1 调控磁性纳米颗粒尺寸
近年来,磁性纳米颗粒磁感应热在生物医学领域发挥了独特的优越性,受到了研究者们极大的关注. 其中,铁磁或亚铁磁铁基磁性纳米颗粒,因具有极好的生物学相容性和高的磁热转换性能,而被广泛地研究. Ma
等[15] 研究了不同粒径(7.5~ 416 nm)的氧化铁纳米颗粒在外加交变磁场 (80 kHz,32.5 kA/m)中的SAR值大小. 结果表明,氧化铁纳米颗粒的SAR值有很强的尺寸依赖性(表1). 尺寸大于46 nm的铁磁性纳米颗粒,其SAR值随粒径的增大而减小. 尺寸为46 nm时,SAR值最大为75.6 W/g,主要的产热机制是磁滞损耗,这种损耗具有尺寸依赖性,随着尺寸增大,纳米颗粒从亚铁磁性的单畴过渡到多畴,磁热性能逐渐降低. 对于7.5 nm和13 nm的超顺磁性纳米颗粒来说,主要产热机制为弛豫损耗(Brown and Néel relaxation losses). 因为当纳米颗粒的尺寸达到临界尺寸后,磁各向异性能大于热能,颗粒从单畴的亚铁磁性快速转变为超顺磁性. 相比于小尺寸的超顺磁性纳米颗粒[16] ,铁磁性/亚铁磁性纳米颗粒由于较大的磁滞损耗,具有更高的SAR值[17] . 然而,尽管铁磁性纳米颗粒的磁热性能较高,但是由于在水溶液条件下稳定性差,在磁场中因颗粒固有的剩磁而易团聚的缺点,限制了其在生物医学领域的应用. 超顺磁性纳米颗粒的粒径通常在临界尺寸 15 nm以下,属于单畴磁性纳米颗粒,不易发生团聚,因此受到了极大的欢迎. 但其相对磁热性能较低且仍存在一些问题,如尺寸不均一、不具有单分散性、产热率大大降低等. 为此,研究者们做了大量的研究,通过改善制备方法来提高超顺磁纳米颗粒的单分散性. Lee等[16] 合成了尺寸高度均一的氧化铁纳米颗粒(σ=0.05),直径分别为9、12、 15 nm,并分别测得SLP值为152、349、333 W/g. 由此可以得出12 nm的磁热性能最佳(表1). Hosono等[18] 通过改进后的氧化法制备了具有单分散性且尺寸在11~20 nm范围内的氧化铁纳米颗粒. 研究表明,粒径分布窄、直径在11 nm以上 (13 nm)时,磁热效果最佳,并且随着尺寸的增大,磁热效果逐渐降低. 这些关于尺寸的研究表明,可将磁性纳米颗粒尺寸调控至10~30 nm,使其满足生物尺寸效应且具有较高的SAR值,成为磁热疗广泛应用的前提.表1 F
e3 O4 磁性纳米颗粒尺寸对磁热性能的影响Table 1 Size effect of F
e3 O4 magnetic nanoparticles on the magnetic and thermal properties尺寸/nm Ms/(emu· g-1 )Hc/Oe (SLP/SAR)/
(W·
g-1 )Reference 7.5 - 6.4 15.6 [15]
12 - 20.9 39.4 46 - 101.9 75.6 81 - 88.9 63.7 282 - 62.4 32.5 416 - 53.9 28.9 9 85 - 152 [16]
12 101 - 349 15 110 - 333 4 77 - 0 [19]
7 75 - 3 10 70 - 32 16 68 - 61 18 65 - 185 35 76 - 76 4.2 30 ~0 45 [20]
9.8 65 0.3 28 11.8 62 4 150 16.5 66 6 249 22.5 67 10 322 3 48 - 27 [21]
9 74 - 132 16 63 - 298 20 84 - 480 28 88 - 801 32 88 - 502 17 50.6 ~0 290 [22]
20 68.4 25 275 26 66.7 72 295 35 65.3 100 320 40 65.5 151 310 47 81.7 103 410 2 调控磁性纳米颗粒形貌
与尺寸相同,磁性纳米颗粒的形貌也是影响磁热性能的一个重要因素,直接决定了颗粒表面原子排列,从而改变表面各向异性以及磁畴结构,最终导致磁热性能的改变. 因此我们可以通过调控磁性纳米颗粒的形状来有效提高磁热效应. 例如,球形、圆形、多边形、环形、花形、立方体等不同的几何形状导致不同的各向异性,磁滞损耗和SAR值也有显著差异(表2). Noh
等[23] 研究发现,球形磁性纳米颗粒具有较高的磁表面各向异性,但其磁化率低于相同磁矩的立方体纳米颗粒. 根据一项关于表面磁旋结构的模拟研究,立方体纳米颗粒的表面混乱度(surface disorder)(4%)比球形纳米颗粒(8%)小. 这是因为球形磁性纳米颗粒表面弯曲形态具有较大的表面效应. 实验结果表明,Zn0.4 Fe2.6 O4 立方体纳米颗粒饱和磁化强度(MS= 165 emu/g)比球形(MS=145 emu/g)的高. 同时,Guardia等[24] 通过一种一步法制备13~40 nm范围内的立方体水溶性离子型氧化铁纳米晶并研究了其SAR值. 当平均粒径为(19±3) nm氧化铁纳米晶有显著高的SAR值,达到2 452 W/gFe (520 kHz, 29 K/Am).表2 不同形貌磁性纳米颗粒的磁热性能表
Table 2 Magnetic hyperthermia performance of magnetic nanoparticles with different morphology
样品 类型 尺寸/nm 体积/ m3 Ms/(emu· g-1 )(SLP/SAR)/
(W·
g-1 )Reference Z
n0.4 Fe2.6 O4 Cubes 18 5.8×1
0−24 165 1 860 [16]
Spheres 22 145 - CoF e2 O4 @ Zn0.4 Fe2.6 O4 Core@shell 60 - 190 10 600 [23] F e3 O4 Nanodiscs 125 - 435 5 000 [29] Magnetosomes Chains 38 - - 960 [30] γ-F e2 O3 Nanoflowers 11 - - 1 944 [31] F e3 O4 Nanorings 70 - - 3 050 [28] Yang
等[25] 通过调制纳米颗粒的尺寸及形貌的过程中,发现了一种磁化闭合分布的独特磁结构——涡旋磁畴(vortex domain)[26] . 具有磁涡旋结构的磁性纳米颗粒,由于磁矩闭合分布,能有效削弱颗粒之间的磁相互作用,从而避免颗粒团聚[20] ,提高单分散性. 同时,涡旋磁纳米颗粒由于具有较大的颗粒尺寸,呈现出比超顺磁颗粒更高的磁化率和饱和磁化强度[27] . Liu等[28] 通过α-Fe2 O3 纳米颗粒热相变制备得到平均外径为70 nm涡旋磁氧化铁纳米环(ferrimagnetic vortex-domain nanorings, FVIOs),并对比了超顺磁氧化铁纳米颗粒(super-paramagnetic iron oxides,SPIOs)和涡旋磁氧化铁纳米环(FVIOs)的磁滞回线,证实了FVIOs比SPIOs具有更高的Ms值. 由于其高的Ms值以及其特有涡旋磁结构中涡旋磁态和洋葱态的转变过程而产生的磁滞,使得FVIOs具有非常好的磁热转换能力,最高SAR值可达3050 W/gFe (400 kHz, 740 Oe),是迄今为止SAR值最高的氧化铁纳米晶.在此工作基础上,Yang
等[29] 通过两步法合成尺寸均一的Fe3 O4 纳米片,并系统地研究了具有磁各向异性的纳米片和磁各向同性磁性球形颗粒的磁性热疗特性. 结果表明,各向异性的纳米片比各向同性的11.2 nm球形超顺磁性纳米颗粒和60 nm球形铁磁性纳米颗粒具有更高的SAR值. 这是由于纳米片平行于交变磁场,这种平行排列可以使SAR值增加2倍,值为5 kW/g(500 kHz,47.8 kA/m),为磁性热疗提供了优良的热疗剂.3 调控磁性纳米颗粒组分
同样,改变磁性纳米颗粒的化学组分也能有效提高MNPs的SAR值. 主要集中在对铁氧体磁性颗粒组分的调制,研究者采用金属掺杂策略获得高度可控的磁性纳米颗粒,因为其占位八面体和四面体位点的金属原子对纳米颗粒的磁学性能有很大的影
响[32] . 八面体位点的磁自旋同向平行于磁场,而四面体位点的磁自旋反向平行于磁场. 同时八面体和四面体位点的三价金属离子的数目相同,磁矩相互抵消,净磁矩只取决于八面体位点的金属二价离子. 因此可通过掺杂不同数量的二价过渡金属阳离子(例如,Mn2+ 、Fe2+ 、Co2+ 、Ni2+ 或Zn2+ )来调节磁矩和饱和磁化强度[33] . Jang等[34] 证明了在四面体位点适当掺杂锌,可调控纳米颗粒显示出最佳的磁性. 作者解释,当部分铁原子被锌原子取代时,由于二价锌离子的非磁性特征使Fe3+ 的磁自旋不会完全抵消,这样可增加纳米颗粒的净磁化率. 15 nm Znx Mn1-x Fe2 O4 纳米颗粒(x=0.4)具有最大的MS值;同时,其SLP值为432 W/g,比传统的氧化铁纳米颗粒SLP值(115 W/g)高大约4倍. 除了MS之外,磁各向异性K值也可以通过改变纳米颗粒的化学组分来控制. 磁各向异性是一种由化学成分和晶体结构决定的内在特性. 因此,通过过渡金属(如Co2+ 或Ni2+ )取代铁离子可以很容易得到较高的K值. Chen等[35] 通过改变铁基MNPs的化学成分(即MFe2 O4 ,M=Mn、Fe、Co),MNPs的磁各向异性可以增加三个数量级,并且SLP值达到 716 W/g. Jang等[36] 合成高生物相容性浅掺杂镁γ-Fe2 O3 超顺磁纳米颗粒(Mg0.13 -γFe2 O3 ),具有极高的固有的损耗功率(intrinsic loss power,ILP, 14 nH·m2 /kg),几乎是商业氧化铁(Feridex, ILP = 0.15 nH·m2 /kg)的100倍. 该研究可系统地调制γ-Fe2 O3 八面体间隙中掺杂Mg2+ 的分布和浓度,显著增强不同相的磁化强度并可控交流/直流磁软度,在生物安全的磁场强度范围内表现出极高的热转换性能.对于核-壳结构的磁性纳米颗粒来说,也可通过改变核及壳的组成,对K和MS进行优化以 提高SLP值. Lee
等[16] 通过改变基于软磁和硬 磁在界面处交换耦合作用的核壳结构磁性纳米颗 粒化学组成(CoFe2 O4 @MnFe2 O4 、CoFe2 O4 @Fe3 O4 、MnFe2 O4 @CoFe2 O4 、Fe3 O4 @CoFe2 O4 、Zn0.4 Co0.6 Fe2 O4 @Zn0.4 Mn0.6 Fe2 O4 )将K值调节至最优范围0.5×104 ~4.0×104 J/m3 ,使MNPs的SLP值得到了极大的提高(图2). 令人兴奋的是,这些纳米颗粒的SLP值可高达1 000 W/g到4 000 W/g(500 kHz, 37.4 kA/m),这几乎是单组分商业氧化铁纳米颗粒(100~450 W/g)的34倍. 近几年,Yu等[37] 通过改变组分制备了高生物相容性和高磁热性能的碳化铁纳米颗粒(Fe5 C2 、Fe2 C、Fe3 C等),属于金属间化合物,能在交变磁场下因涡流损耗产生额外的热量.注:(a)15 nm CoF
e2 O4 @MnFe2 O4 与9 nm CoFe2 O4 和15 nm MnFe2 O4 的示意图和SLP值. (b)单组分磁性纳米颗粒(Feridex和MFe2 O4 ,M=Mn、 Fe、Co)的SLP值. (c)不同组分(CoFe2 O4 @MnFe2 O4 、CoFe2 O4 @Fe3 O4 、MnFe2 O4 @CoFe2 O4 、Fe3 O4 @CoFe2 O4 、Zn0.4 Co0.6 Fe2 O4 @ Zn0.4 Mn0.6 Fe2 O4 )核壳纳米颗粒的SLP值(500 kHz,37.3 kA/m).尽管可通过组分调制来实现MNPs的磁热性能的提高,掺杂的金属原子如Co、Mn等具有一定的毒性,会带来生物安全性方面的考虑,任何纳米材料在生物医学应用,应首要考虑其安全性.
4 调控磁性纳米颗粒表面
目前,由于表面修饰的不合适,导致磁性纳米颗粒Ms降低并有可能发生团聚,最终使热疗剂效果差,是阻碍其实际应用的又一个因
素[38] . 因此除了磁性纳米颗粒磁核本身内在特性的影响外,通过表面优化提高MNPs的生物相容性和热量转化效率的研究具有极其重要的意义.Liu
等[39] 成功地合成了不同分子质量(2 000- 20 000 U)的磷酸化甲氧基聚乙二醇(mPEG)表面修饰的高单分散、粒径可控(9~31 nm)的氧化铁纳米颗粒,并系统地研究了表面修饰对不同尺寸Fe3 O4 纳米颗粒的SAR值的影响(图3). 研究表明,减小表面修饰厚度,可以增加SAR值. 随着表面修饰厚度的减小,布朗损失增加,同时提高了热传导率和单分散性. 进一步研究优化表面修饰和尺寸,可以在最小变化限度的饱和磁化(<5%)范围内实现SAR值(高达74%)的显著增加. 特别是,19 nm Fe3 O4 @mPEG-2000显示出最高的SAR值,为930 W/g.这项研究为高性能热疗剂的表面修饰优化提供了一种新的通用策略,并且通过调控表面修饰种类和表面修饰厚度,提高纳米颗粒的分散性和生物相容性,从而得到最大SAR值的研究也具有极大的研究意义.
5 结束语
综上所述,随着纳米技术的快速发展,通过调控纳米颗粒的尺寸、形貌、组分和表面修饰以提高磁热性能的研究具有理论的可行性. 在合成过程中将磁性纳米颗粒调控至最佳尺寸(10~30 nm)和最佳厚度的表面修饰且高生物相容性、高分散性,也可以改变磁性纳米颗粒的形貌,改变其磁畴结构,增加表面各向异性和饱和磁化强度,还可以采用金属掺杂方法和核-壳结构的交换耦合作用提高磁热性能. 此外,有些问题至今还未完全解决:生物活体的磁场强度限制(4.5×1
08 A/m,被称为Brezovich准则),防止涡流损耗导致的组织过热[40] ,同时控制磁性纳米颗粒浓度在安全注射剂量内而不影响治疗效果. 提高超顺磁性纳米颗粒的磁热性能迫在眉睫. 然而,目前在该方向的研究仍然较少,具有较大的发展空间,明确并合理调控磁性纳米颗粒提高磁热性能,是发展磁热疗技术的关键所在,将依然是今后研究的热点与重点,应得到足够的重视.Recent Advances in Modulating Magnetic Nanoparticles for Improving Magnetic Hyperthermia Performanc
e* JIANG Xiao-L
i1) , WANG Yan-Yun2,3) , WANG Ying-Ze4)** , YU Jing1)** , LIU Xiao-Li3)** (1) Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China;2)Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of The Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China;
参 考 文 献
- 1
Miller M M, Prinz G A, Cheng S F, et al. Detection of a micron-sized magnetic sphere using a ring-shaped anisotropic magnetoresistance-based sensor: a model for a magnetoresistance-based biosensor. Applied Physics Letters, 2002, 81(12):2211-2213
- 2
Jain T K, Morales M A, Sahoo S K, et al. Iron oxide nanoparticles for sustained delivery of anticancer agents. Molecular Pharmaceutics, 2005, 2(3): 194-205
- 3
Gilchrist R K, Medal R, Shorey W D, et al. Selective inductive heating of lymph nodes. Annals of Surgery, 1957, 146(4): 596-606
- 4
Eppink B, Krawczyk P M, Stap J, et al. Hyperthermia-induced DNA repair deficiency suggests novel therapeutic anti-cancer strategies. International Journal of Hyperthermia, 2012, 28(6): 509-517
- 5
Riedinger A, Guardia P, Curcio A, et al. Subnanometer local temperature probing and remotely vontrolled drug release based on azo-functionalized iron oxide nanoparticles. Nano Letters, 2013, 13(6): 2399-2406
- 6
Gian F B M D. Hyperthermia in cancer treatment: a primer. New York: Springer US, 2006
- 7
Yang K, Zhang S, Zhang G, et al. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Letters, 2010, 10(9): 3318-3323
- 8
O'neal D P, Hirsch L R, Halas N J, et al. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Letters, 2004, 209(2): 171-176
- 9
Roti J L R. Cellular responses to hyperthermia (40-46 ℃): cell killing and molecular events. International Journal of Hyperthermia, 2008, 24(1): 3-15
- 10
Kida Y, Ishiguri H, Ichimi K, et al. Hyperthermia of metastatic brain tumor with implant heating system: a preliminary clinical results. No Shinkei Geka Neurological Surgery, 1990, 18(6): 521-526
- 11
Deger S, Taymoorian K, Boehmer D, et al. Thermoradiotherapy using interstitial self-regulating thermoseeds: an intermediate analysis of a phase II trial. European Urology, 2004, 45(5): 574-580
- 12
Kossatz S, Grandke J, Couleaud P, et al. Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery. Breast Cancer Research, 2015, 17(1): 66-67
- 13
Johannsen M, Gneveckow U, Wust P, et al. Thermotherapy using magnetic nanoparticles in patients with locally recurrent prostate cancer: initial results of a phase I study. European Urology Supplements, 2006, 5(2): 131-131
- 14
Pham Thanh P, Nam P H, Manh D H, et al. Studies of the magnetic properties and specific absorption of Mn0.3Zn0.7Fe2O4 nanoparticles. Journal of Electronic Materials, 2015, 44(1): 287-294
- 15
Ma M, Wu Y, Zhou H, et al. Size dependence of specific power absorption of Fe3O4 particles in AC magnetic field. Journal of Magnetism and Magnetic Materials, 2004, 268(1-2): 33-39
- 16
Lee J H, Jang J T, Choi J S, et al. Exchange-coupled magnetic nanoparticles for efficient heat induction. Nature Nanotechnology, 2011, 6(7): 418-422
- 17
Mehdaoui B, Meffre A, Carrey J, et al. Optimal size of nanoparticles for magnetic hyperthermia: a combined theoretical and experimental study. Advanced Functional Materials, 2011, 21(23): 4573-4581
- 18
Hosono T, Takahashi H, Sato Y, et al. Magnetite nanoparticles for magnetic fluid hyperthermia using modified oxidation method. Japan: Water Dynamics. 2007: 134-136
- 19
Lartigue L, Innocenti C, Kalaivani T, et al. Water-dispersible sugar-coated iron oxide nanoparticles. An evaluation of their relaxometric and magnetic hyperthermia properties. Journal of the American Chemical Society, 2011, 133(27): 10459-10472
- 20
Jeun M, Lee S, Kang J K, et al. Physical limits of pure superparamagnetic Fe3O4 nanoparticles for a local hyperthermia agent in nanomedicine. Applied Physics Letters, 2012, 100(9): 092406(1-5)
- 21
Mohapatra J, Zeng F, Elkins K, et al. Size-dependent magnetic and inductive heating properties of Fe3O4 nanoparticles: scaling laws across the superparamagnetic size. Physical Chemistry Chemical Physics, 2018, 20(18): 12879-12887
- 22
Nemati Z, Alonso J, Martinez L M, et al. Enhanced magnetic hyperthermia in iron oxide nano-octopods: size and anisotropy effects. Journal of Physical Chemistry C, 2016, 120(15): 8370-8379
- 23
Noh S H, Na W, Jang J T, et al. Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis. Nano Letters, 2012, 12(7): 3716-3721
- 24
Guardia P, Di Corato R, Lartigue L, et al. Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. Acs Nano, 2012, 6(4): 3080-3091
- 25
Yang Y, Liu X L, Yi J B, et al. Stable vortex magnetite nanorings colloid: micromagnetic simulation and experimental demonstration. Journal of Applied Physics, 2012, 111(4): 044303(1-10)
- 26
Wachowiak A, Wiebe J, Bode M, et al. Direct observation of internal spin structure of magnetic vortex cores. Science, 2002, 298(5593): 577-580
- 27
吴建鹏,刘晓丽,张欢,等. 涡旋磁纳米颗粒——崭新的生物医用磁性纳米平台. 生物化学与生物物理进展, 2015, 42(7):593-605
Wu J P, Liu X L, Zhang H, et al. Progress in Biochemistry and Biophysics,2015, 42(7): 593-605
- 28
Liu X L, Yang Y, Ng C T, et al. Magnetic vortex nanorings: a new class of hyperthermia agent for highly efficient in vivo regression of tumors. Advanced Materials, 2015, 27(11): 1938-1940
- 29
Yang Y, Liu X, Lv Y, et al. Orientation mediated enhancement on magnetic hyperthermia of Fe3O4 nanodisc. Advanced Functional Materials, 2015, 25(5): 812-820
- 30
Hergt R, Hiergeist R, Zeisberger M, et al. Magnetic properties of bacterial magnetosomes as potential diagnostic and therapeutic tools. Journal of Magnetism and Magnetic Materials, 2005, 293(1): 80-86
- 31
Mehdaoui B, Tan R P, Meffre A, et al. Increase of magnetic hyperthermia efficiency due to dipolar interactions in low-anisotropy magnetic nanoparticles: theoretical and experimental results. Physical Review B, 2013, 87(17): 174419(1-10)
- 32
Lee J H, Huh Y M, Jun Y W, et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nature Medicine, 2007, 13(1): 95-99
- 33
Noh S H, Moon S H, Shin T H, et al. Recent advances of magneto-thermal capabilities of nanoparticles: from design principles to biomedical applications. Nano Today, 2017, 13(1): 61-76
- 34
Jang J T, Nah H, Lee J H, et al. Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles. Angewandte Chemie-International Edition, 2009, 48(7): 1234-1238
- 35
Chen R, Christiansen M G, Anikeeva P. Maximizing hysteretic losses in magnetic ferrite nanoparticles via model-driven synthesis and materials optimization. Acs Nano, 2013, 7(10): 8990-9000
- 36
Jang J T, Lee J, Seon J, et al. Giant magnetic heat induction of magnesium-doped gamma-Fe2O3 superparamagnetic nanoparticles for completely killing tumors. Advanced Materials, 2018, 30(6): 1704362(1-8)
- 37
Yu J, Chen F, Gao W, et al. Iron carbide nanoparticles: an innovative nanoplatform for biomedical applications. Nanoscale Horizons, 2017, 2(2): 81-88
- 38
Thomas L A, Dekker L, Kallumadil M, et al. Carboxylic acid-stabilised iron oxide nanoparticles for use in magnetic hyperthermia. Journal of Materials Chemistry, 2009, 19(36): 6529-6535
- 39
Liu X L, Fan H M, Yi J B, et al. Optimization of surface coating on Fe3O4 nanoparticles for high performance magnetic hyperthermia agents. Journal of Materials Chemistry, 2012, 22(17): 8235-8244
- 40
Hergt R, Dutz S, Zeisberger M. Validity limits of the Néel relaxation model of magnetic nanoparticles for hyperthermia. Nanotechnology, 2010, 21(1): 015706(1-5)
- 1
摘要
磁性纳米颗粒具有独特的磁学性质,即在外加交变磁场下因产生磁滞释放热量,使其在生物医学领域,特别是肿瘤磁热疗,获得了广泛应用. 到目前为止,磁性纳米颗粒介导的磁热疗成为一种治疗癌症的有效手段,已进入临床三期实验. 因此,针对磁性纳米颗粒本身,优化设计尺寸、形貌、组分和表面修饰来提高其磁热性能,进而减小临床应用中的颗粒浓度来最小化毒副作用的研究,对肿瘤治疗及生物医药研究具有十分重要的意义. 本综述详述如何优化调制磁性纳米颗粒以提高其磁热性能,为高效、低毒的磁性纳米颗粒的设计提供了指导性的研究方向.
Abstract
The application of magnetic nanoparticles in the biomedical field has widely utilized in recent years especially in magnetic-mediated hyperthermia for cancer treatment because of their unique magnetic properties, that is, the hysteresis loss induces heat under an alternating magnetic field. So far, the magnetic-mediated hyperthermia as a kind of effective means for the treatment of cancer, has entered the third phase of clinical trial. Therefore, in view of the magnetic nanoparticles itself, it has great significance to optimize size, morphology, composition and surface modification to improve their magnetic hyperthermia performance. So it can reduce the concentration of magnetic nanoparticles in clinical practice and minimize the side effects in tumor treatment. This review described in detail that how to optimize the modulation of magnetic nanoparticles to improve magnetic hyperthermia performances.
关键词 磁性纳米颗粒,磁热性能,尺寸,形貌,组分,表面修饰
磁性纳米颗粒因具有独特的磁学性质及较好的生物学相容性,目前在生物医药领域,如生物传感、磁分离、药物靶向递送、磁共振(MRI)成像、磁热疗等得到了广泛的应

图1 调制磁性纳米颗粒提高磁热性能示意图
Fig.1 Scheme of improving magnetic hyperthermia performance by modulating magnetic nanoparticles