en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
LiS, YangZ, ShenJ, et al. Adoptive therapy with CAR redirected T cells for hematological malignancies. Sci China Life Sci, 2016, 59(4): 370-378
参考文献 2
ParkJ H, RivièreI, GonenM, et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med. 2018, 378(5): 449-459
参考文献 3
BrentjensR, DavilaM L, RiviereI, et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med. 2013, 5(177): 177ra38
参考文献 4
LeeD W, KochenderferJ N, Stetler-StevensonM, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet , 2015, 385(9967): 517-528
参考文献 5
MorganR A, YangJ C, KitanoM, et al. Case report of a serious adverse event following the administration of t cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther, 2010, 18(4): 843-851
参考文献 6
KuwanaY, AsakuraY, UtsunomiyaN, et al. Expression of chimeric receptor composed of immunoglobulin-derived V resions and T-cell receptor-derived C regions. Biochemical and Biophysical Research Communications,1988, 149(3): 960-968
参考文献 7
C.JensenM, RiddellS R. Design and implementation of adoptive therapy with chimeric antigen receptor-modified T cells. Immunol Rev, 2014, 257(1): 127-144
参考文献 8
A.HombachA, HeidersJ, FoppeM, et al. OX40 costimulation by a chimeric antigen receptor abrogates CD28 and IL-2 induced IL-10 secretion by redirected CD4+ T cells. Oncoimmunology, 2012, 1(4): 458-466
参考文献 9
PanJ, YangJ F, DengB P, et al. High efficacy and safety of low-dose CD19-directed CAR-T cell therapy in 51 refractory or relapsed B acute lymphoblastic leukemia patients. Leukemia, 2017, 31(12): 2587-2593
参考文献 10
BeattyG L, HaasA R, MausM V, et al. Mesothelin-specific chimeric antigen receptor mRNA- engineered T cells induce anti-tumor activity in solid malignancies gregory. Cancer Immunol Res, 2015, 2(2): 112-120
参考文献 11
ZhaoY, MoonE, CarpenitoC, et al. Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor. Cancer Res, 2011, 70(22): 9053-9061
参考文献 12
ZhangC, WangZ, YangZ, et al. Phase I escalating-dose trial of CAR-T therapy targeting CEA+ metastatic colorectal cancers. Mol Ther, 2017, 25(5): 1248-1258
参考文献 13
PereraL P, ZhangM, NakagawaM, et al. Chimeric antigen receptor modified T cells that target chemokine receptor CCR4 as a therapeutic modality for T-cell malignancies. Am J Hematol, 2017, 92(9): 892-901
参考文献 14
AhmedN, SalsmanV S, KewY, et al. HER2-specific T cells target primary Glioblastoma stem cells and induce regression of autologous experimental tumors. Clin Cancer Res, 2010, 16(2): 474-485
参考文献 15
TurtleC J, HanafiL, BergerC, et al. CD19 CAR-T cells of defined CD4+ ∶CD8+ composition in adult B cell ALL patients. J Clin Invest, 2016, 1(6): 2123-2138
参考文献 16
StephanA G, MichaelK, DavidB, et al. Chimeric antigen receptor-modified T Cells for acute lymphoid leukemia. N Engl J Med, 2013, 368(16): 1509-1518
参考文献 17
MaudeS L, FreyN, ShawP A, et al. Chimeric antigen receptor T Cells for sustained remissions in leukemia. N Engl J Med, 2014, 371(16): 1507-1517
参考文献 18
GardnerR, WuD, CherianS, et al. Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood, 2016, 127(20): 2406-2411
参考文献 19
LiS, ZhangJ, WangM, et al. Treatment of acute lymphoblastic leukaemia with the second generation of CD19 CAR-T containing either CD28 or 4-1BB. Br J Haematol, 2018, 181(3): 360-371
参考文献 20
FreyN V, PorterDL. CAR T-cells merge into the fast lane of cancer care. Am J Hematol, 2016, 91(1): 146-150
参考文献 21
DavilaM L, RiviereI, WangX, et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med, 2014, 6(224): 224ra25
参考文献 22
van DongenJ J, KrissansenG W, Wolvers-TetteroI L, et al. Cytoplasmic expression of the CD3 antigen as a diagnostic marker for immature T-cell malignancies. Blood, 1988, 71(3):603-612
参考文献 23
MamonkinM, RouceR H, TashiroH, et al. A T-cell-directed chimeric antigen receptor for the selective treatment of T-cell malignancies. Blood, 2015, 126(8): 983-992
参考文献 24
LamersC H, SleijferS, SteenbergenS V, et al. Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity. Mol Ther, 2013, 21(4): 904-912
参考文献 25
LouisC U, SavoldoB, DottiG, et al. Antitumor activity and long-term fate of chimeric antigen receptor – positive T cells in patients with neuroblastoma. Blood, 2011, 14(11): 1324-1334
参考文献 26
BrownC E, AlizadehD, StarrR, et al. Regression of glioblastoma after chimeric antigen receptor T-Cell therapy. N Engl J Med, 2016, 375(26): 2561-2569
参考文献 27
KatzS C, BurgaR A, McCormackE, et al. Phase I hepatic immunotherapy for metastases study of intra- arterial chimeric antigen receptor modified T cell therapy for CEA+ liver metastases. Clin Cancer Res, 2015, 21(14):3149-3159
参考文献 28
NeelapuS S, TummalaS, KebriaeiP, et al. Chimeric antigen receptor T-cell therapy-assessment and management of toxicities. Nat Rev Clin Oncol, 2018, 15(1): 47-62
参考文献 29
XuX J, TangY M. Cytokine release syndrome in cancer immunotherapy with chimeric antigen receptor engineered T cells. Cancer Lett, 2014, 343(2): 172-178
参考文献 30
KebriaeiP, SinghH, HulsM H, et al. Phase I trials using sleeping beauty to generate CD19-specific CAR T cells. J Clin Invest,2016, 126(9): 3363-3376
参考文献 31
JinC, FotakiG, RamachandranM, et al. Safe engineering of CAR T cells for adoptive cell therapy of cancer using long-term episomal gene transfer. EMBO Mol. Med, 2016, 8(7): 702-711
参考文献 32
MengX, LiuY, ZhangJ, et al. PD-1/PD-L1 checkpoint blockades in non-small cell lung cancer: new development and challenges. Cancer Lett, 2017, 405: 29-37
参考文献 33
TengM W L, NgiowS F, RibasA, et al. Classifying cancers based on T cell infiltration and PD-L1. Cancer Res, 2016, 75(11): 2139-2145
参考文献 34
JiangX, WangJ, DengX, et al. Role of the tumor microenvironment in PD- L1 / PD-1-mediated tumor immune escape. Mol. Cancer, 2019, 18(1): 10
参考文献 35
MitsuikiN, SchwabC, GrimbacherB. What did we learn from CTLA­4 insufficiency on the human immune system?. Immunol Rev, 2018, 287(1): 33-49
参考文献 36
RaviR, NoonanK A, PhamV, et al. Bifunctional immune checkpoint-targeted antibody- ligand traps that simultaneously disable TGFβ enhance the efficacy of cancer immunotherapy. Nat. Commun, 2018, 9(1): 741
参考文献 37
ChenW, DijkeP. Immunoregulation by membersof the TGFβ superfamily. Nature Publishing Group, 2016, 16(12): 723-740
参考文献 38
MoonE K, WangL, DolfiD V, et al. Multifactorial T cell hypofunction that is reversible can limit the efficacy of chimeric antibody receptor-transduced human T cells in solid tumors. Clin Cancer Res, 2014, 20(16): 4262-4273
参考文献 39
SiriwonN, KimY J, Siegler Eet al. CAR-T cells surface-engineered with drug-encapsulated nanoparticles can ameliorate intratumoral T-cell hypofunction. Cancer Immunol Res, 2018, 6(7): 812-824
参考文献 40
RuellaM, BarrettD M, KenderianS S, et al. Dual CD19 and CD123 targeting prevents antigen-loss relapses after CD19-directed immunotherapies. J Clin Invest, 2016, 126(10): 3814-3826
参考文献 41
MartyniszynA, KrahlA, AndreM C, et al. CD20-CD19 Bispecific CAR T cells for the treatment of B-cell malignancies. Hum Gene Ther, 2017, 28(12): 1147-1157
参考文献 42
JohnS, ChenH, DengM, et al. A novel anti-LILRB4 CAR-T cell for the treatment of monocytic AML. Mol. Ther, 2018, 26(10): 1-9
参考文献 43
CrosslandD L, DenningW L, AngS, et al. Antitumor activity of CD56-chimeric antigen receptor T cells in neuroblastoma and SCLC models. Oncogene, 2018, 37(27): 3686-3697
目录 contents

    摘要

    嵌合抗原受体T细胞免疫疗法(CAR-T疗法)是一种治疗肿瘤的新免疫疗法,通过向患者自身T细胞中导入已被修饰的CAR基因,使T细胞表达结合肿瘤表面抗原的特异性受体来实现对肿瘤的精准治疗. 目前已发展到第四代. 该免疫疗法在血液瘤和实体瘤治疗中都有一定疗效,同时也存在一些待解决难题. 本文就近年来CAR-T在血液瘤和实体瘤中的研究治疗进展及存在的问题进行综述.

    Abstract

    CAR-T therapy is a novel therapy to treat tumors. It has realized the precise treatment of tumors by transforming the modified CAR gene into patients’ self T cells, driving the T cells expressing specific antibodies which are able to bind surface antigens to tumors. CAR-T has been in its fourth generation since put forward. This therapy exists both certain effects and risks in blood tumors as well as solid tumors but exposes some difficulty waited to be solved. In this review, we describe the treatment and existing problems of CAR-T therapy in blood tumors and solid tumors.

    嵌合抗原受体T细胞免疫疗法(CAR-T)是将嵌合抗原受体(CARs)导入T细胞,通过对癌细胞表面抗原进行特异性识别达到对癌细胞特异性杀伤效果,从而实现对癌症的特异性治疗. CAR-T疗法经不断研究改进,已经由仅有一个CD3信号分子的第一代发展到了含多个信号分子的第四代. 经修饰的CAR-T可直接特异性识别并结合癌细胞表面的肿瘤相关抗原(TAA)无需抗原递呈细胞(APC)的参与,克服了主要组织相容性复合体(MHC)的限制,表现出更好的抗肿瘤活性.

    近年来科学家们越来越重视利用CAR-T疗法对癌症的治疗,特别是对血液瘤的临床研[1]. 纪念斯隆凯特林癌症中心(MSKCC)对53名急性B淋巴细胞白血病(B-ALL)复发的患者注射19-28z CAR-T细胞,治疗后14例出现严重的细胞因子释放综合征(CRS),1名患者死亡,83%达到完全缓解(CR)[2]. Brentjens[3]对5例白血病细胞微小残留病变(MRD)阳性或形态学疾病的B-ALL患者实施CAR-T治疗,所有患者表现为肿瘤快速消除并达到MRD阴性完全缓解. 美国国立癌症研究所(NCI)为确定用CD19 CAR-T细胞治疗儿童和青年的B细胞恶性肿瘤的反应性、毒性、最大耐受剂量、缓解率和生物学相关性,对21名患者输入CD19 CAR-T细胞,所有患者在注射前均接受氟达拉滨和环磷酰胺药物治疗. 发现2012年7月2日至2014年6月20日期间19名患者成功接受了规定剂量的治疗,可行性达到90%,但偶尔也出现发热、细胞因子风暴等毒性反应. Lee[4]认为CD19 CAR-T细胞治疗是可行的、安全的,并且能在具有化疗抗性的B前体急性淋巴细胞白血病的儿童和年轻成人中介导有效的抗白血病活性. 但是也有临床报道称NCI对一名癌症患者开展CAR-T治疗,却最终造成患者死[5]. 本文将对近年来CAR-T 在肿瘤特异性免疫治疗研究方面的进展作如下综述.

  • 1 CARs的基本组成及发展历程

  • 1.1 CARs的组成

    嵌合抗原受体(CARs)的组成包括:单链可变片段(scFv)、铰链区以及跨膜胞内信号区域. 其中scFv是由重链V区(VH)和轻链V区(VL)组成的单克隆抗体的可变区,又可称为互补决定区(CDR). VH和VL又各有3个CDR,这6个CDR共同组成CAR的抗原结合部位. 铰链区因富含脯氨酸而容易发生一定程度的扭曲,这有利于抗原与scFv结合(图1).

    图1
                            CARs胞外结构

    图1 CARs胞外结构

    Fig. 1 The structure of extracellular CARs

    注:CDR:互补决定区;VH:重链V区;VL:轻链V区.

  • 1.2 CARs的发展历程

    CARs从提出到目前共经历了四代. 第一代CARs由Kuwana[6]于1987年首次提出并设计,第一代CAR导入T细胞后虽然在抗肿瘤上打破了MHC的限制实现了对肿瘤的特异性杀伤,但由于T细胞的增殖和细胞因子释放能力不足,使得T细胞抗肿瘤效率不高. 第二代CAR在第一代的基础上添加CD28、4-1BB[7]或OX40等信[8],提高了T细胞的增殖活性和细胞毒性并延长存活时间,解决了第一代CAR由于只有CD3ζ一个信号分子而造成T细胞存活时间短的问题. 目前第二代CARs的应用较为广泛,尤其在对急性淋巴细胞白血病(ALL)的治疗与研究[3,9]. 第三代CAR引入第二个共刺激分子CD137使细胞因子分泌水平得到提高,患者在注射第三代CAR-T后较短时间内便能检测出高水平的细胞因子(图2). 最近出现的第四代CAR在原有CAR的基础上使其分泌IL-12等免疫因子并引入自杀基因等,可使免疫反应更加强烈,但由于第三代和第四代CAR在临床上应用较少,因此它们与第二代相比是否更安全更有效还需要进一步的研究.

    图2
                            第一代到第三代的CAR-T 结构发展

    图2 第一代到第三代的CAR-T 结构发展

    Fig. 2 The evolution of CAR-T structure from the first generation to the third generation

    注:CM1、CM2:共刺激因子1(co-stimulatory-1)、共刺激因子2(co-stimulatory-2),为CD28、CD137、OX40、CD27等.

  • 2 CAR-T的制备方法

    CAR-T细胞是导入CAR基因的T细胞,在其制备过程中可通过电穿孔、慢病毒或逆转录病毒转导,将CAR基因导入患者自身分离出的T细胞里使T细胞经改造后能够表达CAR基因. 但这三种方法具有各自的特点(表1).

    表1 制备CAR-T细胞的三种方法的特点

    Table 1 The trait of three means used to produce CAR-T cell

    载体/方法优点缺点

    逆转录病毒

    转导效率高,适用范围广

    携带的DNA片段小,缺乏感染非分裂细胞的能力,存在致瘤风险
    慢病毒转导效率高,可感染分裂细胞和非分裂细胞,长期稳定的基因表达成本高,可能存在遗传毒性
    电穿孔安全性高瞬时表达,需多次注射
  • 2.1 电穿孔法制备

    电穿孔法采用直接将mRNA导入T细胞实现CAR瞬时表达而且不存在基因组的整合,使得DNA诱变的可能性非常低,但这种方法需要多次注射. 该方法制备的CAR-T在实体瘤的治疗中体现出一定的抗肿瘤活性. 艾布拉姆森癌症中心用电穿孔法制备靶向间皮素的CAR-T细胞,静脉给药后短暂存留于外周血并迁移至原发性和转移性肿瘤位点,两例病例报告中因其未出现明显的脱靶毒性,证明了它的安全性和可行[10]. 宾夕法尼亚大学医学院用电穿孔法制备CAR-T,通过多次注射成功使大血管化侧腹间皮瘤出现消退的现[11].

  • 2.2 慢病毒法制备

    慢病毒是将CAR基因整合到T细胞的基因组中并表达,虽然可能存在遗传毒性但它持续时间较电穿孔方法长、转导效率高、能永久转换T细胞、应用较广泛. Zhang[12]通过固定CD3和CD28抗体活化分离的外周血单核细胞(PBMC)后用慢病毒载体感染T细胞,通过IL-2使T细胞扩增并将制备的CAR-T用于治疗CEA阳性的转移性直结肠癌患者,也未观察到严重不良事件的发生. Perera[13]以慢病毒法制备CCR4 CAR-T细胞,将其与恶性T细胞共培养并进行体内实验,结果表明CCR4 CAR-T能有效免疫T细胞恶性肿瘤.

  • 2.3 逆转录病毒法制备

    逆转录病毒转染CAR的原理与慢病毒转染相似,同样能永久转换T细胞实现对肿瘤的有效治疗. Ahmed[14]利用逆转录病毒载体制备抗HER2阳性肿瘤的CAR-T细胞,结果表现出对HER2阳性的恶性胶质瘤的特异性杀伤作用. Brentjens[3]用CD3/CD28磁珠分离活化T细胞并用γ逆转录病毒进行转导,制备的CD19 CAR-T细胞用于复发ALL的治疗使患者达到完全缓解(CR).

  • 3 CAR-T的生产方法

    CAR-T治疗已经在临床上得到应用,作为有效治疗肿瘤的方法之一,在血液瘤的治疗上体现出较好的疗效,对实体瘤也体现出一定的治疗效果.

    CAR-T疗法作为过继免疫治疗方法之一,其生产分四阶段完成: a.从患者体内获取一定量的血液,加入抗凝剂防止血液凝固,用白细胞分离术以除去血液中的血小板和红细胞,获得外周血单核细胞(PBMC);b.从PBMC中分离出CD4阳性T细胞和CD8阳性T细胞,通过进一步富集确保分离的T细胞中不含非淋巴细胞并在一定条件下进行体外培养,利用IL-2、CD3等激活T细胞;c.利用电穿孔、慢病毒载体等方法将CAR的mRNA或DNA导入T细胞,mRNA在胞质中经核糖体翻译后表达CAR,DNA通过整合到T细胞的基因组中使T细胞能够表达CAR;d.对获得的CAR-T细胞进行免疫分型、存活力、内毒素等方面的检测,在确保生产的CAR-T细胞纯度和安全性后回输给患者,实现CAR-T免疫治疗(图3). CAR-T疗法在胶质细胞瘤和血液瘤等肿瘤疾病中得到了应用,尤其在以CD19 CAR-T靶向治疗CD19阳性的白血病中患者的缓解率较高,体现出了相对较好的疗效.

    图 3
                            CAR-T治疗程序

    图 3 CAR-T治疗程序

    Fig. 3 The procedures of CAR-T therapy

  • 4 CAR-T临床治疗肿瘤

  • 4.1 CAR-T 治疗B淋巴细胞白血病

    CD19是B淋巴细胞表面的特异性抗原,在正常的B淋巴细胞和恶性B淋巴细胞中均会表达. CD19 CAR-T在对抗急性B淋巴细胞白血病(B-ALL)上表现出令人满意的治疗效果. 哈金森癌症研究中心以CD19 CAR-T对29例B-ALL患者进行治疗,结果表明有27例实现缓解,缓解率达到93%[15]. 有学者给两名患有前体B-ALL的儿童导入抗CD19抗体转导的T细胞和一种T细胞信号因子(CTL019 CAR-T细胞),剂量为1.4×106~1.2×107/kg. 结果显示:患者体内CTL019 T细胞含量超出初始含量1 000倍并观察到CTL019 T细胞在脑脊液中以高含量持续存在6个[16]. 另外,CD19 CAR-T疗法在对ALL的治疗上也展现出了其他治疗方法无法企及的疗效. 2014年,费城儿童医院的一项研究以7.6×105~2.06× 107/kg的剂量向30例难治/复发的ALL患者注射自体CTL019,结果90%的患者达到CR,6个月无病存活率为67%,总存活率达到78%[17].

    虽然CD19 CAR-T对大多数B-ALL有很好的疗效,但对于特殊类型的B-ALL患者疗效并不稳定. 西雅图儿童研究所用CD19 CAR-T对7名MLL基因发生重排的B-ALL患者进行治疗,所有患者都达到了CR. 但在治疗后的一个月内有2名患者罹患急性髓系细胞白血病(AML),表明针对MLL-B-ALL,CD19 CAR-T可能无法提供明确有效的治[18]. 笔者课题组分别使用含CD28/4-1BB共刺激因子的CD19 CAR-T治疗10例ALL,有6例达到CR,1例达到部分缓解(PR),表明CD19 CAR-T不论携带CD28还是4-1BB都能使ALL得到缓[19]. 除此之外,CD19 CAR-T对慢性淋巴白血病(CLL)和非霍奇金淋巴瘤(NHL)也有很好的疗[20]. 有报道称CD19 CAR-T对于易复发难治愈的ALL能达到88% CR[21]. Pan[9]对40名患者进行CAR-T治疗后90%患者达到CR.

  • 4.2 CAR-T 治疗T淋巴细胞白血病

    急性T淋巴细胞白血病(T-ALL)的表面抗原有CD3、CyCD3[22]. 其中CyCD3是最为敏感和特异的免疫标志. 在CAR-T治疗过程中由于T细胞、CAR-T细胞和T-ALL表达相同的表面抗原,这虽然使得CAR-T不仅仅识别杀伤T-ALL细胞,同时也会识别并杀伤T细胞和CAR-T细胞,但是这种自我杀伤的程度是有限的. Mamonkin[23]于2015年设计出能够特异性识别CD5阳性T细胞的CAR,体外实验证明这些CAR-T细胞在体外能有效消除T-ALL,同时建立了异种移植的小鼠模型来研究CD5 CAR-T对T-ALL的免疫反应. 活体成像结果显示,CD5 CAR-T对疾病的进展有明显的抑制作用,并显示CD5 CAR-T能有效消除T-ALL,但也会表现出一定程度的自我杀伤行为.

  • 4.3 CAR-T治疗实体瘤

    CAR-T不仅在对ALL的治疗中取得了较为显著的疗效,在对实体瘤的治疗中也取得了可喜的治疗效果.美国贝勒医学院细胞和基因治疗中心在免疫缺陷小鼠上建立HER2阳性的多形性成胶质细胞瘤(GBM)异种移植模型并注射自体HER2 CAR-T细胞,结果显示: HER2 CAR-T细胞能够识别并消除源于HER2阳性GBM的CD133阳性与CD133阴性细胞,而HER2阴性的肿瘤细胞存活. 这表明HER2 CAR-T细胞对HER2阳性肿瘤具有有效的抗肿瘤活[14]. 此外,以碳酸酐酶-Ⅸ(CAⅨ)、神经节苷脂(GD2)、白介素13受体α2(IL13Rα2)和癌胚抗原(CEA)为特异性位点的CAR-T已制备成功并用于转移性肾细胞癌、神经母细胞瘤、胶质母细胞瘤和肝转移瘤的治疗研究,以此探索CAR-T治疗的相关机制、疗效以及安全[24,25,26,27]. 笔者团队于2017年对10名CEA阳性的转移性结直肠癌患者进行CAR-T治疗. 按5个递增的剂量进行治疗分别为1×105、5×105、1×106、1×107和1×108/CAR+/kg,10名患者均未表现出严重副作用. 其中一名患者经正电子发射断层扫描(PET)/计算机断层扫描(CT)分析表现为标准吸收值最大衰减从登记时的7.38变为4th w的5.80,表明治疗后肿瘤活性明显减弱;另一名患者接受治疗4 w后经核磁共振成像(MRI)分析显示肿瘤收缩,而大多数患者在4 w内的长期观察下血清中CEA水平降低并在患者外周血中观察到CAR-T细胞持久存在. 在第二次注射治疗时观察到CAR-T细胞的增殖,证明CEA阳性患者采用CAR-T疗法在高剂量给药的情况下仍表现良好的耐受性且有一定的疗[12].

  • 5 CAR-T治疗肿瘤面临的难题

    CAR-T疗法虽然在血液瘤和实体瘤治疗中均取得了一定的成效,各种不同类型的CAR被设计,突破传统疗法的局限性实现了对肿瘤的精准治疗,但是仍存在瓶颈难题有待突破.

    a.脱靶毒性(on-target/off-tumor )这是CAR-T治疗中亟待解决的问题. 脱靶毒性表现为CAR-T细胞攻击其他表达目标抗原的正常细胞,使正常细胞死亡甚至对脏器造成损伤,严重时危及患者生命. Morgan[5]设计包含CD28、4-1BB和CD3ζ信号的ERBB2 CAR-T治疗一名结肠癌转移患者,注射1010个细胞15 min后患者表现为呼吸困难且胸部X光显示出现肺部浸润现象,并于5d后死亡. 死亡原因被认为是患者肺部上皮细胞低水平表达的ERBB2被CAR-T细胞识别使得大量CAR-T细胞定位于肺部并攻击肺部细胞所致. 因此现阶段寻找肿瘤特异性抗原是CAR-T治疗癌症的关键一步,根据不同类型的肿瘤来制备表达相应特异性抗体的CAR-T,以实现不同癌症的特异性治疗.

    b.细胞因子释放综合征. CRS是CAR-T治疗后最常见的毒副作用并且会由低等级的全身症状向高等级发展,症状严重时会产生呼吸窘迫综合征,引起肝脏损伤以及血管内凝血致命的临床症[28,29]. 而肿瘤负荷在ALL中与CRS发病风险直接相[3]. 弗雷德哈金森癌症研究中心运用CAR-T治疗29名患者,检测结果表明高剂量CAR-T与肿瘤负荷提高了严重CRS和神经毒素的风[15].

    c.基因修饰风险. 以病毒为载体虽然可以成功将CAR基因整合到T细胞基因组中实现CAR的稳定表达,但由于其整合位点的不确定性,使CAR-T治疗存在致瘤风险. 然而,已有研究发现,睡美人转座系统使用合成的DNA转座子进行非病毒体细胞基因转移,使CAR基因稳定整合并长期表达. Kebriaei[30]利用睡美人转座子使第二代CD19 CAR稳定表达,并用于造血干细胞移植后的26名NHL与ALL晚期患者的治疗,总存活率为100%且83%患者30个月无疾病进展. 此外,Jin[31]提出以非整合慢病毒(NILV)载体包含支架/基质附着区域(S/MAR)元素,用于转基因表达或沉默靶基因,并表示该方法能够在不存在插入突变和基因毒性风险的情况下进行长期转基因表达. 由此可见,各种新型转导方式的研究正试图逐渐使CAR的转导风险降低.

    d.肿瘤微环境(TME)的抑制. CAR-T对肿瘤的免疫效果不明显的原因之一是肿瘤微环境的存在. TME由肿瘤细胞、细胞外基质、炎症细胞以及基质细胞等组成,影响肿瘤的发生与发展. 在CAR-T细胞免疫肿瘤的过程中,肿瘤微环境通常阻止淋巴细胞有效的启动,阻碍效应T细胞的浸润,此外,已经浸润至肿瘤的细胞会受到肿瘤微环境的再次影响,引起CAR-T细胞的耗竭,导致宿主无法排斥肿瘤. 在免疫肿瘤的过程中,也会出现免疫检查点使T细胞无法正确识别肿瘤从而造成肿瘤逃逸. 目前针对PD-1/PD-L1以及CTLA-4的研究较为广泛,包括免疫检查点的阻断治疗以及针对PD-L1的表达情况对肿瘤微环境进行分类[32,33,34,35]. 研究表明,肿瘤微环境中许多细胞因子对细胞毒性T细胞(CTLs)存在阻碍作用,如TGF-β可抑制IFN-γ的表达并诱导调节性T细胞(Tregs)的分[36,37]. Moon[38]制备了靶向皮质素或成纤维细胞活化蛋白的CAR-T细胞,注射入已建立人间皮素表达肿瘤的免疫缺陷小鼠体内,结果显示:CAR-T进入肿瘤后能减缓肿瘤的生长但不会造成肿瘤的退化或治愈肿瘤,表明抗肿瘤的功效降低是由肿瘤微环境引起的CAR-T细胞效应功能逐步丧失所致. 虽然Siriwon[39]利用CAR工程T细胞将A2a腺苷受体(A2aR)特异性小分子拮抗剂SCH-58261(SCH)负载的交联多层脂质体囊泡(cMLV)传递给免疫抑制性TME深处的肿瘤浸润性T细胞,以阻断腺苷与其受体结合后对CD4+和CD8+ T细胞功能的抑制,可预防TME内功能低下的CAR-T细胞的出现,但对于CAR-T治疗而言,TME仍是阻碍CAR-T治疗效果的主要因素之一,其阻碍机制需要进一步研究,抵抗其对CAR-T治疗的抑制方法仍需继续探索.

    e.疾病复发. 虽然CAR-T在肿瘤治疗中展现出了相对较好的疗效,尤其是在对血液瘤的治疗中,但依然存在复发的现象. CD19 CAR-T对白血病治疗研究中,患者在接受治疗之后大多都能得到缓解,但部分患者在接受CD19 CAR-T治疗一段时间后会出现疾病复发的现象,其很大原因在于部分白血病细胞存在CD19抗原丢失,这使得CD19 CAR-T细胞无法对其进行识别,造成免疫逃逸. Ruella[40]针对CD19阴性复发设计了双重CAR表达结构体,发现,以CD19和CD123靶向白血病细胞可作为治疗和预防CD19阴性复发的有效策略. Martyniszyn[41]也构建了抗CD20-CD19双特异性CAR-T,研究结果显示这种CAR-T可以在体外对患者的慢性淋巴细胞白血病细胞进行有效杀伤,表明抗CD20-CD19双特异性CAR-T可降低因抗原丢失而复发白血病的风险.

  • 6 展望

    CAR-T对肿瘤细胞的特异性杀伤是通过CAR-T细胞上可特异性识别肿瘤表面抗原的单链抗体与肿瘤细胞表面的肿瘤特异性抗原结合,激活胞内信号,使CAR-T细胞分泌IL-2、INF-γ等从而杀伤肿瘤细胞. 针对不同的肿瘤细胞杀伤,可通过设计特异性识别其表面抗原的CAR结构来实现. 因此,对靶点的寻找是实现CAR-T免疫治疗的重要步骤. 目前已有许多靶点被广泛研究,如CD19、CEA、HER2等. 尽管如此,仍需寻找新靶点使CAR-T治疗得以更广泛地应用. John[42]发现白细胞免疫球蛋白样受体B4(LILRB4)是一种肿瘤相关抗原且在单核AML细胞中高表达,并制备了靶向LILRB4的CAR-T细胞,体外实验和体内实验表明其高效的免疫效应,且在正常的脐带血细胞和人源化造血重组小鼠模型中未表现出毒性作用. Crossland团[43]利用睡美人转座子生产靶向CD56的CD56R-CAR T细胞并将其与CD56+的肿瘤细胞共培养,实验表明该CAR-T细胞无自我杀伤行为且在CD56+细胞的刺激下可表现出溶解细胞的功能. CD56R-CAR T可杀伤CD56+的神经母细胞瘤、神经胶质瘤等,且在测试抗CD56+人异种移植神经母细胞瘤模型和SCLC模型时表现出抑制肿瘤生长的作用. 寻找新靶点是一个没有终点的旅程,需要科研团队携手同行.

    随着越来越多相关研究的进行,CAR-T这种新型的过继免疫治疗手段在癌症治疗中所展现出的疗效也更加振奋人心,尤其在B-ALL中的疗效较为显著,展现出精准医疗的美好前景. 虽然在实体瘤治疗中仍存在一些局限性,但是科学家们在努力尝试通过各种技术解决这些难题. 目前笔者课题组正着手于多种CAR-T靶向治疗的研究,期望在实现实体瘤及血液瘤特异性靶向治疗的同时提高CAR-T治疗的疗效与安全性. 我们相信随着精准医学研究的逐步深入,CAR-T在癌症免疫治疗中将发挥更加重要的作用.

  • 参 考 文 献

    • 1

      Li S, Yang Z, Shen J, et al. Adoptive therapy with CAR redirected T cells for hematological malignancies. Sci China Life Sci, 2016, 59(4): 370-378

    • 2

      Park J H, Rivière I, Gonen M, et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med. 2018, 378(5): 449-459

    • 3

      Brentjens R, Davila M L, Riviere I, et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med. 2013, 5(177): 177ra38

    • 4

      Lee D W, Kochenderfer J N, Stetler-Stevenson M, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet , 2015, 385(9967): 517-528

    • 5

      Morgan R A, Yang J C, Kitano M, et al. Case report of a serious adverse event following the administration of t cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther, 2010, 18(4): 843-851

    • 6

      Kuwana Y, Asakura Y, Utsunomiya N, et al. Expression of chimeric receptor composed of immunoglobulin-derived V resions and T-cell receptor-derived C regions. Biochemical and Biophysical Research Communications,1988, 149(3): 960-968

    • 7

      C.Jensen M, Riddell S R. Design and implementation of adoptive therapy with chimeric antigen receptor-modified T cells. Immunol Rev, 2014, 257(1): 127-144

    • 8

      A.Hombach A, Heiders J, Foppe M, et al. OX40 costimulation by a chimeric antigen receptor abrogates CD28 and IL-2 induced IL-10 secretion by redirected CD4+ T cells. Oncoimmunology, 2012, 1(4): 458-466

    • 9

      Pan J, Yang J F, Deng B P, et al. High efficacy and safety of low-dose CD19-directed CAR-T cell therapy in 51 refractory or relapsed B acute lymphoblastic leukemia patients. Leukemia, 2017, 31(12): 2587-2593

    • 10

      Beatty G L, Haas A R, Maus M V, et al. Mesothelin-specific chimeric antigen receptor mRNA- engineered T cells induce anti-tumor activity in solid malignancies gregory. Cancer Immunol Res, 2015, 2(2): 112-120

    • 11

      Zhao Y, Moon E, Carpenito C, et al. Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor. Cancer Res, 2011, 70(22): 9053-9061

    • 12

      Zhang C, Wang Z, Yang Z, et al. Phase I escalating-dose trial of CAR-T therapy targeting CEA+ metastatic colorectal cancers. Mol Ther, 2017, 25(5): 1248-1258

    • 13

      Perera L P, Zhang M, Nakagawa M, et al. Chimeric antigen receptor modified T cells that target chemokine receptor CCR4 as a therapeutic modality for T-cell malignancies. Am J Hematol, 2017, 92(9): 892-901

    • 14

      Ahmed N, Salsman V S, Kew Y, et al. HER2-specific T cells target primary Glioblastoma stem cells and induce regression of autologous experimental tumors. Clin Cancer Res, 2010, 16(2): 474-485

    • 15

      Turtle C J, Hanafi L, Berger C, et al. CD19 CAR-T cells of defined CD4+ ∶CD8+ composition in adult B cell ALL patients. J Clin Invest, 2016, 1(6): 2123-2138

    • 16

      Stephan A G, Michael K, David B, et al. Chimeric antigen receptor-modified T Cells for acute lymphoid leukemia. N Engl J Med, 2013, 368(16): 1509-1518

    • 17

      Maude S L, Frey N, Shaw P A, et al. Chimeric antigen receptor T Cells for sustained remissions in leukemia. N Engl J Med, 2014, 371(16): 1507-1517

    • 18

      Gardner R, Wu D, Cherian S, et al. Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood, 2016, 127(20): 2406-2411

    • 19

      Li S, Zhang J, Wang M, et al. Treatment of acute lymphoblastic leukaemia with the second generation of CD19 CAR-T containing either CD28 or 4-1BB. Br J Haematol, 2018, 181(3): 360-371

    • 20

      Frey N V, Porter DL. CAR T-cells merge into the fast lane of cancer care. Am J Hematol, 2016, 91(1): 146-150

    • 21

      Davila M L, Riviere I, Wang X, et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med, 2014, 6(224): 224ra25

    • 22

      J J van Dongen, G W Krissansen, I L Wolvers-Tettero, et al. Cytoplasmic expression of the CD3 antigen as a diagnostic marker for immature T-cell malignancies. Blood, 1988, 71(3):603-612

    • 23

      Mamonkin M, Rouce R H, Tashiro H, et al. A T-cell-directed chimeric antigen receptor for the selective treatment of T-cell malignancies. Blood, 2015, 126(8): 983-992

    • 24

      Lamers C H, Sleijfer S, Steenbergen S V, et al. Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity. Mol Ther, 2013, 21(4): 904-912

    • 25

      Louis C U, Savoldo B, Dotti G, et al. Antitumor activity and long-term fate of chimeric antigen receptor – positive T cells in patients with neuroblastoma. Blood, 2011, 14(11): 1324-1334

    • 26

      Brown C E, Alizadeh D, Starr R, et al. Regression of glioblastoma after chimeric antigen receptor T-Cell therapy. N Engl J Med, 2016, 375(26): 2561-2569

    • 27

      Katz S C, Burga R A, McCormack E, et al. Phase I hepatic immunotherapy for metastases study of intra- arterial chimeric antigen receptor modified T cell therapy for CEA+ liver metastases. Clin Cancer Res, 2015, 21(14):3149-3159

    • 28

      Neelapu S S, Tummala S, Kebriaei P, et al. Chimeric antigen receptor T-cell therapy-assessment and management of toxicities. Nat Rev Clin Oncol, 2018, 15(1): 47-62

    • 29

      Xu X J, Tang Y M. Cytokine release syndrome in cancer immunotherapy with chimeric antigen receptor engineered T cells. Cancer Lett, 2014, 343(2): 172-178

    • 30

      Kebriaei P, Singh H, Huls M H, et al. Phase I trials using sleeping beauty to generate CD19-specific CAR T cells. J Clin Invest,2016, 126(9): 3363-3376

    • 31

      Jin C, Fotaki G, Ramachandran M, et al. Safe engineering of CAR T cells for adoptive cell therapy of cancer using long-term episomal gene transfer. EMBO Mol. Med, 2016, 8(7): 702-711

    • 32

      Meng X, Liu Y, Zhang J, et al. PD-1/PD-L1 checkpoint blockades in non-small cell lung cancer: new development and challenges. Cancer Lett, 2017, 405: 29-37

    • 33

      Teng M W L, Ngiow S F, Ribas A, et al. Classifying cancers based on T cell infiltration and PD-L1. Cancer Res, 2016, 75(11): 2139-2145

    • 34

      Jiang X, Wang J, Deng X, et al. Role of the tumor microenvironment in PD- L1 / PD-1-mediated tumor immune escape. Mol. Cancer, 2019, 18(1): 10

    • 35

      Mitsuiki N, Schwab C, Grimbacher B. What did we learn from CTLA­4 insufficiency on the human immune system?. Immunol Rev, 2018, 287(1): 33-49

    • 36

      Ravi R, Noonan K A, Pham V, et al. Bifunctional immune checkpoint-targeted antibody- ligand traps that simultaneously disable TGFβ enhance the efficacy of cancer immunotherapy. Nat. Commun, 2018, 9(1): 741

    • 37

      Chen W, Dijke P. Immunoregulation by membersof the TGFβ superfamily. Nature Publishing Group, 2016, 16(12): 723-740

    • 38

      Moon E K, Wang L, Dolfi D V, et al. Multifactorial T cell hypofunction that is reversible can limit the efficacy of chimeric antibody receptor-transduced human T cells in solid tumors. Clin Cancer Res, 2014, 20(16): 4262-4273

    • 39

      Siriwon N, Kim Y J, Siegler Eet al. CAR-T cells surface-engineered with drug-encapsulated nanoparticles can ameliorate intratumoral T-cell hypofunction. Cancer Immunol Res, 2018, 6(7): 812-824

    • 40

      Ruella M, Barrett D M, Kenderian S S, et al. Dual CD19 and CD123 targeting prevents antigen-loss relapses after CD19-directed immunotherapies. J Clin Invest, 2016, 126(10): 3814-3826

    • 41

      Martyniszyn A, Krahl A, Andre M C, et al. CD20-CD19 Bispecific CAR T cells for the treatment of B-cell malignancies. Hum Gene Ther, 2017, 28(12): 1147-1157

    • 42

      John S, Chen H, Deng M, et al. A novel anti-LILRB4 CAR-T cell for the treatment of monocytic AML. Mol. Ther, 2018, 26(10): 1-9

    • 43

      Crossland D L, Denning W L, Ang S, et al. Antitumor activity of CD56-chimeric antigen receptor T cells in neuroblastoma and SCLC models. Oncogene, 2018, 37(27): 3686-3697

梅恩典

机 构:浙江理工大学生命科学学院,杭州 310018

Affiliation:School of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China

马佳兵

机 构:浙江理工大学生命科学学院,杭州 310018

Affiliation:School of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China

高佳东

机 构:浙江理工大学生命科学学院,杭州 310018

Affiliation:School of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China

刘轶轩

机 构:浙江理工大学生命科学学院,杭州 310018

Affiliation:School of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China

钱程

机 构:浙江理工大学生命科学学院,杭州 310018

Affiliation:School of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China

刘立

机 构:浙江理工大学生命科学学院,杭州 310018

Affiliation:School of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China

魏旭斌

机 构:浙江理工大学生命科学学院,杭州 310018

Affiliation:School of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China

html/pibbcn/20180273/alternativeImage/be5df0c2-1924-407d-91e0-17c44abf7742-F001.jpg
html/pibbcn/20180273/alternativeImage/be5df0c2-1924-407d-91e0-17c44abf7742-F002.jpg
载体/方法优点缺点

逆转录病毒

转导效率高,适用范围广

携带的DNA片段小,缺乏感染非分裂细胞的能力,存在致瘤风险
慢病毒转导效率高,可感染分裂细胞和非分裂细胞,长期稳定的基因表达成本高,可能存在遗传毒性
电穿孔安全性高瞬时表达,需多次注射
html/pibbcn/20180273/alternativeImage/be5df0c2-1924-407d-91e0-17c44abf7742-F003.jpg

图1 CARs胞外结构

Fig. 1 The structure of extracellular CARs

图2 第一代到第三代的CAR-T 结构发展

Fig. 2 The evolution of CAR-T structure from the first generation to the third generation

表1 制备CAR-T细胞的三种方法的特点

Table 1 The trait of three means used to produce CAR-T cell

图 3 CAR-T治疗程序

Fig. 3 The procedures of CAR-T therapy

image /

CDR:互补决定区;VH:重链V区;VL:轻链V区.

CM1、CM2:共刺激因子1(co-stimulatory-1)、共刺激因子2(co-stimulatory-2),为CD28、CD137、OX40、CD27等.

无注解

无注解

  • 参 考 文 献

    • 1

      Li S, Yang Z, Shen J, et al. Adoptive therapy with CAR redirected T cells for hematological malignancies. Sci China Life Sci, 2016, 59(4): 370-378

    • 2

      Park J H, Rivière I, Gonen M, et al. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N Engl J Med. 2018, 378(5): 449-459

    • 3

      Brentjens R, Davila M L, Riviere I, et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med. 2013, 5(177): 177ra38

    • 4

      Lee D W, Kochenderfer J N, Stetler-Stevenson M, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet , 2015, 385(9967): 517-528

    • 5

      Morgan R A, Yang J C, Kitano M, et al. Case report of a serious adverse event following the administration of t cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther, 2010, 18(4): 843-851

    • 6

      Kuwana Y, Asakura Y, Utsunomiya N, et al. Expression of chimeric receptor composed of immunoglobulin-derived V resions and T-cell receptor-derived C regions. Biochemical and Biophysical Research Communications,1988, 149(3): 960-968

    • 7

      C.Jensen M, Riddell S R. Design and implementation of adoptive therapy with chimeric antigen receptor-modified T cells. Immunol Rev, 2014, 257(1): 127-144

    • 8

      A.Hombach A, Heiders J, Foppe M, et al. OX40 costimulation by a chimeric antigen receptor abrogates CD28 and IL-2 induced IL-10 secretion by redirected CD4+ T cells. Oncoimmunology, 2012, 1(4): 458-466

    • 9

      Pan J, Yang J F, Deng B P, et al. High efficacy and safety of low-dose CD19-directed CAR-T cell therapy in 51 refractory or relapsed B acute lymphoblastic leukemia patients. Leukemia, 2017, 31(12): 2587-2593

    • 10

      Beatty G L, Haas A R, Maus M V, et al. Mesothelin-specific chimeric antigen receptor mRNA- engineered T cells induce anti-tumor activity in solid malignancies gregory. Cancer Immunol Res, 2015, 2(2): 112-120

    • 11

      Zhao Y, Moon E, Carpenito C, et al. Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor. Cancer Res, 2011, 70(22): 9053-9061

    • 12

      Zhang C, Wang Z, Yang Z, et al. Phase I escalating-dose trial of CAR-T therapy targeting CEA+ metastatic colorectal cancers. Mol Ther, 2017, 25(5): 1248-1258

    • 13

      Perera L P, Zhang M, Nakagawa M, et al. Chimeric antigen receptor modified T cells that target chemokine receptor CCR4 as a therapeutic modality for T-cell malignancies. Am J Hematol, 2017, 92(9): 892-901

    • 14

      Ahmed N, Salsman V S, Kew Y, et al. HER2-specific T cells target primary Glioblastoma stem cells and induce regression of autologous experimental tumors. Clin Cancer Res, 2010, 16(2): 474-485

    • 15

      Turtle C J, Hanafi L, Berger C, et al. CD19 CAR-T cells of defined CD4+ ∶CD8+ composition in adult B cell ALL patients. J Clin Invest, 2016, 1(6): 2123-2138

    • 16

      Stephan A G, Michael K, David B, et al. Chimeric antigen receptor-modified T Cells for acute lymphoid leukemia. N Engl J Med, 2013, 368(16): 1509-1518

    • 17

      Maude S L, Frey N, Shaw P A, et al. Chimeric antigen receptor T Cells for sustained remissions in leukemia. N Engl J Med, 2014, 371(16): 1507-1517

    • 18

      Gardner R, Wu D, Cherian S, et al. Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood, 2016, 127(20): 2406-2411

    • 19

      Li S, Zhang J, Wang M, et al. Treatment of acute lymphoblastic leukaemia with the second generation of CD19 CAR-T containing either CD28 or 4-1BB. Br J Haematol, 2018, 181(3): 360-371

    • 20

      Frey N V, Porter DL. CAR T-cells merge into the fast lane of cancer care. Am J Hematol, 2016, 91(1): 146-150

    • 21

      Davila M L, Riviere I, Wang X, et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med, 2014, 6(224): 224ra25

    • 22

      J J van Dongen, G W Krissansen, I L Wolvers-Tettero, et al. Cytoplasmic expression of the CD3 antigen as a diagnostic marker for immature T-cell malignancies. Blood, 1988, 71(3):603-612

    • 23

      Mamonkin M, Rouce R H, Tashiro H, et al. A T-cell-directed chimeric antigen receptor for the selective treatment of T-cell malignancies. Blood, 2015, 126(8): 983-992

    • 24

      Lamers C H, Sleijfer S, Steenbergen S V, et al. Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity. Mol Ther, 2013, 21(4): 904-912

    • 25

      Louis C U, Savoldo B, Dotti G, et al. Antitumor activity and long-term fate of chimeric antigen receptor – positive T cells in patients with neuroblastoma. Blood, 2011, 14(11): 1324-1334

    • 26

      Brown C E, Alizadeh D, Starr R, et al. Regression of glioblastoma after chimeric antigen receptor T-Cell therapy. N Engl J Med, 2016, 375(26): 2561-2569

    • 27

      Katz S C, Burga R A, McCormack E, et al. Phase I hepatic immunotherapy for metastases study of intra- arterial chimeric antigen receptor modified T cell therapy for CEA+ liver metastases. Clin Cancer Res, 2015, 21(14):3149-3159

    • 28

      Neelapu S S, Tummala S, Kebriaei P, et al. Chimeric antigen receptor T-cell therapy-assessment and management of toxicities. Nat Rev Clin Oncol, 2018, 15(1): 47-62

    • 29

      Xu X J, Tang Y M. Cytokine release syndrome in cancer immunotherapy with chimeric antigen receptor engineered T cells. Cancer Lett, 2014, 343(2): 172-178

    • 30

      Kebriaei P, Singh H, Huls M H, et al. Phase I trials using sleeping beauty to generate CD19-specific CAR T cells. J Clin Invest,2016, 126(9): 3363-3376

    • 31

      Jin C, Fotaki G, Ramachandran M, et al. Safe engineering of CAR T cells for adoptive cell therapy of cancer using long-term episomal gene transfer. EMBO Mol. Med, 2016, 8(7): 702-711

    • 32

      Meng X, Liu Y, Zhang J, et al. PD-1/PD-L1 checkpoint blockades in non-small cell lung cancer: new development and challenges. Cancer Lett, 2017, 405: 29-37

    • 33

      Teng M W L, Ngiow S F, Ribas A, et al. Classifying cancers based on T cell infiltration and PD-L1. Cancer Res, 2016, 75(11): 2139-2145

    • 34

      Jiang X, Wang J, Deng X, et al. Role of the tumor microenvironment in PD- L1 / PD-1-mediated tumor immune escape. Mol. Cancer, 2019, 18(1): 10

    • 35

      Mitsuiki N, Schwab C, Grimbacher B. What did we learn from CTLA­4 insufficiency on the human immune system?. Immunol Rev, 2018, 287(1): 33-49

    • 36

      Ravi R, Noonan K A, Pham V, et al. Bifunctional immune checkpoint-targeted antibody- ligand traps that simultaneously disable TGFβ enhance the efficacy of cancer immunotherapy. Nat. Commun, 2018, 9(1): 741

    • 37

      Chen W, Dijke P. Immunoregulation by membersof the TGFβ superfamily. Nature Publishing Group, 2016, 16(12): 723-740

    • 38

      Moon E K, Wang L, Dolfi D V, et al. Multifactorial T cell hypofunction that is reversible can limit the efficacy of chimeric antibody receptor-transduced human T cells in solid tumors. Clin Cancer Res, 2014, 20(16): 4262-4273

    • 39

      Siriwon N, Kim Y J, Siegler Eet al. CAR-T cells surface-engineered with drug-encapsulated nanoparticles can ameliorate intratumoral T-cell hypofunction. Cancer Immunol Res, 2018, 6(7): 812-824

    • 40

      Ruella M, Barrett D M, Kenderian S S, et al. Dual CD19 and CD123 targeting prevents antigen-loss relapses after CD19-directed immunotherapies. J Clin Invest, 2016, 126(10): 3814-3826

    • 41

      Martyniszyn A, Krahl A, Andre M C, et al. CD20-CD19 Bispecific CAR T cells for the treatment of B-cell malignancies. Hum Gene Ther, 2017, 28(12): 1147-1157

    • 42

      John S, Chen H, Deng M, et al. A novel anti-LILRB4 CAR-T cell for the treatment of monocytic AML. Mol. Ther, 2018, 26(10): 1-9

    • 43

      Crossland D L, Denning W L, Ang S, et al. Antitumor activity of CD56-chimeric antigen receptor T cells in neuroblastoma and SCLC models. Oncogene, 2018, 37(27): 3686-3697