1 肿瘤外泌体可调控树突状细胞功能
DC是机体免疫系统中最强有力的专职抗原呈递细胞,具有强大的抗原摄取和处理能力. 然而在肿瘤环境中,多种因素作用于DC导致其功能发生异常,从抗原递呈作用向免疫抑制作用发生偏移,并且处于不成熟状态,对抗原刺激或TLR激动剂处理极不敏感,导致肿瘤细胞逃脱机体免疫系统的监
视[9,10] .肿瘤外泌体能够抑制DC活化,可能与携带的TGF-β有关. 研究报道称,与肿瘤(如肺癌、乳腺癌、膀胱癌细胞)分泌的外泌体共孵育后,DC表面CD80、MHC-Ⅱ、CD86分子显著下降,而PD-L1分子明显升高,并且TNF-α、IL-6、IL-12及iNOS水平随之降低,而精氨酸酶(arginase Ⅰ)显著升高,使得DC呈现免疫抑制功
能[11,12,13] . 并且,外泌体处理后,多个趋化因子受体如CCR6、CCR7及CXCR3表达下调,其向引流淋巴结迁移的能力受到明显影响[4,12] . 究其机制发现,将肿瘤细胞中TGF-β进行沉默,可逆转外泌体对DC的抑制效果[14,15] .外泌体表达的miRNAs能调控DC中靶基因,进而影响DC功能,这可能在耐受性DC形成以及肿瘤逃逸过程中发挥作用. 在胰腺癌细胞中,肿瘤外泌体将miR-203携带进DC,导致其靶基因TLR4表达下降,并且下游细胞因子IL-12和TNF-α受到显著抑
制[16] . 然而,也有研究认为,肿瘤外泌体携带的核酸成分能激活DC中TLR3、cGAS-STING以及TLR7/8等,发挥抗肿瘤免疫应答[17,18,19] . 这提示我们,外泌体对DC的影响可能与肿瘤类型和肿瘤进展阶段有关.除调控DC细胞的功能外,肿瘤外泌体还可调控DC细胞的分化成熟. 例如,在黑色素瘤及乳腺癌研究中,肿瘤外泌体不仅能够抑制髓样前体细胞向CD11c+DC分化,还能通过调节IL-6的含量抑制单核细胞向DC细胞分化. 此外,肿瘤外泌体亦能通过其携带的TGF-β及IL-4分子抑制DC细胞的成熟过程,并且这一过程伴随DC凋亡水平显著升
高[4,12,20] . 然而,也有报道称肿瘤外泌体中miRNA能诱导DC成熟过程. 例如Taghikhani等[21] 发现,乳腺癌细胞外泌体中的Let-7i、miR-142及miR-155可诱导DC细胞成熟,后续可为DC疫苗制备提供重要思路. 因此,在具体实施过程中,应该精细鉴别肿瘤外泌体成分,判断其对DC的确切作用.2 肿瘤外泌体可调控巨噬细胞功能
和DC一样,巨噬细胞具有较强的吞噬能力. 肿瘤区域特殊的微环境能改变巨噬细胞的表型、功能,进而参与肿瘤细胞生长、侵袭及血管形成. 在这一过程中,外泌体更易将其携带的成分转移到巨噬细胞中,导致巨噬细胞极化及功能发生改变.
肿瘤外泌体中含有多种核酸成分,可能激活TLR信号通路. Fabbri
等[22] 采用基因表达谱分析发现,肺癌细胞外泌体富含miR-21和miR-29a,共聚焦显微镜显示上述miRNAs能够与鼠TLR7和人TLR8结合,促进巨噬细胞TLR信号通路的活化,继而促进肿瘤细胞的转移. 在这一过程中,miRNAs分子扮演配体的角色. 而肺癌外泌体表面棕榈酰化蛋白也能与巨噬细胞TLR2结合,并通过MyD88活化NF-κB信号通路,产生大量促炎因子如IL-6、TNF-α、G-CSF,进而促进肿瘤进程,而TLR3/4/7/8/9并不参与这一过程[23] .肿瘤外泌体介导M2型巨噬细胞极化,不同肿瘤微环境中具体分子机制有所不同. 胃癌细胞上清中外泌体能够促进巨噬细胞NF-κB信号通路活化,促进M2型巨噬细胞极化,产生大量TNF-α、IL-6等,这些因子反过来促进胃癌细胞的侵袭和转
移[24] . 在卵巢癌细胞中,研究者认为外泌体中miR-222-3p可通过SOCS3/STAT3信号通路促进肿瘤相关巨噬细胞向M2型极化[25] . 而在胰腺癌细胞中,肿瘤外泌体中miR-155和miR-125b2在巨噬细胞向M2型极化过程中扮演重要角色[26] . 我们的研究发现,肝癌外泌体中miR-146a分子介导M2巨噬细胞极化作用(未发表结果). 此外,某些抗肿瘤药物能够逆转这一过程. 例如,没食子酸处理肿瘤细胞后,外泌体可使巨噬细胞由M2型向M1型极化[27] . 以上研究提示,针对不同的肿瘤类型,逆转巨噬细胞极化的途径和策略也是不同的.除了介导巨噬细胞的极化作用以外,外泌体还可影响其迁移功能. 例如Costa-Silva
等[28] 研究表明,胰腺癌细胞分泌的外泌体被肝脏Kupffer细胞摄取后,导致TGF-β分泌升高,募集更多骨髓来源巨噬细胞,形成肝脏预转移灶,这一过程主要由外泌体中高表达的巨噬细胞游走抑制因子(macrophage migration inhibitory factor,MIF)介导. 这一结果说明,外泌体中具有趋化作用的因子介导了巨噬细胞的迁移过程.肿瘤外泌体还可通过其他细胞如上皮细胞间接抑制巨噬细胞功能. 例如曹雪涛院士团
队[29] 发现,在肿瘤预转移微环境形成的过程中,肿瘤细胞来源的外泌体携带的RNA成分被肺脏上皮细胞TLR3识别,导致其下游多个趋化因子上调,募集中性粒细胞到达肺脏部位,促进肿瘤细胞的肺转移. 这一研究也进一步鉴定了能被TLR3识别的非病毒来源RNA分子结构主要是U1 snRNA.3 外泌体与自然杀伤细胞介导的免疫逃逸
自然杀伤细胞(natural killer cell,NK)是机体重要的免疫细胞,在机体抵抗肿瘤过程中发挥至关重要的作用. 其识别“自己”与“非己”,主要由表面活化性受体传导的活化信号与抑制性受体传导的抑制性信号之间的平衡所介
导[30] . 但是,在肿瘤生长过程中,肿瘤细胞可以通过多种机制诱导NK细胞功能紊乱,从而逃避NK细胞的监视. NK细胞能够内化肿瘤外泌体[31] ,并且对于不同来源的外泌体有不同的内化效率[32] .NKG2D是NK细胞表面活化性受体,其免疫功能缺失与免疫逃逸密切相关. 研究证实免疫抑制因子TGF-β以及可溶性MICA/MICB能抑制NKG2D介导的抗肿瘤作用. 近年研究发现,在前列腺癌、卵巢癌、白血病等体内外模型中,MICA从肿瘤表面脱落后,随外泌体分泌到肿瘤上清中,通过诱骗形式抑制NK细胞功能,导致NK细胞抗肿瘤作用降低和肿瘤免疫逃
逸[3,33,34] . 除了MICA外,Labani-Motlagh等[35] 研究发现卵巢癌来源的外泌体还表达ULBP,和MICA一样也能导致人PBMC中NKG2D受体表达下降,使得抗肿瘤作用受到抑制[35,36,37] . 在氧化应激如40%H2 O2 条件下,白血病细胞上清外泌体表达更多的可溶性MICA/MICB以及ULBP1/2,放大了对免疫功能的抑制效应[34] . 然而,也有研究认为,肿瘤外泌体抑制NK细胞NKG2D表达依赖于TGF-β,当中和TGF-β后,可显著逆转这一效应,并且可溶性MICA的作用远低于TGF-β[38] .除NKG2D外,肿瘤外泌体还会影响NK细胞其他受体信号通路. 例如,肿瘤外泌体能抑制活化性受体NKp46、NKp30的表达,进而抑制NK细胞杀伤功
能[39,40] ,但是具体分子机制并不清楚,这可能与NKp46配体尚不明确有关. 此外,外泌体还能够影响NK细胞表面另一种活化性受体 DNAM-1,由于外泌体中DNAM-1配体分子表达水平较低,DNAM-1受体介导的NK细胞杀伤作用并不十分显著[35] . 值得注意的是,外泌体对NK细胞表面CD8、CD56、CD16、CD94及CD69等分子的影响在不同细胞模型中的结果并不一致[38] .最新研究认为,肿瘤外泌体对NK细胞的功能可能具有双重作用. 白血病细胞外泌体表达IL-15、IL-18、4-1BBL,短时间作用(4 h)可增强NK细胞的功能,而长时间孵育(48 h)会进一步抑制NK细
胞[41] . 经低剂量抗肿瘤药物美法仑干预后,白血病细胞发生衰老,其外泌体表达高水平IL-15和IL-15Ra,IL-15/IL-15Ra复合物作用于NK细胞,通过反式递呈作用(trans-presentation)促进NK细胞效应[42] . 在患者体内,IL-15可溶性复合物主要影响CD56high NK细胞亚群[43] . 另有报道与之类似,研究者利用体外实验发现,进行肿瘤治疗后,肝癌或是骨髓瘤中外泌体含有多种热休克蛋白如Hsp60、Hsp70及Hsp90,能刺激NK细胞杀伤功能和Granzyme B、IFN-γ的表达,这一过程中抑制性受体CD94表达升高,而活化相关分子CD69、NKG2D及NKp44表达下降[44,45] . 在口腔癌中,肿瘤外泌体中的NF-κB活化激酶相关蛋白(NF-κB-activating kinase-associated protein 1, NAP1)可通过IRF-3信号通路影响NK细胞的杀伤功能.值得关注的是,外泌体在体内环境中对NK细胞的效应尚不明确. 外泌体对NK细胞的最终效应可能与作用时间、肿瘤类型以及用药情况密切相关,不同肿瘤类型或不同阶段的外泌体的成分可能有所不同.
4 外泌体通过多种途径抑制T细胞功能
众所周知,CD8+T细胞能够识别并杀死肿瘤细胞. 然而,在肿瘤环境中,T细胞逐渐失去效应功能,记忆T细胞特征也开始缺失,表现为PD-1等抑制性受体高表达,IFN-γ和TNF-α分泌能力显著下
降[46] . 在这一过程中,肿瘤外泌体也扮演着重要角色.4.1 肿瘤外泌体能够直接影响T细胞
4.1.1 肿瘤外泌体对CD8+T细胞影响
早期研究者发现,肿瘤外泌体能够下调T细胞中CD3ξ和JAK3的表达,其中CD3ξ分子是TCR受体复合物的重要组成,对于IL-2、IL-7、IL-15信号通路传递以及维持T细胞增殖功能尤为重
要[47] . 此外,由于T细胞亚群如γδT细胞、CD8+T细胞同样表达NKG2D,肿瘤外泌体携带的MICA、ULBP等能通过抑制NKG2D信号通路降低T细胞的杀伤功能,导致肿瘤免疫逃逸[3,37] .诱导T细胞死亡是肿瘤免疫逃逸的重要途径. 肿瘤细胞不仅能够通过其表面Fas L,还能够通过外泌体Fas L诱导T细胞凋亡. Wieckowski
等[48] 提取 35名头颈部鳞状细胞癌和黑色素瘤患者血清外泌体,发现其含有Fas L、MHC I类分子. 肿瘤外泌体高表达Fas L分子,与CD8+T细胞Fas 结合后,导致CD8+T细胞发生凋亡,而CD4+T细胞并未受到显著影响[31,47,48] . 另有报道称,头颈部鳞状细胞癌分泌的外泌体含有Gal-1凝集素,其可直接诱导CD8+T细胞丢失CD27/CD28,产生抑制性表型[49] .然而,也有报道认为肿瘤的外泌体对CD8+T的作用是多方面的,这主要与肿瘤的类型及外泌体中的成分相关. 如在B16F0的肿瘤外泌体中富含酪氨酸蛋白磷酸酶非受体11型(tyrosine-protein phosphatase non-receptor type 11,Ptpn11)及RNA成分,可有效抑制CD8+T细胞的增殖,调控其表面耗竭分子的表达,并具有剂量依赖性;同样是黑色素瘤,Melan-A细胞来源的外泌体对CD8+T细胞功能的影响微乎其微,甚至在Cloudman S91的肿瘤外泌体中可对CD8+T细胞有相反的作用,可有效促进其增
殖[50] .然而,CD8+T细胞对于外泌体及其成分的摄取方式还存在一定的争议. Muller
等[31] 研究发现,不管是静息CD8+T细胞,还是预先活化的CD8+T细胞,与肿瘤外泌体长时间(24~72 h)孵育后,均不能吞噬或者内化外泌体,究其机制是因为外泌体可导致T细胞Ca2+ 内流.4.1.2 肿瘤外泌体对CD4+T细胞影响
对于CD4+T细胞能否内化外泌体,目前尚无一致的结论. 例如,有研究者将PKH26标记的肿瘤外泌体与外周血中CD4+T细胞共孵育后,发现其内化外泌体的能力极低,远远低于B细胞、单核细胞、NK细
胞[31] . 然而,Zhou等[51] 认为,黑色素瘤细胞外泌体能够进入CD4+T细胞,进一步促进caspase-3、caspase-7及caspase-9活化,并且伴随有抗凋亡基因BCL-2、MCL-1、BCL-xL下调. 作者认为,这一过程与外泌体携带的多种miRNA有关,如miR-690能靶向Bcl-2. 令人意外的是,该研究并未观察到黑色素瘤细胞外泌体对CD8+T细胞凋亡的影响,这可能与两种细胞Fas以及凋亡和抗凋亡基因表达含量有关.除影响CD4+T细胞功能外,肿瘤外泌体还能影响CD4+T细胞的增殖和分化过程. Klibi
等[52] 发现,在鼻咽癌肿瘤中,外泌体中包裹的miRNAs不仅抑制T细胞的增殖,还能抑制其向Th1及Th17分化,并促进Treg的形成.4.2 肿瘤外泌体间接调控T细胞功能
4.2.1 肿瘤外泌体调控调节性T细胞
Treg细胞是一群发挥免疫负调作用的T细胞亚群. 最新研究认为,Treg细胞内化肿瘤外泌体的能力较低,主要通过细胞表面接触影响其功
能[31] .肿瘤外泌体能够促进Treg细胞的分化和增殖. 当肿瘤外泌体与CD
4+ CD25- T细胞共孵育后,可促使其向CD4+ CD25hi FOXP3+ Treg转化,Treg细胞中Fas L、IL-10、TGF-β1、CTLA-4等分子表达显著升高[38,47,53] . 这一过程中,肿瘤外泌体TGF-β能够活化Treg细胞中pSMAD2/3和pSTAT3,进一步促进其扩增[53] . 此外,基因芯片结果表明,外泌体能够改变Treg细胞基因表达谱,导致COX-2、IL-10等基因明显升高[54] . 并且,肿瘤外泌体CD73能显著提高Treg细胞抑制性腺苷的分泌,最终导致T细胞的增殖和抗肿瘤作用受到抑制[55] . 尽管也有报道认为肿瘤外泌体能促进Treg的凋亡[56] ,我们认为,肿瘤外泌体能够促进Treg细胞的免疫抑制作用来重塑免疫微环境.4.2.2 肿瘤外泌体调控骨髓来源的抑制性细胞
MDSC是骨髓来源的一群抑制性细胞,可显著抑制T细胞应答. 研究发现,肿瘤外泌体能够促进MDSC扩增,当MDSC中缺失MyD88分子时,外泌体的效应显著降低. 这是由于MyD88下游IL-6、TNF-α、CCL2分子明显升高,进一步活化MDSC中STAT3信号通路,导致MDSC进一步扩增. 然而,作者并未进一步鉴定MyD88分子的上游受
体[57] . 而在多种小鼠肿瘤细胞系,如EL4淋巴瘤、TS/A乳腺癌细胞及CT26结肠癌中,作者发现肿瘤外泌体膜表达蛋白Hsp72能与MDSC中TLR2结合,通过MyD88接头分子诱导IL-6分泌,其以自分泌的形式激活MDSC中STAT3信号通路,从而介导MDSC扩增,进一步发挥抑制T细胞功能,导致肿瘤免疫逃逸[3,57,58] . 另有研究证明,在小鼠乳腺癌中,肿瘤来源外泌体中富含的TGF-β以及PGE2可诱导MDSC细胞的生成,进而产生大量的Cox2、IL-6、VEGF及Arginase-1影响肿瘤的进程[59] . 然而,在人肿瘤微环境中是否也伴随上述现象,同样值得进一步研究.5 展望
外泌体不仅能影响终末端分化免疫细胞,还能影响造血干细胞,使其向促转移表型分化,表现为c-Kit、Tie2、Met表达升
高[5] . 此外,肿瘤来源的外泌体还能通过其表面Hsp70促进间充质干细胞TLR2/NF-κB信号通路的活化,使其分泌更多炎症因子(IL-6、IL-8及MCP-1),导致肿瘤增殖迅速[60] . 所以,肿瘤外泌体是肿瘤免疫逃逸过程中不容忽视的关键因素,对肿瘤微环境的影响是多方面的.本文归纳了肿瘤外泌体在肿瘤逃逸过程中的作用,但是外泌体对肿瘤免疫应答的影响是多重的. 由于肿瘤外泌体能携带肿瘤抗原HER2、CEA、间皮素、CD24和EpCAM等,还能携带多种趋化因子,进而发挥免疫激活作用和免疫佐剂作
用[61] . 外泌体具体发挥何种作用,可能与肿瘤类型、外泌体含量、组分等有关. 目前,有关外泌体调控的机制研究刚刚起步,有报道称PKM2激酶在肿瘤外泌体的形成和分泌过程中发挥重要作用[62] . 因此,深入研究肿瘤外泌体的调控分子,将为肿瘤免疫逃逸和耐受机制提供新的证据. 在临床肿瘤治疗过程中,抗肿瘤药物对肿瘤外泌体成分的影响,如miRNA谱和蛋白质谱是否发生改变,将是十分值得研究的课题方向,为逆转肿瘤微环境多种免疫细胞功能提供新的理论依据.Progress of Mechanism of Tumor Immune Escape and Tolerance Mediated by Exosom
e* YIN Chun-La
i1) , ZHAO Xue-Mei1) , HOU Zhao-Hua2) , ZHANG Jian1) , HAN Qiu-Ju1)** (1) Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China;2)Laboratory of Immunology for Environment and Health Shandong Analysis and Test Center Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China)
参 考 文 献
- 1
Villalba M, Rathore M G, Lopez-Royuela N, et al. From tumor cell metabolism to tumor immune escape. Int J Biochem Cell Biol, 2013, 45(1): 106-113
- 2
Olson B, Li Y, Lin Y, et al. Mouse models for cancer immunotherapy research. Cancer Discov, 2018, 8(11): 1358-1365
- 3
Liu Y, Gu Y, Cao X. The exosomes in tumor immunity. Oncoimmunology, 2015, 4(9): e1027472
- 4
Yu S, Liu C, Su K, et al. Tumor exosomes inhibit differentiation of bone marrow dendritic cells. Journal of Immunology, 2007, 178(11): 6867-6875
- 5
Peinado H, Aleckovic M, Lavotshkin S, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med, 2012, 18(6): 883-891
- 6
Hsu C, Morohashi Y, Yoshimura S, et al. Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C. J Cell Biol, 2010, 189(2): 223-232
- 7
Kahlert C, Kalluri R. Exosomes in tumor microenvironment influence cancer progression and metastasis. J Mol Med (Berl), 2013, 91(4): 431-437
- 8
De Toro J, Herschlik L, Waldner C, et al. Emerging roles of exosomes in normal and pathological conditions: new insights for diagnosis and therapeutic applications. Front Immunol, 2015, 6: 203
- 9
Kunigelis K E, Graner M W. The dichotomy of tumor exosomes (TEX) in cancer immunity: is it all in the ConTEXt? Vaccines (Basel), 2015, 3(4): 1019-1051
- 10
Xu H, Cao X. Dendritic cell vaccines in cancer immunotherapy: from biology to translational medicine. Front Med, 2011, 5(4): 323-332
- 11
Mu C, Zhang X, Wang L, et al. Enhanced suppression of polyclonal CD8(+)25(+) regulatory T cells via exosomal arming of antigen-specific peptide/MHC complexes. Journal of Leukocyte Biology, 2017, 101(5): 1221-1231
- 12
Ning Y, Shen K, Wu Q, et al. Tumor exosomes block dendritic cells maturation to decrease the T cell immune response. Immunology Letters, 2018, 199: 36-43
- 13
Salimu J, Webber J, Gurney M, et al. Dominant immunosuppression of dendritic cell function by prostate-cancer-derived exosomes. J Extracell Vesicles, 2017, 6(1): 1368823
- 14
Huang F, Wan J, Hu W, et al. Enhancement of anti-leukemia immunity by leukemia-derived exosomes via downregulation of TGF-beta1 expression. Cell Physiol Biochem, 2017, 44(1): 240-254
- 15
Haneklaus M, Gerlic M, Kurowska-Stolarska M, et al. Cutting edge: miR-223 and EBV miR-BART15 regulate the NLRP3 inflammasome and IL-1beta production. J Immunol, 2012, 189(8): 3795-3799
- 16
Zhou M, Chen J, Zhou L, et al. Pancreatic cancer derived exosomes regulate the expression of TLR4 in dendritic cells via miR-203. Cell Immunol, 2014, 292(1-2): 65-69
- 17
Dreux M, Garaigorta U, Boyd B, et al. Short-range exosomal transfer of viral RNA from infected cells to plasmacytoid dendritic cells triggers innate immunity. Cell Host Microbe, 2012, 12(4): 558-570
- 18
Rao Q, Zuo B, Lu Z, et al. Tumor-derived exosomes elicit tumor suppression in murine hepatocellular carcinoma models and humans in vitro. Hepatology, 2016, 64(2): 456-472
- 19
Chen Z, You L, Wang L, et al. Dual effect of DLBCL-derived EXOs in lymphoma to improve DC vaccine efficacy in vitro while favor tumorgenesis in vivo. Journal of Experimental & Clinical Cancer Research : CR, 2018, 37(1): 190
- 20
Gabrilovich D I, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol, 2009, 9(3): 162-174
- 21
Taghikhani A, Hassan Z M, Ebrahimi M, et al. MicroRNA modified tumor-derived exosomes as novel tools for maturation of dendritic cells. Journal of Cellular Physiology, 2019, 234(6): 9417-9427
- 22
Fabbri M, Paone A, Calore F, et al. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci U S A, 2012, 109(31): E2110-2116
- 23
Chow A, Zhou W, Liu L, et al. Macrophage immunomodulation by breast cancer-derived exosomes requires Toll-like receptor 2-mediated activation of NF-kappaB. Sci Rep, 2014, 4: 5750
- 24
Wu L, Zhang X, Zhang B, et al. Exosomes derived from gastric cancer cells activate NF-kappaB pathway in macrophages to promote cancer progression. Tumour Biol, 2016, 37(9): 12169-12180
- 25
Ying X, Wu Q, Wu X, et al. Epithelial ovarian cancer-secreted exosomal miR-222-3p induces polarization of tumor-associated macrophages. Oncotarget, 2016, 7(28): 43076-43087
- 26
Su M J, Aldawsari H, Amiji M. Pancreatic cancer cell exosome-mediated macrophage reprogramming and the role of microRNAs 155 and 125b2 transfection using nanoparticle delivery systems. Sci Rep, 2016, 6: 30110
- 27
Jang J Y, Lee J K, Jeon Y K, et al. Exosome derived from epigallocatechin gallate treated breast cancer cells suppresses tumor growth by inhibiting tumor-associated macrophage infiltration and M2 polarization. BMC Cancer, 2013, 13: 421
- 28
Costa-Silva B, Aiello N M, Ocean A J, et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol, 2015, 17(6): 816-826
- 29
Liu Y, Gu Y, Han Y, et al. Tumor exosomal RNAs promote lung pre-metastatic niche formation by activating alveolar epithelial TLR3 to recruit neutrophils. Cancer Cell, 2016, 30(2): 243-256
- 30
Abel A M, Yang C, Thakar M S, et al. Natural killer cells: development, maturation, and clinical utilization. Front Immunol, 2018, 9: 1869
- 31
Muller L, Simms P, Hong C S, et al. Human tumor-derived exosomes (TEX) regulate Treg functions via cell surface signaling rather than uptake mechanisms. Oncoimmunology, 2017, 6(8): e1261243
- 32
Huyan T, Du Y, Huang Q, et al. Uptake characterization of tumor cell-derived exosomes by natural killer cells. Iran J Public Health, 2018, 47(6): 803-813
- 33
Ashiru O, Boutet P, Fernandez-Messina L, et al. Natural killer cell cytotoxicity is suppressed by exposure to the human NKG2D ligand MICA*008 that is shed by tumor cells in exosomes. Cancer Res, 2010, 70(2): 481-489
- 34
Hedlund M, Nagaeva O, Kargl D, et al. Thermal- and oxidative stress causes enhanced release of NKG2D ligand-bearing immunosuppressive exosomes in leukemia/lymphoma T and B cells. Plos One, 2011, 6(2): e16899
- 35
Labani-Motlagh A, Israelsson P, Ottander U, et al. Differential expression of ligands for NKG2D and DNAM-1 receptors by epithelial ovarian cancer-derived exosomes and its influence on NK cell cytotoxicity. Tumour Biol, 2016, 37(4): 5455-5466
- 36
Lundholm M, Schroder M, Nagaeva O, et al. Prostate tumor-derived exosomes down-regulate NKG2D expression on natural killer cells and CD8+ T cells: mechanism of immune evasion. Plos One, 2014, 9(9): e108925
- 37
Mincheva-Nilsson L, Baranov V. Cancer exosomes and NKG2D receptor-ligand interactions: impairing NKG2D-mediated cytotoxicity and anti-tumour immune surveillance. Semin Cancer Biol, 2014, 28: 24-30
- 38
Clayton A, Mitchell J P, Court J, et al. Human tumor-derived exosomes down-modulate NKG2D expression. J Immunol, 2008, 180(11): 7249-7258
- 39
Hong C S, Muller L, Boyiadzis M, et al. Isolation and characterization of CD34+ blast-derived exosomes in acute myeloid leukemia. Plos One, 2014, 9(8): e103310
- 40
熊文杰,刘焕勋,史敦云,等. 骨髓瘤细胞来源外泌体对NK细胞表面活化受体的影响. 2017, 25(6): 1713-1717
Xiong W J, Liu H X, Shi D Y, et al. Journal of Experimental Hematology, 2017, 25(6): 1713-1717
- 41
Li Q, Huang Q, Huyan T, et al. Bifacial effects of engineering tumour cell-derived exosomes on human natural killer cells. Exp Cell Res, 2018, 363(2): 141-150
- 42
Borrelli C, Ricci B, Vulpis E, et al. Drug-induced senescent multiple myeloma cells elicit NK cell proliferation by direct or exosome-mediated IL15 trans-presentation. Cancer Immunol Res, 2018, 6(7): 860-869
- 43
Dubois S, Conlon K C, Muller J R, et al. IL15 infusion of cancer patients expands the subpopulation of cytotoxic CD56(bright) NK cells and increases NK-cell cytokine release capabilities. Cancer Immunol Res, 2017, 5(10): 929-938
- 44
Lv L H, Wan Y L, Lin Y, et al. Anticancer drugs cause release of exosomes with heat shock proteins from human hepatocellular carcinoma cells that elicit effective natural killer cell antitumor responses in vitro. J Biol Chem, 2012, 287(19): 15874-15885
- 45
Vulpis E, Cecere F, Molfetta R, et al. Genotoxic stress modulates the release of exosomes from multiple myeloma cells capable of activating NK cell cytokine production: role of HSP70/TLR2/NF-kB axis. Oncoimmunology, 2017, 6(3): e1279372
- 46
Crespo J, Sun H, Welling T H, et al. T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr Opin Immunol, 2013, 25(2): 214-221
- 47
Whiteside T L. Immune modulation of T-cell and NK (natural killer) cell activities by TEXs (tumour-derived exosomes). Biochem Soc Trans, 2013, 41(1): 245-251
- 48
Wieckowski E U, Visus C, Szajnik M, et al. Tumor-derived microvesicles promote regulatory T cell expansion and induce apoptosis in tumor-reactive activated CD8+T lymphocytes. Journal of Immunology, 2009, 183(6): 3720-3730
- 49
Maybruck B T, Pfannenstiel L W, Diaz-Montero M, et al. Tumor-derived exosomes induce CD8(+) T cell suppressors. J Immunother Cancer, 2017, 5(1): 65
- 50
Wu Y, Deng W, Mcginley E C, et al. Melanoma exosomes deliver a complex biological payload that upregulates PTPN11 to suppress T lymphocyte function. Pigment Cell Melanoma Res, 2017, 30(2): 203-218
- 51
Zhou J, Yang Y, Wang W, et al. Melanoma-released exosomes directly activate the mitochondrial apoptotic pathway of CD4(+) T cells through their microRNA cargo. Exp Cell Res, 2018, 371(2): 364-371
- 52
Klibi J, Niki T, Riedel A, et al. Blood diffusion and Th1-suppressive effects of galectin-9-containing exosomes released by Epstein-Barr virus-infected nasopharyngeal carcinoma cells. Blood, 2009, 113(9): 1957-1966
- 53
Szajnik M, Czystowska M, Szczepanski M J, et al. Tumor-derived microvesicles induce, expand and up-regulate biological activities of human regulatory T cells (Treg). Plos One, 2010, 5(7): e11469
- 54
Muller L, Mitsuhashi M, Simms P, et al. Tumor-derived exosomes regulate expression of immune function-related genes in human T cell subsets. Sci Rep, 2016, 6: 20254
- 55
Schuler P J, Saze Z, Hong C S, et al. Human CD4+ CD39+ regulatory T cells produce adenosine upon co-expression of surface CD73 or contact with CD73+ exosomes or CD73+ cells. Clin Exp Immunol, 2014, 177(2): 531-543
- 56
Zech D, Rana S, Buchler M W, et al. Tumor-exosomes and leukocyte activation: an ambivalent crosstalk. Cell Communication and Signaling : CCS, 2012, 10(1): 37
- 57
Liu Y, Xiang X, Zhuang X, et al. Contribution of MyD88 to the tumor exosome-mediated induction of myeloid derived suppressor cells. Am J Pathol, 2010, 176(5): 2490-2499
- 58
Chalmin F, Ladoire S, Mignot G, et al. Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. The Journal of Clinical Investigation, 2010, 120(2): 457-471
- 59
Xiang X, Poliakov A, Liu C, et al. Induction of myeloid-derived suppressor cells by tumor exosomes. International Journal of Cancer Journal International du Cancer, 2009, 124(11): 2621-2633
- 60
Li X, Wang S, Zhu R, et al. Lung tumor exosomes induce a pro-inflammatory phenotype in mesenchymal stem cells via NFkappaB-TLR signaling pathway. J Hematol Oncol, 2016, 9: 42
- 61
Wang J, Wang L, Lin Z, et al. More efficient induction of antitumor T cell immunity by exosomes from CD40L gene-modified lung tumor cells. Molecular Medicine Reports, 2014, 9(1): 125-131
- 62
Wei Y, Wang D, Jin F, et al. Pyruvate kinase type M2 promotes tumour cell exosome release via phosphorylating synaptosome-associated protein 23. Nat Commun, 2017, 8: 14041
- 1
摘要
肿瘤细胞能够通过多种机制抵御免疫防御或药物的抗肿瘤作用. 近年研究发现,外泌体能够直接介导癌症的进展和远端转移灶的形成. 更为重要的是,在肿瘤免疫微环境中,肿瘤来源外泌体不仅能够抑制树突状细胞(DC)、巨噬细胞、T细胞、NK细胞等免疫细胞功能,还能促进骨髓来源的抑制性细胞(MDSC)、调节性T细胞(Treg)等的免疫抑制功能,进而降低抗肿瘤免疫应答过程,帮助肿瘤细胞逃避机体免疫细胞识别. 本文将概述肿瘤外泌体及其携带的关键介质分子在介导肿瘤免疫逃逸和耐受过程中扮演的角色,并对这一研究领域的最新进展作一综述.
Abstract
Tumor cells can derive a variety of mechanisms to resist immune defense or drug action. Recent studies have demonstrated that exosomes can mediate cancer progression and distal metastasis. Importantly, exosome plays an important role in regulating DC, macrophages, T cells, NK cells and so on in the microenvironment of tumors. Moreover, exosome can help tumor cells escape the recognition of immune cells by promoting the functions of immunosuppressive cells, such as MDSC and Treg. This review will summarize the role of exosome and its key mediators in mediating tumor immune escape and immune tolerance, and review the latest progress in this field.
肿瘤免疫微环境呈现免疫抑制状态. 研究表明,多种因素在肿瘤免疫微环境重塑中发挥重要作用,在促进肿瘤增殖和转移的同时,还能诱导肿瘤逃逸免疫. 一方面,肿瘤细胞能够杀死免疫细胞,导致T细胞、NK细胞数量降低,例如通过FasL或者PD-L1/PD-1途径诱导免疫细胞死亡;另一方面,肿瘤细胞本身还能诱导抑制性免疫微环境,如募集调节性T细胞(Treg)、骨髓来源的抑制性细胞(MDSC),这些抑制性细胞通过负调CD8+T细胞功能,导致肿瘤免疫逃
研究发现,肿瘤病人外泌体含量高于正常人,并且成分更为复杂. 因此,外泌体能够作为肿瘤诊断、治疗及预后的标记