸激活,羟基氧原子进攻底物唾液酸的C2位,形成类似SN2反应的糖基化过渡态(glycosylation transition state),酶活性中心的谷氨酸和天冬氨酸残基通过氢键作用有效稳定该过渡态. 随后,唾液酸底物中糖苷键断裂并生成唾液酸化酶中间体,接着天冬氨酸作为酸碱催化氨基酸,水分子做为亲核试剂进攻该中间体,再次经历一个类似SN2反应的过程形成去糖基化过渡态. 最后,唾液酸化酶中间体糖苷键断裂并释放唾液酸进行水解作用(图4a),当另一糖苷或分子内羟基作为亲核受体时,则进行转糖基和分子内转糖基作用,合成相应产物(图4). 能发生转糖基作用的唾液酸苷酶具有狭窄的疏水性催化槽,有利于排出活性中心水分子,从而减少水解作[19].

    图4
                            唾液酸苷酶催化机理

    图4 唾液酸苷酶催化机理

    Fig. 4 The catalytic mechanism of sialidases

    注:不同的唾液酸苷酶均通过两步双置换反应进行催化作用,即酶先与底物形成唾液酸-酶中间物,然后进行去糖基化.(a)当亲核剂R1OH为水分子发生水解反应,为另一分子糖苷则发生转糖基反应;(b)当亲核剂为唾液酸分子内7位羟基则发生分子内转糖基反应.

    除了催化氨基酸以外,唾液酸苷酶其他一些活性氨基酸在催化过程中也发挥着重要作用. 据文献报道,克氏锥虫转唾液酸苷酶TcTS催化活性中心附近有两个芳香族疏水性氨基酸Y119、W312(图3c),它们的相互堆积作用对于受体结合和唾液酸转移定位非常重要,因而将这两个氨基酸代入唾液酸苷酶特征搜索域(ΩxRDR,Ω代表芳香族氨基酸,x代表任意氨基酸),从唾液酸苷酶库中成功鉴定出一株具有较高转糖基活性的[20]. 在分子内转唾液酸苷酶催化过程中,位于唾液酸分子甘油基团下面的苏氨酸残基在分子内的唾液酸连键形成过程中具有关键作用,能形成较强的空间位阻,使得7位羟基形成轴向位置,有利于攻击C2位. 除此之外,临近精氨酸三联体还有一个疏水环,形成色氨酸-酪氨酸堆积作用. 这一特征为该类酶提供了严格的α2-3键型底物特异性,并且提供一种去溶剂化和疏水的环境,有利于分子内转糖基反应的发[9].

  • 3 唾液酸苷酶的生理功能及水解底物特异性

    3

    唾液酸苷酶广泛存在于微生物和动物中,发挥着重要生理功能,其中病毒和细菌的唾液酸苷酶研究较为广泛. 截至目前,近100种生物体中的唾液酸苷酶生化性质已得到较好描述,10多种酶晶体结构已得到解析. 表1列举了不同来源的唾液酸苷酶的性质特征.

    表1 不同来源唾液酸苷酶的性质特征

    Table 1 The characteristics of sialidases from different sources

    来 源蛋白质名称GenBank noPDB分子质量/ku最优pH键型偏好性
    细菌和真菌
    Aspergillus fumigatus Af293[7]KDNaseEAL89414.22XCY423.5α2,3>α2,6
    Macrobdella decora[13,25]MDSAAAC47263.11SLI835.5–6.0α2,3
    Streptococcus pneumoniae TIGR4[14,26]NanBAAK75766.12JKB654.5α2,3>>α2,6>α2,8
    Ruminococcus gnavus ATCC29149[15]RgNanHETD19277.14X47546.5α2,3

    Bacteroides thetaiotaomicron

    VPI-5482[27]

    BTSA

    BT0455

    AAO75562.14BBW617.0α2,6>α2,3>α2,8
    Clostridium perfringens ATCC13124[28]

    CPF0721

    CpNanI

    ABG83208.15TSP77
    Clostridium perfringens str. 13[29,30]

    NanI

    CPSA

    BAB80431.12BF6715.5α2,3>α2,6>α2,8
    Micromonospora viridifaciens[31]NedABAA00852.11EUR685.0α2,6>α2,8>α2,3
    Salmonella typhimurium TA262[32]

    NanH

    STSA

    AAA27168.11DIL425.5–7.0α2,3>>α2,6
    Streptococcus pneumoniae 6[17]NanACAA51473.15KKY1086.5–7.0α2,8>α2,6>α2,3
    Streptococcus pneumoniae G54[33]NanCACF56230.14YW082α2,3
    Vibrio cholerae 569B 395[34]

    NanH

    VcNA

    VCSA

    AAA27546.11KIT42α2,3>>α2,6
    锥虫
    Trypanosoma cruzi[35]TcTSAAA66352.11MR5765.0α2,3
    Trypanosoma rangeli[36]TrSAAAC95493.11MZ5755.0α2,3>α2,6>α2,8
    病毒
    Influenza A virus[37]NAACT33096.15NZ450.4α2,3,α2,6,α2,8
    Homo sapiens[26]Neu2CAB41449.11SNT426.0–6.5α2,3, α2,6, α2,8
    表1
                    不同来源唾液酸苷酶的性质特征

    在病毒唾液酸苷酶中,典型的是流感病毒唾液酸酶,该酶是一种表面糖蛋白,属于Ⅱ型膜蛋白,对流感病毒在宿主细胞内的传播和扩散过程具有重要作用. 每一个流感病毒表面都有大约100个呈蘑菇状的唾液酸苷酶四聚体分子,分为N1~N9共9个亚型. 组成四聚体的4个亚单位完全相同,每个亚单位一级结构由氨基端胞浆尾、非极性跨膜区、颈部和头部序列4个区域组成. 宿主细胞膜上的唾液酸是流感病毒的主要受体,流感病毒通过其表面的红血球凝集素与宿主细胞膜上唾液酸受体结合后才能进入细[21]. 随后其基因在宿主细胞内复制和表达,当成熟的流感病毒经出芽的方式脱离宿主细胞之后,病毒表面的血凝素会经由唾液酸受体与宿主细胞膜保持联系,需要由唾液酸苷酶将唾液酸水解,切断病毒与宿主细胞的最后联系,使病毒能顺利从宿主细胞中释放,继而感染下一个宿主细胞. 因此病毒唾液酸苷酶也成为流感治疗药物的一个作用靶点,针对此酶设计的奥司他韦是最著名的抗流感药物之[22].

    许多细菌都能分泌唾液酸苷酶,大多是一些致病微生物和肠道共生[23,24]. 与一般糖苷水解酶类似,细菌的唾液酸苷酶能够水解唾液酸糖复合物如糖蛋白、糖脂等末端的唾液酸,从而获得营养物质以促进自身生[38,39]. 在胃肠区(gastrointestinal tract,GI),唾液酸广泛存在于黏蛋白末[40]. 维持肠道微生物与黏蛋白的动态平衡对肠道健康至关重[40],肠道菌以黏蛋白末端O-聚糖作为代谢底物,获取营养、适应GI黏膜环[41,42]. 由于唾液酸位于糖链末端,阻止了其他糖苷水解酶对糖单元的利用,唾液酸苷酶水解释放非还原端唾液酸是黏蛋白降解过程中非常重要的第一[43]. 细菌通常由唾液酸苷酶释放宿主唾液酸,具有完整的唾液酸分解代谢途径,有涉及唾液酸代谢的基因簇存[44],如脆弱拟杆菌(Bacteroides fragilis[45]. 然而,有的菌如多形拟杆菌(Bacteroides thetaiotaomicron)VPI-5482能产唾液酸苷酶,可以释放游离唾液酸,但缺乏降解唾液酸所需的Nan操纵子而不能进一步代谢游离唾液[46],难辨梭状芽孢杆菌(Clostridium difficile)等肠道菌则相反,它们具有Nan操纵子但缺乏唾液酸苷[47],因此必须依赖于其他产唾液酸苷酶菌释放黏膜唾液酸获取营[48]. 此外,在一些致病微生物中,唾液酸苷酶作为一种潜在的致病因子在识别宿主细胞表面暴露的唾液酸中具有重要作[39].

    哺乳动物唾液酸苷酶大多数为膜锚定蛋白,异源表达和研究较为困难. 该类酶能够修饰细胞表面的唾液酸复合物,在机体生命活动中扮演着重要的角色,如参与调节细胞间的相互作用,介导细胞识别、黏附,与细胞增殖和分化、细胞膜功能以及抗原屏蔽等相[49]. 这些复杂的生物学功能直接或间接与它们对不同底物去唾液酸化有[26,50]. 人体内唾液酸苷酶主要有4种(NEUl、NEU2、NEU3和NEU4),存在于不同的组织、器官中,具有典型的亚细胞定位特点(表2). 前3种分别位于溶酶体、细胞液和质膜上,而NEU4位于溶酶体、线粒体和细胞内膜上. 它们不仅位于细胞内的不同位置,而且酶本身的性质也不同. NEUl可降解的底物只有一些寡糖和糖肽,NEU2和NEU4可以分别在中性条件下和弱酸性条件下水解糖蛋白和神经节苷酯,而NEU3只特异性地水解神经节苷酯,几乎不作用于其他底[21]. 每种唾液酸酶所表现出的独特功能与其亚细胞定位和催化性质密切相关. 溶酶体内唾液酸酶主要在酸性条件下与溶酶体蛋白酶或内切糖苷酶协同作用参与糖蛋白分解代谢,糖肽或寡糖链的降解起始步骤需要唾液酸苷酶切割末端唾液酸,而细胞液唾液酸酶主要在中性pH条件参与调节糖肽的去唾液酸化过程. 质膜相关唾液酸酶可能通过作用于细胞表面神经节苷脂而参与调节细胞生长和细胞分[51]. 有研究表明癌细胞中的唾液酸苷酶活性与癌症发生相关. 例如,乳仓鼠肾细胞(BHK)中表现出水解神经节苷脂的活性增[52],在以富含唾液酸的胎球蛋白作为底物时,能检测到乳腺癌患者癌细胞中唾液酸酶活性比正常细胞偏[53].

    表2 人源的四种唾液酸苷酶性质特[49]

    Table 2 General properties of four sialidases from Homo sapiens[49]

    唾液酸苷酶亚细胞定位水解底物最优pH氨基酸数GenBank no功 能
    Neu1溶酶体

    寡糖

    糖肽

    4.4~4.6415AAB96774.1

    溶酶体降解代谢物

    免疫功能

    胞吐作用

    吞噬

    Neu2细胞液

    糖蛋白

    神经节苷酯

    6.0~6.5380CAB41449.1神经分化
    Neu3质膜

    糖蛋白

    神经节苷酯

    4.5~4.7428AAE69072.1

    神经分化

    细胞凋亡

    黏附

    Neu4

    溶酶体

    线粒体

    细胞内膜

    神经节苷酯4.5~4.7496AAH95117.1

    神经分化

    细胞凋亡

    黏附

    表2
                    人源的四种唾液酸苷酶性质特征[49]

    不同来源的唾液酸苷酶表现出不同的底物特异性和生化性质(表1). 大多数的唾液酸苷酶对唾液酸的水解键型是非特异的,即对α2-3、α2-6、α2-8键型均具有水解作用,但对不同键型的偏好性不同. 通常情况下,病毒和细菌的唾液酸苷酶对N-乙酰神经氨酸的水解速率大于对N-羟乙酰神经氨酸的水解速度,也表现出对α2-3键型的水解速率大于α2-6键[54]. 然而,多形拟杆菌VPI-5482和产绿小单胞菌(Micromonospora viridifaciens)的唾液酸苷酶显示出对α2-6键型水解速率大于α2-3键[27,31]. 来自克氏锥虫的转唾液酸苷酶TcTS特异水解α2-3键型,对α2-6和α2-8键型只有微弱的水解作用;而来自北美水蛭的分子内转唾液酸苷酶NanL显示出对α2-3键型极其严格的水解特异性,不能水解其他任何键型的唾液酸苷底[55].

  • 4 唾液酸苷酶的转糖基作用

    4

    为了从分子水平研究不同唾液酸寡糖的生物学功能,通过适当的方法获取天然或非天然寡聚糖具有重要意义. 唾液酸苷酶在生命体内一般是进行水解作用,有的水解唾液酸苷酶在体外一定条件下也能进行转糖基作用,这种性质为唾液酸相关寡糖的合成和获得提供了新的途径.

    目前获得唾液酸寡糖的方法主要有天然提取、化学合成和酶法合成. 从天然产物中提取唾液酸糖复合物步骤复杂,获得均一足量的寡糖相当困[56]. 化学合成过程也包括许多步骤,需要通过繁琐的基团保护和去保护实现糖合成过程中的立体选择性和区域选择性,并且唾液酸是一种九碳酸性糖,比一般的六碳糖更加难以修[1]. 酶法合成步骤简单,通常采用唾液酸糖基转移酶,能以核苷糖CMP-N-乙酰神经氨酸(CMP-Neu5Ac)作为供体,一步催化合成糖苷产物,但底物价格昂贵,并且具有严格的底物特异性,即便使用核苷供体原位再生方法,也需要多种酶联合使用,步骤繁琐,耗时耗[57].

    与唾液酸糖基转移酶相比,唾液酸苷酶在催化合成反应时具有广泛的底物特异性,并且不需要昂贵的核苷唾液酸作为供体. 对硝基苯唾液酸、甲基伞形酮唾液酸、酪蛋白糖肽、唾液酸乳糖、唾液酸二糖及多聚唾液酸等都能作为该类酶的唾液酸供体,且价格都相对较便[5],尤其是酪蛋白糖肽(casein glycomacropeptide,CGMP),作为一种奶制品加工过程副产物,已在转糖基中被越来越多使[35](表3). 上述糖基供体中,酶利用硝基苯唾液酸作为糖基供体的转糖基效率高于唾液酸二糖,并且二者都优于多聚唾液酸. 来自产脲节杆菌(Arthrobacter ureafaciens)的唾液酸苷酶能以唾液酸为供体、乳糖为受体逆水解催化合成唾液酸乳糖,使用的单糖供体更为简[58].

    第一个应用于寡糖合成的唾液酸苷酶来源于霍乱弧菌,该酶利用对硝基苯唾液酸作为供体,能唾液酸化多种糖苷受体底物,包括甲基半乳糖胺、甲基葡萄糖、甲基乳糖、乳糖胺,在温和的反应条件(28℃、pH 5.5)下,产生α2-3和α2-6键型的异构产物,总产率为14%~24%,主要产物为α2-6键[59]. 其他一些常见具有转糖基性质的唾液酸苷酶菌来源包括金黄色节杆菌、脆弱拟杆菌、婴儿双岐杆菌、产气荚膜梭菌和新城疫病毒等,能以唾液酸二聚体、多聚唾液酸或对硝基苯唾液酸为供体,唾液酸化乳糖、乳糖胺等,得到的唾液酸化寡聚糖产率与酶来源及供体选择有关(表3). 唾液酸苷酶的转糖基区域选择性受酶的来源、受体结构等因素影响. Ajisaka[60]报道了来自鸡新城疫病毒的唾液酸苷酶,以对硝基苯唾液酸为供体、N-乙酰乳糖胺为受体,专一合成α2-3键,无副产物生成,而当以乳糖为受体时,合成α2-3和α2-6键型混合物,α2-3键产物约为α2-6键产物的3倍. 我们课题[61]报道了来自脆弱拟杆菌的唾液酸苷酶BfGH33C,在以唾液酸二糖或寡聚唾液酸为供体、乳糖为受体,能高效专一地合成α2-6键型寡糖产物,无异构产物生成. 值得注意的是,由于唾液酸苷酶具有水解作用,细菌和病毒来源的唾液酸苷酶通过转糖基作用合成的产物通常会被酶自身水解,导致产率不高,不超过30%[62]. 通过采用合适的供/受体比、控制反应时间、持续的产物移除、酶固定化及循环再用以及加入辅助剂(如离子溶液、有机溶剂)都能明显地提高糖苷酶转糖基性质,除此之外,采用蛋白质工程方法对其进行突变也是一种提高产量很有前景的方[63].

    表3 唾液酸苷酶合成唾液酸寡糖举例

    Table 3 Examples of the synthesis of sialyloligosaccharide by sialidases

    来 源供 体受 体受体/供体反应条件糖苷键类型及比例总产率
    Arthrobacter ureafaciens[60]唾液酸二糖乳糖1837°C,pH 5.0,5 hα2-6(100%)5.61)
    对硝基苯唾液酸乳糖537°C,pH 5.0,8 h,30%乙腈α2-6(100%)7.41)
    酪蛋白糖肽乳糖4437°C-50°C,pH 5.0-7.0,0.5 h~2 h_52)
    Clostridium perfringens[60,66,67]唾液酸二糖乳糖1837°C,pH 5.0,5 hα2-6(100%)8.51)
    唾液酸二糖N-乙酰乳糖胺1637°C,pH 5.0,5 hα2-6(100%)5.51)
    多聚唾液酸乳糖_37°C,pH 5.0,5 hα2-6(100%)2.41)
    对硝基苯唾液酸乳糖537°C,pH 5.0,8 h,30%乙腈α2-6(70%)α2-3(30%)12.41)
    对硝基苯唾液酸Tn抗原737°C,pH 5.1,36 hα2-6(100%)102)
    对硝基苯唾液酸T抗原737°C,pH 5.1,48 hα2-6(100%)4
    Newcastle disease virus[60,67]唾液酸二糖乳糖1837°C,pH 5.0,5 hα2-3(100%)9.91)
    唾液酸二糖N-乙酰乳糖胺1637°C,pH 5.0,5 hα2-3(100%)8.01)
    多聚唾液酸乳糖_37°C,pH 5.0,5 hα2-3(75%)α2-6(25%)3.61)
    对硝基苯唾液酸乳糖537°C,pH 5.0,8 h,30%乙腈α2-3(76%)α2-6(24%)10.21)
    对硝基苯唾液酸N-乙酰乳糖胺437°C,pH 5.0,8 h,30%乙腈α2-3(100%)11.71)
    对硝基苯唾液酸Tn抗原537°C,pH 5.5,20 hα2-3(100%)10
    对硝基苯唾液酸T抗原537°C,pH 5.5,20 hα2-3(100%)10
    Vibrio cholerae[60,67]唾液酸二糖乳糖1837°C,pH 5.0,5 hα2-6(100%)4.11)
    对硝基苯唾液酸乳糖537°C,pH 5.0,8 h,30%乙腈α2-3(10%)α2-6(90%)10.21)
    对硝基苯唾液酸Tn抗原730°C,pH 5.5,20 hα2-6(100%)16
    对硝基苯唾液酸T抗原730°C,pH 5.5,26 hα2-6(100%)12
    Bacteroides fragilis[61]唾液酸二糖乳糖2550°C,pH 6.5,10 minα2-6(100%)26.21)
    寡聚唾液酸乳糖_50°C,pH 6.5,10 minα2-6(100%)21.91)
    Trypanosoma cruzi[64,68,69]酪蛋白糖肽乳糖529.5°C,pH 5.8,3 hα2-3(100%)322)
    胎球蛋白乳糖330°C,pH 7.0,8 hα2-3(100%)76
    对硝基苯唾液酸乳糖630°C,pH 6.0,9 hα2-3(100%)87
    Bifidobacterium infantis[66]酪蛋白糖肽乳糖4437°C-60°C,pH 5.0~7.0_12)
    Salmonella typhimurium[67,70]对硝基苯唾液酸Tn抗原530°C,pH 5.1,24 hα2-3(95%)α2-6(5%)15
    对硝基苯唾液酸T抗原530°C,pH 5.1,24 hα2-3(93%)α2-6(7%)11
    对硝基苯唾液酸路易斯X1337°C,pH 5.0,2 h,10%乙腈α2-3(100%)9.3
    对硝基苯唾液酸路易斯A1337°C,pH 5.0,2 h,10%乙腈α2-3(100%)12
    表3
                    唾液酸苷酶合成唾液酸寡糖举例

    注:1)产率根据液相色谱(HPLC)峰面积计算,公式为:[(产物峰面积)/(产物峰面积+唾液酸峰面积)]×100%. 2)转糖基产率根据供体摩尔数计算,对于以酪蛋白糖肽和胎球蛋白为供体,供体计算基于所含唾液酸摩尔数.

    转唾液酸苷酶是一类独特的合成活性高的酶类,典型的酶有来自克氏锥虫的转唾液酸苷酶TcTS,其生化性质、反应条件及催化机理被大量研究,具有广泛的底物特异性,一些常见人工合成糖苷及含α2-3键唾液酸复合物都能作为供体,如酪蛋白糖肽、胎球蛋白、3' 唾液酸乳糖、对硝基苯唾液酸、甲基伞形酮唾液酸等. 唾液酸化的受体底物也很丰富,乳糖、N-乙酰乳糖胺、甲氧基乳糖、甲氧基半乳糖、寡聚半乳糖等都能被唾液酸化. Holck[64]采用TcTS以CGMP为供体,以乳糖、寡聚半乳糖等作为受体,产物最高产率达到40%;Singh[65]利用对硝基苯唾液酸做供体,以乳糖、N-乙酰乳糖胺、甲氧基乳糖、甲氧基半乳糖为受体,产物产率高达54%~93%.

  • 5 唾液酸苷酶分子改造

    5

    近年来,唾液酸苷酶分子进化研究主要集中在让氏锥虫唾液酸苷酶TrSA. 虽然克氏锥虫唾液酸苷酶TcTS具有很高的转糖基效率,但它是一种重要的致病因子,限制了其在食品方面的应[10],而让氏锥虫不具有致病性,其唾液酸苷酶TrSA的突变研究引起了人们的广泛兴[69].

    TrSA与TcTS氨基酸序列相似性为70%,具有类似的三维催化结构,都属于糖苷水解酶33家族,具有相同的双置换催化机[36]. 尽管TrSA与TcTS序列高度相似,但TrSA并不具有转糖基活性. Paris[12]通过理性设计鉴别出了一种具有5个氨基酸残基的突变酶(TrSA5mut),突变位点为M96V、A98P、S120Y、G249Y和Q284P,表现出微弱转唾液酸活性,仅为TcTS的0.9%. 额外引入的单点突变(I37L或G342A)能够使其转糖基活性进一步提高10倍,但对产物3′唾液酸乳糖的kcat/Km水解活性也增加. 进一步在受体结合位点替换了7个氨基酸的环形结构,即将197~203位IADMGGR替换为VTNKKKQ,能够将水解活性降低4倍,并且不影响转糖基活[71]. Pierdominici-Sottil[72]根据游离能量计算及生物信息学分析,推测了5个氨基酸残基(I37L、T39A、F59N、D285G和G342A)能够提高TrSA转糖基活性,但是并没有实验证实. 最近,Nyffenegger[69]整合以上突变位点,得到的突变酶相比TrSA5mut突变株,转糖基活性提高了13倍.

    唾液酸苷酶TrSA分子改造具有重要意义,但该酶通常利用α2-3键型唾液酸供体,以乳糖为受体,合成3′唾液酸乳糖. 然而,在一些典型寡糖结构中,如母乳低聚糖主要是6′唾液酸乳糖为主,而3′唾液酸乳糖在牛奶中占主要部[73]. 在人乳初乳中6′唾液酸乳糖和3′唾液酸乳糖含量分别为250~1 300 mg/L和90~350 mg/L,而在牛奶中其含量分别为30~243 mg/L和354~1 250 mg/L[6]. 细菌的唾液酸苷酶能催化合成6′唾液酸乳糖,对现有的细菌唾液酸苷酶进行分子改造提高α2-6唾液酸产物的产率,是唾液酸苷酶研究的重要发展方向之一,前景广阔.

  • 6 展望

    6

    由于唾液酸苷酶在生命体内具有重要的生物学功能,对各种唾液酸苷酶的研究方兴未艾. 尽管目前已发现了多种唾液酸苷酶资源,并且不少唾液酸苷酶的晶体结构已经得到解析,但大多研究仍局限于基因挖掘、生化性质描述阶段. 由于人体共生微生物与健康密切相关,微生物唾液酸苷酶作用于宿主的分子机理可能成为未来的重要研究方向之一,有助于阐述清楚唾液酸苷酶如何作用于宿主唾液酸复合物从而影响微生物致病性、以及共生宿主-微生物区系的形成机制等.

    另一方面,糖生物学和糖药物的发展推动着寡糖合成研究. 含唾液酸的糖链在生物体中扮演着重要的角色,其合成已展现出极大应用潜力,但是采用传统的化学合成方法挑战性非常大. 相比而言,酶法催化合成简便易行,具有效率高、专一性好、条件温和等突出优点. 不同来源(如细菌、真菌、病毒、椎虫)的唾液酸苷酶大多能够在大肠杆菌中异源表达,可以采用简单的亲和层析方法分离纯化,酶蛋白容易大量获得. 近20年,唾液酸苷酶已经被广泛应用于唾液酸相关的糖链合成中,主要合成一些结构较为简单的天然唾液酸寡糖结构. 持续挖掘发现新酶资源以及基于现有酶三维结构进行分子进化,提高酶转糖基活性,拓宽酶底物特异性,必将进一步拓展唾液酸苷酶的应用范围,如合成复杂的唾液酸相关糖缀合物及肿瘤表面抗原等,提升唾液酸苷酶的价值. 各种唾液酸糖链的合成和获得,有利于深入地研究其生物学功能,并对相关疾病的治疗具有重大意义.

  • 参 考 文 献

    • 1

      Chen X, Varki A. Advances in the biology and chemistry of sialic acids. ACS Chemical Biology, 2010, 5(2): 163-176

    • 2

      刘志东, 王荫榆, 郭本恒,等. 唾液酸的研究进展.食品工业科技, 2010(4): 368-373

      Liu Z D, Wang Y Y, Guo B H,et al. Science and Technology of Food Industry,2010(4): 368-373

    • 3

      Schauer R. Achievements and challenges of sialic acid research. Glycoconjugate Journal, 2000, 17(7-9): 485-499

    • 4

      张嘉宁, 汪淑晶. 唾液酸生物学与人类健康和疾病.生命科学, 2011, 23(7): 678-684

      Zhang J N, Wang S J. Chinese Bulletin of Life Sciences, 2011, 23(7): 678-684

    • 5

      Kim S, Oh D B, Kang H A, et al. Features and applications of bacterial sialidases. Applied Microbiology & Biotechnology, 2011, 91(1): 1-15

    • 6

      ten Bruggencate S J, Bovee-Oudenhoven I M, Feitsma A L, et al. Functional role and mechanisms of sialyllactose and other sialylated milk oligosaccharides. Nutrition Reviews, 2014, 72(6):377-389

    • 7

      Warwas M L, Yeung J H, Indurugalla D, et al. Cloning and characterization of a sialidase from the filamentous fungus, Aspergillus fumigatus. Glycoconjugate Journal, 2010, 27(5):533-548

    • 8

      Taylor G. Sialidases: structures, biological significance and therapeutic potential. Current Opinion in Structural Biology, 1996, 6(6): 830-827

    • 9

      Juge N, Tailford L, Owen C D. Sialidases from gut bacteria: a mini-review. Biochemical Society Transactions, 2016, 44(1): 166-175

    • 10

      Schauer R, Kamerling J P. The chemistry and biology of Trypanosomal trans-sialidases: virulence factors in Chagas disease and sleeping sickness. ChemBioChem, 2011, 12(15):2246-2264

    • 11

      Tiralongo E, Schrader S, Lange H, et al. Two trans-sialidase forms with different sialic acid transfer and sialidase activities from Trypanosoma congolense. Journal of Biological Chemistry, 2003, 278(26): 23301-23310

    • 12

      Paris G, Ratier L, Amaya M F, et al. A sialidase mutant displaying trans-sialidase activity. Journal of Molecular Biology, 2005, 345(4): 923-934

    • 13

      Luo Y, Li S C, Chou MY, et al. The crystal structure of an intramolecular trans-sialidase with a NeuAc alpha 2-3Gal specificity. Structure, 1998, 6(4): 521-530

    • 14

      Gut H, King S J, Walsh M A. Structural and functional studies of Streptococcus pneumoniae neuraminidase B: an intramolecular trans-sialidase. FEBS Letters, 2008, 582(23-24): 3348-3352

    • 15

      Tailford L E, Owen C D, Walshaw J, et al. Discovery of intramolecular trans-sialidases in human gut microbiota suggests novel mechanisms of mucosal adaptation. Nature Communications, 2015, 6(7624): 7624(DOI: 10.1038/ncomms8624)

    • 16

      Kim S, Oh D B, Kwon O, et al. Identification and functional characterization of the NanH extracellular sialidase from Corynebacterium diphtheriae. Journal of Biochemistry, 2010, 147(4): 523-533

    • 17

      Cámara M, Boulnois G J, Andrew P W, et al. A neuraminidase from Streptococcus pneumoniae has the features of a surface protein. Infection & Immunity, 1994, 62(9): 3688-3695

    • 18

      Xu G, Potter J A, Russell R J, et al. Crystal structure of the NanB sialidase from Streptococcus pneumoniae. Journal of Molecular Biology, 2008, 384(2): 436-449

    • 19

      Buschiazzo A, Amaya M F, Cremona M L, et al. The crystal structure and mode of action of trans-sialidase, a key enzyme in Trypanosoma cruzi pathogenesis. Molecular Cell, 2002, 10(4):757-768

    • 20

      Nordvang R T, Nyffenegger C, Holck J, et al. It all starts with a sandwich: identification of sialidases with trans-glycosylation activity. PLoS One, 2016, 11(7): e0158434

    • 21

      王亚娟, 邢国文. 唾液酸酶和唾液酸糖基转移酶的结构、功能与催化反应研究进展.有机化学, 2011, 31(8): 1157-1168

      Wang Y J, Xing G W. Chinese Journal of Organic Chemistry, 2011, 31(8): 1157-1168

    • 22

      Gubareva L V, Kaiser L, Hayden F G. Influenza virus neuraminidase inhibitors. Lancet, 2000, 355(9206): 827-835

    • 23

      Roggentin P, Schauer R, Hoyer L L, et al. The sialidase superfamily and its spread by horizontal gene transfer. Molecular Microbiology, 1993, 9(5): 915-921

    • 24

      Corfield T. Bacterial sialidases-roles in pathogenicity and nutrition. Glycobiology,1992,2(6): 509-521

    • 25

      Li Y T, Nakagawa H, Ross S A, et al. A novel sialidase which releases 2,7-anhydro-alpha-N-acetylneuraminic acid from sialoglycoconjugates. Journal of Biological Chemistry, 1990, 265(35): 21629-21633

    • 26

      Monti E, Preti A, Venerando B, Borsani G. Recent development in mammalian sialidase molecular biology. Neurochemical Research, 2002, 27(7-8): 649-663

    • 27

      Park K H, Kim M G, Ahn H J, et al. Structural and biochemical characterization of the broad substrate specificity of Bacteroides thetaiotaomicron commensal sialidase. Biochimica Et Biophysica Acta Proteins & Proteomics, 2013, 1834(8): 1510-1519

    • 28

      Lee Y, Youn H S, Lee J G, et al. Crystal structure of the catalytic domain of Clostridium perfringens neuraminidase in complex with a non-carbohydrate-based inhibitor, 2-(cyclohexylamino)ethanesulfonic acid. Biochemical & Biophysical Research Communications, 2017, 486(2): 470-475

    • 29

      Newstead S L, Potter J A, Wilson J C, et al. The Structure of Clostridium perfringens NanI sialidase and its catalytic intermediates. Journal of Biological Chemistry, 2008, 283(14):9080-9088

    • 30

      Roggentin P, Kleineidam R G, Schauer R. Diversity in the properties of two sialidase isoenzymes produced by Clostridium perfringens spp. Biological Chemistry Hoppe-Seyler, 1995, 376(9): 569-576

    • 31

      Aisaka K, Uwajima T. Production of neuraminidase by micromonospora viridifaciens. Fems Microbiology Letters, 1987, 44(2): 289-291

    • 32

      Crennell S J, Garman E F, Laver W G, et al. Crystal structure of a bacterial sialidase (from Salmonella typhimurium LT2) shows the same fold as an influenza virus neuraminidase. Proc Natl Acad Sci U S A, 1993, 90(21): 9852-9856

    • 33

      Owen C D, Lukacik P, Potter J A, et al. Streptococcus pneumoniae NanC: structural insights into the specificity and mechanism of a sialidase that produces a sialisede inhibitor. Journal of Biological Chemistry, 2015, 290(46): 27736-27748

    • 34

      Crennell S, Garman E, Laver G, et al. Crystal structure of Vibrio cholerae neuraminidase reveals dual lectinlike domains in addition to the catalytic domain. Structure, 1994, 2(6): 535-544

    • 35

      Wilbrink M H, ten Kate G A, van Leeuwen S S, et al. Galactosyl-lactose sialylation using Trypanosoma cruzi trans-sialidase as the biocatalyst and bovine κ-casein-derived glycomacropeptide as the donor substrate. Applied & Environmental Microbiology, 2014, 80(19): 5984-5991

    • 36

      Pontes-De-Carvalho L C, Tomlinson S, Nussenzweig V. Trypanosoma rangeli, sialidase lacks trans-sialidase activity. Molecular & Biochemical Parasitology, 1993, 62(1): 19-25

    • 37

      Pokorná J, Pachl P, Karlukova E, et al. Kinetic, thermodynamic, and structural analysis of drug resistance mutations in neuraminidase from the 2009 Pandemic Influenza Virus. Viruses, 2018, 10(7): 339-353

    • 38

      Vimr E, Lichtensteiger C. To sialylate, or not to sialylate: that is the question. Trends in Microbiology, 2002, 10(6): 254-257

    • 39

      Vimr E R, Kalivoda K A, Deszo E L, et al. Diversity of microbial sialic acid metabolism. Microbiology & Molecular Biology Reviews, 2004, 68(1): 132-153

    • 40

      Mcguckin M A, Lindén S K, Sutton P, et al. Mucin dynamics and enteric pathogens. Nature Reviews Microbiology, 2011, 9(4):265-278

    • 41

      Marcobal A, Southwick A M, Earle K A, et al. A refined palate: bacterial consumption of host glycans in the gut. Glycobiology, 2013, 23(9): 1038-1046

    • 42

      Tailford L E, Crost E H, Kavanaugh D, et al. Mucin glycan foraging in the human gut microbiome. Frontiers in Genetics, 2015, 6(6):81(DOI: 10.3389/fgene.2015.00081)

    • 43

      Robinson L S, Lewis W G, Lewis A L. The sialate O-acetylesterase EstA from gut Bacteroidetes species enables sialidase-mediated cross-species foraging of 9-O-acetylated sialoglycans. Journal of Biological Chemistry, 2017, 292(28): 11861-11872

    • 44

      Plumbridge J, Vimr E. Convergent pathways for utilization of the amino sugars, N-acetylglucosamine, N-acetylmannosamine, and, N-acetylneuraminic acid by Escherichia coli. Journal of Bacteriology, 1999, 181(1): 47-54

    • 45

      Nakayamaimaohji H, Ichimura M, Iwasa T, et al. Characterization of a gene cluster for sialoglycoconjugate utilization in Bacteroides fragilis. Journal of Medical Investigation, 2012, 59(1-2): 79-94

    • 46

      Marcobal A, Barboza M, Sonnenburg E D, et al. Bacteroides in the infant gut consume milk oligosaccharides via mucus-utilization pathways. Cell Host & Microbe, 2011, 10(5): 507-514

    • 47

      Sebaihia M, Wren B W, Mullany P, et al. The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nature Genetics, 2006, 38(7): 779-786

    • 48

      Vimr E R, Kalivoda K A, Deszo E L, et al. Diversity of microbial sialic acid metabolism. Microbiology and Molecular Biology Reviews, 2004, 68(1): 132-153

    • 49

      Miyagi T, Yamaguchi K. Mammalian sialidases: physiological and pathological roles in cellular functions. Glycobiology, 2012, 22(7):880-896

    • 50

      Buschiazzo A, Alzari P M. Structural insights into sialic acid enzymology. Current Opinion in Chemical Biology, 2008, 12(5):565-572

    • 51

      Miyagi T, Wada T, Yamaguchi K, et al. Sialidase and malignancy: a minireview. Glycoconjugate Journal, 2003, 20(3): 189-198

    • 52

      Schengrund C L, Lausch R N, Rosenberg A. Sialidase activity in transformed cells. Journal of Biological Chemistry, 1973, 248(12):4424-4428

    • 53

      Bosmann H B, Hall T C. Enzyme activity in invasive tumors of human breast and colon. Proc Natl Acad Sci U S A, 1974, 71(5):1833-1837

    • 54

      Corfield A P, Higa H, Paulson J C, et al. The specificity of viral and bacterial sialidases for alpha(2-3)- and alpha(2-6)-linked sialic acids in glycoproteins. Biochimica Et Biophysica Acta, 1983, 744(2): 121-126

    • 55

      Chou M Y, Li S C, Kiso M, et al. Purification and characterization of sialidase L, a NeuAc alpha 2-3Gal-specific sialidase. Journal of Biological Chemistry, 1994, 269(29): 18821-18826

    • 56

      Weijers C A, Franssen M C, Visser G M. Glycosyltransferase-catalyzed synthesis of bioactive oligosaccharides. Biotechnology Advances, 2008, 26(5): 436-456

    • 57

      Ichikawa Y, Liu J L C, Shen G J. A highly efficient multienzyme system for the one-step synthesis of a sialyl trisaccharide: in situ generation of sialic acid and N-acetyllactosamine coupled with regeneration of UDP-glucose, UDP-galactose and CMP-sialic acid. Journal of America Chemistry Society, 1991, 113(16): 6300-6302

    • 58

      Maru I, Ohta Y, Okamoto K, et al. Synthesis of sialyllactose from N-acetylneuraminic acid and lactose by a neuraminidase from Arthrobacter ureafaciens. Bioscience Biotechnology and Biochemistry, 1992, 56(10): 1557-1561

    • 59

      Thiem Joachim, Sauerbrei Bernd. Chemoenzymatic syntheses of sialyloligosaccharides with immobilized sialidase. Angewandte Chemie International Edition, 1991, 30(11): 1503-1505

    • 60

      Ajisaka K, Fujimoto H, Isomura M. Regioselective transglycosylation in the synthesis of oligosaccharides: comparison of β-galactosidases and sialidases of various origins. Carbohydrate Research, 1994, 259(1): 103-115

    • 61

      Guo L, Chen X, Xu L, et al. Enzymatic synthesis of 6'-sialyllactose, a dominant sialylated human milk oligosaccharide, by a novel exo-α-sialidase from Bacteroides fragilis NCTC9343. Applied & Environmental Microbiology, 2018, 84(13):pii:e00071-18

    • 62

      Zeuner B, Jers C, Mikkelsen J D, et al. Methods for improving enzymatic trans-glycosylation for synthesis of human milk oligosaccharide biomimetics. Journal of Agricultural & Food Chemistry, 2014, 62(40): 9615-9631

    • 63

      Zeuner B, Luo J, Nyffenegger C, et al. Optimizing the biocatalytic productivity of an engineered sialidase from Trypanosoma rangeli for 3'-sialyllactose production. Enzyme & Microbial Technology 2014, 55: 85-93

    • 64

      Holck J, Larsen D M, Michalak M, et al. Enzyme catalysed production of sialylated human milk oligosaccharides and galactooligosaccharides by Trypanosoma cruzi trans-sialidase. New Biotechnology, 2014, 31(2): 156-165

    • 65

      Singh S, Scigelova M, Hallberg M L, et al. Synthesis of sialyloligosaccharides using the trans-sialidase from Trypanosoma cruzi: novel branched and disialylated products from digalactoside acceptors. Chemical Conmmunications, 2000,31(38): 1013-1014

    • 66

      Mcjarrow P, Garman J, Harvey S. Dairy process and product. International Patent WO2003/049547 A2, 2003

    • 67

      Schmidt D, Sauerbrei B, Thiem J. Chemoenzymatic synthesis of sialyl oligosaccharides with sialidases employing transglycosylation methodology. Journal of Organic Chemistry, 2000, 65(25): 8518-8526

    • 68

      Lee S G, Shin D H, Kim B G. Production of sialyloligosaccharides by trans-sialidase catalyzed reaction using fetuin as a sialic acid donor. Enzyme & Microbial Technology, 2002, 31(6):742-746

    • 69

      Nyffenegger C, Nordvang R T, Jers C, et al. Design of Trypanosoma rangeli sialidase mutants with improved trans-sialidase activity. Plos One, 2017, 12(2): e0171585

    • 70

      Yutaka Makimura, Hideharu Ishida, Akihiro Kondo, et al. Regioselective α2-3-sialylation of leand leby sialidase-catalyzed transglycosylation. Journal of Carbohydrate Chemistry, 1998, 17(6): 975-979

    • 71

      Jers C, Michalak M, Larsen D M, et al. Rational design of a new Trypanosoma rangeli trans-sialidase for efficient sialylation of glycans. PLoS One, 2014, 9(1): e83902

    • 72

      Pierdominici-Sottile G, Palma J, Roitberg A E. Free-energy computations identify the mutations required to confer trans-sialidase activity into Trypanosoma rangeli sialidase. Proteins, 2014, 82(3): 424-435

    • 73

      Urashima T, Taufik E, Fukuda K, et al. Recent advances in studies on milk oligosaccharides of cows and other domestic farm animals. Bioscience Biotechnology and Biochemistry, 2013, 77(3): 455-466

郭龙成

机 构:山东大学,国家糖工程技术研究中心,微生物技术国家重点实验室,山东省糖化学生物学省级重点实验室,青岛 266237

Affiliation:National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China

角 色:第一作者

Role:First author

马忠轩

机 构:山东大学,国家糖工程技术研究中心,微生物技术国家重点实验室,山东省糖化学生物学省级重点实验室,青岛 266237

Affiliation:National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China

角 色:第一作者

Role:First author

卢丽丽

机 构:

1. 山东大学,国家糖工程技术研究中心,微生物技术国家重点实验室,山东省糖化学生物学省级重点实验室,青岛 266237

2. 华中科技大学同济医学院药学院,武汉 430074

Affiliation:

1. National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China

2. School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China

角 色:通讯作者

Role:Corresponding author

邮 箱:lililu@hust.edu.cn

作者简介:卢丽丽, E-mail:lililu@hust.edu.cn,Tel: 0532-58631402

Introduction:LU Li-Li, E-mail:lililu@hust.edu.cn, Tel: 86-532-58631402

肖敏

机 构:山东大学,国家糖工程技术研究中心,微生物技术国家重点实验室,山东省糖化学生物学省级重点实验室,青岛 266237

Affiliation:National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China

角 色:通讯作者

Role:Corresponding author

邮 箱:minxiao@sdu.edu.cn

作者简介:肖敏, E-mail:minxiao@sdu.edu.cn

Introduction:XIAO Min, E-mail:minxiao@sdu.edu.cn.

html/pibbcn/20180254/alternativeImage/c77b571b-d5fb-4246-9575-b464c61262dc-F001.jpg
html/pibbcn/20180254/alternativeImage/c77b571b-d5fb-4246-9575-b464c61262dc-F002.jpg
html/pibbcn/20180254/alternativeImage/c77b571b-d5fb-4246-9575-b464c61262dc-F003.jpg
html/pibbcn/20180254/alternativeImage/c77b571b-d5fb-4246-9575-b464c61262dc-F004.jpg
来 源蛋白质名称GenBank noPDB分子质量/ku最优pH键型偏好性
细菌和真菌
Aspergillus fumigatus Af293[7]KDNaseEAL89414.22XCY423.5α2,3>α2,6
Macrobdella decora[13,25]MDSAAAC47263.11SLI835.5–6.0α2,3
Streptococcus pneumoniae TIGR4[14,26]NanBAAK75766.12JKB654.5α2,3>>α2,6>α2,8
Ruminococcus gnavus ATCC29149[15]RgNanHETD19277.14X47546.5α2,3

Bacteroides thetaiotaomicron

VPI-5482[27]

BTSA

BT0455

AAO75562.14BBW617.0α2,6>α2,3>α2,8
Clostridium perfringens ATCC13124[28]

CPF0721

CpNanI

ABG83208.15TSP77
Clostridium perfringens str. 13[29,30]

NanI

CPSA

BAB80431.12BF6715.5α2,3>α2,6>α2,8
Micromonospora viridifaciens[31]NedABAA00852.11EUR685.0α2,6>α2,8>α2,3
Salmonella typhimurium TA262[32]

NanH

STSA

AAA27168.11DIL425.5–7.0α2,3>>α2,6
Streptococcus pneumoniae 6[17]NanACAA51473.15KKY1086.5–7.0α2,8>α2,6>α2,3
Streptococcus pneumoniae G54[33]NanCACF56230.14YW082α2,3
Vibrio cholerae 569B 395[34]

NanH

VcNA

VCSA

AAA27546.11KIT42α2,3>>α2,6
锥虫
Trypanosoma cruzi[35]TcTSAAA66352.11MR5765.0α2,3
Trypanosoma rangeli[36]TrSAAAC95493.11MZ5755.0α2,3>α2,6>α2,8
病毒
Influenza A virus[37]NAACT33096.15NZ450.4α2,3,α2,6,α2,8
Homo sapiens[26]Neu2CAB41449.11SNT426.0–6.5α2,3, α2,6, α2,8
唾液酸苷酶亚细胞定位水解底物最优pH氨基酸数GenBank no功 能
Neu1溶酶体

寡糖

糖肽

4.4~4.6415AAB96774.1

溶酶体降解代谢物

免疫功能

胞吐作用

吞噬

Neu2细胞液

糖蛋白

神经节苷酯

6.0~6.5380CAB41449.1神经分化
Neu3质膜

糖蛋白

神经节苷酯

4.5~4.7428AAE69072.1

神经分化

细胞凋亡

黏附

Neu4

溶酶体

线粒体

细胞内膜

神经节苷酯4.5~4.7496AAH95117.1

神经分化

细胞凋亡

黏附

来 源供 体受 体受体/供体反应条件糖苷键类型及比例总产率
Arthrobacter ureafaciens[60]唾液酸二糖乳糖1837°C,pH 5.0,5 hα2-6(100%)5.61)
对硝基苯唾液酸乳糖537°C,pH 5.0,8 h,30%乙腈α2-6(100%)7.41)
酪蛋白糖肽乳糖4437°C-50°C,pH 5.0-7.0,0.5 h~2 h_52)
Clostridium perfringens[60,66,67]唾液酸二糖乳糖1837°C,pH 5.0,5 hα2-6(100%)8.51)
唾液酸二糖N-乙酰乳糖胺1637°C,pH 5.0,5 hα2-6(100%)5.51)
多聚唾液酸乳糖_37°C,pH 5.0,5 hα2-6(100%)2.41)
对硝基苯唾液酸乳糖537°C,pH 5.0,8 h,30%乙腈α2-6(70%)α2-3(30%)12.41)
对硝基苯唾液酸Tn抗原737°C,pH 5.1,36 hα2-6(100%)102)
对硝基苯唾液酸T抗原737°C,pH 5.1,48 hα2-6(100%)4
Newcastle disease virus[60,67]唾液酸二糖乳糖1837°C,pH 5.0,5 hα2-3(100%)9.91)
唾液酸二糖N-乙酰乳糖胺1637°C,pH 5.0,5 hα2-3(100%)8.01)
多聚唾液酸乳糖_37°C,pH 5.0,5 hα2-3(75%)α2-6(25%)3.61)
对硝基苯唾液酸乳糖537°C,pH 5.0,8 h,30%乙腈α2-3(76%)α2-6(24%)10.21)
对硝基苯唾液酸N-乙酰乳糖胺437°C,pH 5.0,8 h,30%乙腈α2-3(100%)11.71)
对硝基苯唾液酸Tn抗原537°C,pH 5.5,20 hα2-3(100%)10
对硝基苯唾液酸T抗原537°C,pH 5.5,20 hα2-3(100%)10
Vibrio cholerae[60,67]唾液酸二糖乳糖1837°C,pH 5.0,5 hα2-6(100%)4.11)
对硝基苯唾液酸乳糖537°C,pH 5.0,8 h,30%乙腈α2-3(10%)α2-6(90%)10.21)
对硝基苯唾液酸Tn抗原730°C,pH 5.5,20 hα2-6(100%)16
对硝基苯唾液酸T抗原730°C,pH 5.5,26 hα2-6(100%)12
Bacteroides fragilis[61]唾液酸二糖乳糖2550°C,pH 6.5,10 minα2-6(100%)26.21)
寡聚唾液酸乳糖_50°C,pH 6.5,10 minα2-6(100%)21.91)
Trypanosoma cruzi[64,68,69]酪蛋白糖肽乳糖529.5°C,pH 5.8,3 hα2-3(100%)322)
胎球蛋白乳糖330°C,pH 7.0,8 hα2-3(100%)76
对硝基苯唾液酸乳糖630°C,pH 6.0,9 hα2-3(100%)87
Bifidobacterium infantis[66]酪蛋白糖肽乳糖4437°C-60°C,pH 5.0~7.0_12)
Salmonella typhimurium[67,70]对硝基苯唾液酸Tn抗原530°C,pH 5.1,24 hα2-3(95%)α2-6(5%)15
对硝基苯唾液酸T抗原530°C,pH 5.1,24 hα2-3(93%)α2-6(7%)11
对硝基苯唾液酸路易斯X1337°C,pH 5.0,2 h,10%乙腈α2-3(100%)9.3
对硝基苯唾液酸路易斯A1337°C,pH 5.0,2 h,10%乙腈α2-3(100%)12

图1 四类唾液酸结构

Fig. 1 Four forms of sialic acid

图2 不同来源唾液酸苷酶序列比对

Fig. 2 The sequence alignment of sialidases from different sources

图3 唾液酸苷酶三维结构

Fig. 3 The three dimensional structure of sialidases

图4 唾液酸苷酶催化机理

Fig. 4 The catalytic mechanism of sialidases

表1 不同来源唾液酸苷酶的性质特征

Table 1 The characteristics of sialidases from different sources

表2 人源的四种唾液酸苷酶性质特[49]

Table 2 General properties of four sialidases from Homo sapiens[49]

表3 唾液酸苷酶合成唾液酸寡糖举例

Table 3 Examples of the synthesis of sialyloligosaccharide by sialidases

image /

无注解

比对的唾液酸苷酶序列包括来自细菌多形拟杆菌(Bacteroides thetaiotaomicron)的exo-α-唾液酸苷酶BTSA(Genbank no. AAO75562.1)、真菌烟曲霉(Aspergillus fumigatus)的exo-α-唾液酸苷酶KDNase(GenBank no. EAL89414.2)、高等生物Homo sapiensexo-α-唾液酸苷酶Neu2(GenBank no. CAB41449.1)、克氏锥虫的转唾液酸苷酶TcTS(GenBank no. AAA66352.1)和活泼瘤胃球菌的分子内转唾液酸苷酶RgNanH(GenBank no. ETD19277.1). 方框中标识出保守的FRIP结构域和天冬氨酸盒子,菱形代表精氨酸三联体,三角形代表酸碱催化氨基酸天冬氨酸,箭头代表亲核体酪氨酸,五角星代表保守的谷氨酸.

(a)典型的唾液酸苷酶三维结构比对,紫色为来自产气芽孢梭菌(Clostridium perfringens)的exo-α-唾液酸苷酶NanI(PDB: 2BF6),蓝色为活泼瘤胃球菌的分子内转唾液酸苷酶RgNanH(PDB: 4X4A),黄色为克氏锥虫的转唾液酸苷酶TcTS(PDB: 1S0I).(b)唾液酸苷酶NanI、RgNanH和TcTS 的活性氨基酸对比,亲核体酪氨酸、酸碱催化天冬氨酸、保守谷氨酸以及精氨酸催化三联体均在空间结构上保守.(c)唾液酸苷酶TcTS突变酶(PDB: 1S0I)催化中心的活性氨基酸与底物3′唾液酸乳糖的相互作用,包括亲核酪氨酸Y342、酸碱催化天冬氨酸D59A、保守谷氨酸E357以及精氨酸催化三联体R35、R245、R314.

不同的唾液酸苷酶均通过两步双置换反应进行催化作用,即酶先与底物形成唾液酸-酶中间物,然后进行去糖基化.(a)当亲核剂R1OH为水分子发生水解反应,为另一分子糖苷则发生转糖基反应;(b)当亲核剂为唾液酸分子内7位羟基则发生分子内转糖基反应.

无注解

无注解

1)产率根据液相色谱(HPLC)峰面积计算,公式为:[(产物峰面积)/(产物峰面积+唾液酸峰面积)]×100%. 2)转糖基产率根据供体摩尔数计算,对于以酪蛋白糖肽和胎球蛋白为供体,供体计算基于所含唾液酸摩尔数.

  • 参 考 文 献

    • 1

      Chen X, Varki A. Advances in the biology and chemistry of sialic acids. ACS Chemical Biology, 2010, 5(2): 163-176

    • 2

      刘志东, 王荫榆, 郭本恒,等. 唾液酸的研究进展.食品工业科技, 2010(4): 368-373

      Liu Z D, Wang Y Y, Guo B H,et al. Science and Technology of Food Industry,2010(4): 368-373

    • 3

      Schauer R. Achievements and challenges of sialic acid research. Glycoconjugate Journal, 2000, 17(7-9): 485-499

    • 4

      张嘉宁, 汪淑晶. 唾液酸生物学与人类健康和疾病.生命科学, 2011, 23(7): 678-684

      Zhang J N, Wang S J. Chinese Bulletin of Life Sciences, 2011, 23(7): 678-684

    • 5

      Kim S, Oh D B, Kang H A, et al. Features and applications of bacterial sialidases. Applied Microbiology & Biotechnology, 2011, 91(1): 1-15

    • 6

      ten Bruggencate S J, Bovee-Oudenhoven I M, Feitsma A L, et al. Functional role and mechanisms of sialyllactose and other sialylated milk oligosaccharides. Nutrition Reviews, 2014, 72(6):377-389

    • 7

      Warwas M L, Yeung J H, Indurugalla D, et al. Cloning and characterization of a sialidase from the filamentous fungus, Aspergillus fumigatus. Glycoconjugate Journal, 2010, 27(5):533-548

    • 8

      Taylor G. Sialidases: structures, biological significance and therapeutic potential. Current Opinion in Structural Biology, 1996, 6(6): 830-827

    • 9

      Juge N, Tailford L, Owen C D. Sialidases from gut bacteria: a mini-review. Biochemical Society Transactions, 2016, 44(1): 166-175

    • 10

      Schauer R, Kamerling J P. The chemistry and biology of Trypanosomal trans-sialidases: virulence factors in Chagas disease and sleeping sickness. ChemBioChem, 2011, 12(15):2246-2264

    • 11

      Tiralongo E, Schrader S, Lange H, et al. Two trans-sialidase forms with different sialic acid transfer and sialidase activities from Trypanosoma congolense. Journal of Biological Chemistry, 2003, 278(26): 23301-23310

    • 12

      Paris G, Ratier L, Amaya M F, et al. A sialidase mutant displaying trans-sialidase activity. Journal of Molecular Biology, 2005, 345(4): 923-934

    • 13

      Luo Y, Li S C, Chou MY, et al. The crystal structure of an intramolecular trans-sialidase with a NeuAc alpha 2-3Gal specificity. Structure, 1998, 6(4): 521-530

    • 14

      Gut H, King S J, Walsh M A. Structural and functional studies of Streptococcus pneumoniae neuraminidase B: an intramolecular trans-sialidase. FEBS Letters, 2008, 582(23-24): 3348-3352

    • 15

      Tailford L E, Owen C D, Walshaw J, et al. Discovery of intramolecular trans-sialidases in human gut microbiota suggests novel mechanisms of mucosal adaptation. Nature Communications, 2015, 6(7624): 7624(DOI: 10.1038/ncomms8624)

    • 16

      Kim S, Oh D B, Kwon O, et al. Identification and functional characterization of the NanH extracellular sialidase from Corynebacterium diphtheriae. Journal of Biochemistry, 2010, 147(4): 523-533

    • 17

      Cámara M, Boulnois G J, Andrew P W, et al. A neuraminidase from Streptococcus pneumoniae has the features of a surface protein. Infection & Immunity, 1994, 62(9): 3688-3695

    • 18

      Xu G, Potter J A, Russell R J, et al. Crystal structure of the NanB sialidase from Streptococcus pneumoniae. Journal of Molecular Biology, 2008, 384(2): 436-449

    • 19

      Buschiazzo A, Amaya M F, Cremona M L, et al. The crystal structure and mode of action of trans-sialidase, a key enzyme in Trypanosoma cruzi pathogenesis. Molecular Cell, 2002, 10(4):757-768

    • 20

      Nordvang R T, Nyffenegger C, Holck J, et al. It all starts with a sandwich: identification of sialidases with trans-glycosylation activity. PLoS One, 2016, 11(7): e0158434

    • 21

      王亚娟, 邢国文. 唾液酸酶和唾液酸糖基转移酶的结构、功能与催化反应研究进展.有机化学, 2011, 31(8): 1157-1168

      Wang Y J, Xing G W. Chinese Journal of Organic Chemistry, 2011, 31(8): 1157-1168

    • 22

      Gubareva L V, Kaiser L, Hayden F G. Influenza virus neuraminidase inhibitors. Lancet, 2000, 355(9206): 827-835

    • 23

      Roggentin P, Schauer R, Hoyer L L, et al. The sialidase superfamily and its spread by horizontal gene transfer. Molecular Microbiology, 1993, 9(5): 915-921

    • 24

      Corfield T. Bacterial sialidases-roles in pathogenicity and nutrition. Glycobiology,1992,2(6): 509-521

    • 25

      Li Y T, Nakagawa H, Ross S A, et al. A novel sialidase which releases 2,7-anhydro-alpha-N-acetylneuraminic acid from sialoglycoconjugates. Journal of Biological Chemistry, 1990, 265(35): 21629-21633

    • 26

      Monti E, Preti A, Venerando B, Borsani G. Recent development in mammalian sialidase molecular biology. Neurochemical Research, 2002, 27(7-8): 649-663

    • 27

      Park K H, Kim M G, Ahn H J, et al. Structural and biochemical characterization of the broad substrate specificity of Bacteroides thetaiotaomicron commensal sialidase. Biochimica Et Biophysica Acta Proteins & Proteomics, 2013, 1834(8): 1510-1519

    • 28

      Lee Y, Youn H S, Lee J G, et al. Crystal structure of the catalytic domain of Clostridium perfringens neuraminidase in complex with a non-carbohydrate-based inhibitor, 2-(cyclohexylamino)ethanesulfonic acid. Biochemical & Biophysical Research Communications, 2017, 486(2): 470-475

    • 29

      Newstead S L, Potter J A, Wilson J C, et al. The Structure of Clostridium perfringens NanI sialidase and its catalytic intermediates. Journal of Biological Chemistry, 2008, 283(14):9080-9088

    • 30

      Roggentin P, Kleineidam R G, Schauer R. Diversity in the properties of two sialidase isoenzymes produced by Clostridium perfringens spp. Biological Chemistry Hoppe-Seyler, 1995, 376(9): 569-576

    • 31

      Aisaka K, Uwajima T. Production of neuraminidase by micromonospora viridifaciens. Fems Microbiology Letters, 1987, 44(2): 289-291

    • 32

      Crennell S J, Garman E F, Laver W G, et al. Crystal structure of a bacterial sialidase (from Salmonella typhimurium LT2) shows the same fold as an influenza virus neuraminidase. Proc Natl Acad Sci U S A, 1993, 90(21): 9852-9856

    • 33

      Owen C D, Lukacik P, Potter J A, et al. Streptococcus pneumoniae NanC: structural insights into the specificity and mechanism of a sialidase that produces a sialisede inhibitor. Journal of Biological Chemistry, 2015, 290(46): 27736-27748

    • 34

      Crennell S, Garman E, Laver G, et al. Crystal structure of Vibrio cholerae neuraminidase reveals dual lectinlike domains in addition to the catalytic domain. Structure, 1994, 2(6): 535-544

    • 35

      Wilbrink M H, ten Kate G A, van Leeuwen S S, et al. Galactosyl-lactose sialylation using Trypanosoma cruzi trans-sialidase as the biocatalyst and bovine κ-casein-derived glycomacropeptide as the donor substrate. Applied & Environmental Microbiology, 2014, 80(19): 5984-5991

    • 36

      Pontes-De-Carvalho L C, Tomlinson S, Nussenzweig V. Trypanosoma rangeli, sialidase lacks trans-sialidase activity. Molecular & Biochemical Parasitology, 1993, 62(1): 19-25

    • 37

      Pokorná J, Pachl P, Karlukova E, et al. Kinetic, thermodynamic, and structural analysis of drug resistance mutations in neuraminidase from the 2009 Pandemic Influenza Virus. Viruses, 2018, 10(7): 339-353

    • 38

      Vimr E, Lichtensteiger C. To sialylate, or not to sialylate: that is the question. Trends in Microbiology, 2002, 10(6): 254-257

    • 39

      Vimr E R, Kalivoda K A, Deszo E L, et al. Diversity of microbial sialic acid metabolism. Microbiology & Molecular Biology Reviews, 2004, 68(1): 132-153

    • 40

      Mcguckin M A, Lindén S K, Sutton P, et al. Mucin dynamics and enteric pathogens. Nature Reviews Microbiology, 2011, 9(4):265-278

    • 41

      Marcobal A, Southwick A M, Earle K A, et al. A refined palate: bacterial consumption of host glycans in the gut. Glycobiology, 2013, 23(9): 1038-1046

    • 42

      Tailford L E, Crost E H, Kavanaugh D, et al. Mucin glycan foraging in the human gut microbiome. Frontiers in Genetics, 2015, 6(6):81(DOI: 10.3389/fgene.2015.00081)

    • 43

      Robinson L S, Lewis W G, Lewis A L. The sialate O-acetylesterase EstA from gut Bacteroidetes species enables sialidase-mediated cross-species foraging of 9-O-acetylated sialoglycans. Journal of Biological Chemistry, 2017, 292(28): 11861-11872

    • 44

      Plumbridge J, Vimr E. Convergent pathways for utilization of the amino sugars, N-acetylglucosamine, N-acetylmannosamine, and, N-acetylneuraminic acid by Escherichia coli. Journal of Bacteriology, 1999, 181(1): 47-54

    • 45

      Nakayamaimaohji H, Ichimura M, Iwasa T, et al. Characterization of a gene cluster for sialoglycoconjugate utilization in Bacteroides fragilis. Journal of Medical Investigation, 2012, 59(1-2): 79-94

    • 46

      Marcobal A, Barboza M, Sonnenburg E D, et al. Bacteroides in the infant gut consume milk oligosaccharides via mucus-utilization pathways. Cell Host & Microbe, 2011, 10(5): 507-514

    • 47

      Sebaihia M, Wren B W, Mullany P, et al. The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nature Genetics, 2006, 38(7): 779-786

    • 48

      Vimr E R, Kalivoda K A, Deszo E L, et al. Diversity of microbial sialic acid metabolism. Microbiology and Molecular Biology Reviews, 2004, 68(1): 132-153

    • 49

      Miyagi T, Yamaguchi K. Mammalian sialidases: physiological and pathological roles in cellular functions. Glycobiology, 2012, 22(7):880-896

    • 50

      Buschiazzo A, Alzari P M. Structural insights into sialic acid enzymology. Current Opinion in Chemical Biology, 2008, 12(5):565-572

    • 51

      Miyagi T, Wada T, Yamaguchi K, et al. Sialidase and malignancy: a minireview. Glycoconjugate Journal, 2003, 20(3): 189-198

    • 52

      Schengrund C L, Lausch R N, Rosenberg A. Sialidase activity in transformed cells. Journal of Biological Chemistry, 1973, 248(12):4424-4428

    • 53

      Bosmann H B, Hall T C. Enzyme activity in invasive tumors of human breast and colon. Proc Natl Acad Sci U S A, 1974, 71(5):1833-1837

    • 54

      Corfield A P, Higa H, Paulson J C, et al. The specificity of viral and bacterial sialidases for alpha(2-3)- and alpha(2-6)-linked sialic acids in glycoproteins. Biochimica Et Biophysica Acta, 1983, 744(2): 121-126

    • 55

      Chou M Y, Li S C, Kiso M, et al. Purification and characterization of sialidase L, a NeuAc alpha 2-3Gal-specific sialidase. Journal of Biological Chemistry, 1994, 269(29): 18821-18826

    • 56

      Weijers C A, Franssen M C, Visser G M. Glycosyltransferase-catalyzed synthesis of bioactive oligosaccharides. Biotechnology Advances, 2008, 26(5): 436-456

    • 57

      Ichikawa Y, Liu J L C, Shen G J. A highly efficient multienzyme system for the one-step synthesis of a sialyl trisaccharide: in situ generation of sialic acid and N-acetyllactosamine coupled with regeneration of UDP-glucose, UDP-galactose and CMP-sialic acid. Journal of America Chemistry Society, 1991, 113(16): 6300-6302

    • 58

      Maru I, Ohta Y, Okamoto K, et al. Synthesis of sialyllactose from N-acetylneuraminic acid and lactose by a neuraminidase from Arthrobacter ureafaciens. Bioscience Biotechnology and Biochemistry, 1992, 56(10): 1557-1561

    • 59

      Thiem Joachim, Sauerbrei Bernd. Chemoenzymatic syntheses of sialyloligosaccharides with immobilized sialidase. Angewandte Chemie International Edition, 1991, 30(11): 1503-1505

    • 60

      Ajisaka K, Fujimoto H, Isomura M. Regioselective transglycosylation in the synthesis of oligosaccharides: comparison of β-galactosidases and sialidases of various origins. Carbohydrate Research, 1994, 259(1): 103-115

    • 61

      Guo L, Chen X, Xu L, et al. Enzymatic synthesis of 6'-sialyllactose, a dominant sialylated human milk oligosaccharide, by a novel exo-α-sialidase from Bacteroides fragilis NCTC9343. Applied & Environmental Microbiology, 2018, 84(13):pii:e00071-18

    • 62

      Zeuner B, Jers C, Mikkelsen J D, et al. Methods for improving enzymatic trans-glycosylation for synthesis of human milk oligosaccharide biomimetics. Journal of Agricultural & Food Chemistry, 2014, 62(40): 9615-9631

    • 63

      Zeuner B, Luo J, Nyffenegger C, et al. Optimizing the biocatalytic productivity of an engineered sialidase from Trypanosoma rangeli for 3'-sialyllactose production. Enzyme & Microbial Technology 2014, 55: 85-93

    • 64

      Holck J, Larsen D M, Michalak M, et al. Enzyme catalysed production of sialylated human milk oligosaccharides and galactooligosaccharides by Trypanosoma cruzi trans-sialidase. New Biotechnology, 2014, 31(2): 156-165

    • 65

      Singh S, Scigelova M, Hallberg M L, et al. Synthesis of sialyloligosaccharides using the trans-sialidase from Trypanosoma cruzi: novel branched and disialylated products from digalactoside acceptors. Chemical Conmmunications, 2000,31(38): 1013-1014

    • 66

      Mcjarrow P, Garman J, Harvey S. Dairy process and product. International Patent WO2003/049547 A2, 2003

    • 67

      Schmidt D, Sauerbrei B, Thiem J. Chemoenzymatic synthesis of sialyl oligosaccharides with sialidases employing transglycosylation methodology. Journal of Organic Chemistry, 2000, 65(25): 8518-8526

    • 68

      Lee S G, Shin D H, Kim B G. Production of sialyloligosaccharides by trans-sialidase catalyzed reaction using fetuin as a sialic acid donor. Enzyme & Microbial Technology, 2002, 31(6):742-746

    • 69

      Nyffenegger C, Nordvang R T, Jers C, et al. Design of Trypanosoma rangeli sialidase mutants with improved trans-sialidase activity. Plos One, 2017, 12(2): e0171585

    • 70

      Yutaka Makimura, Hideharu Ishida, Akihiro Kondo, et al. Regioselective α2-3-sialylation of leand leby sialidase-catalyzed transglycosylation. Journal of Carbohydrate Chemistry, 1998, 17(6): 975-979

    • 71

      Jers C, Michalak M, Larsen D M, et al. Rational design of a new Trypanosoma rangeli trans-sialidase for efficient sialylation of glycans. PLoS One, 2014, 9(1): e83902

    • 72

      Pierdominici-Sottile G, Palma J, Roitberg A E. Free-energy computations identify the mutations required to confer trans-sialidase activity into Trypanosoma rangeli sialidase. Proteins, 2014, 82(3): 424-435

    • 73

      Urashima T, Taufik E, Fukuda K, et al. Recent advances in studies on milk oligosaccharides of cows and other domestic farm animals. Bioscience Biotechnology and Biochemistry, 2013, 77(3): 455-466