en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
HerreraA C, PrinceM, KnappM, et al.World Alzheimer Report 2016: Improving Healthcare For People With Dementia. Coverage, Quality And Costs Now And In The Future. 2016[2018-09-11]. https://www.alz.co.uk/
参考文献 2
ErolR, BrookerD, PeelE. Women and Dementia: A Global Research Review. 2015[2018-09-11].https://www.alz.co.uk/
参考文献 3
HanX, AenlleK K, BeanL A, et al. Role of estrogen receptor α and β in preserving hippocampal function during aging. Journal of Neuroscience, 2013, 33(6): 2671-2683
参考文献 4
LvW, DuN, LiuY, et al. Low Testosterone level and risk of Alzheimer’s disease in the elderly men: a systematic review and meta-analysis. Molecular Neurobiology, 2016, 53(4): 2679-2684
参考文献 5
NeadK T, GaskinG, ChesterC, et al. Androgen deprivation therapy and future Alzheimer's disease risk. Journal of Clinical Oncology, 2016, 34(6): 566-571
参考文献 6
YunJ , YeoI J , HwangC J , et al. Estrogen deficiency exacerbates Aβ-induced memory impairment through enhancement of neuroinflammation, amylodogenesis and NF-κB activation in ovariectomized mice. Brain, Behavior, and Immunity, 2018, 73: 282-293
参考文献 7
刘健康, 彭韵桦, 龙建纲. 脑内线粒体雌激素受体β在女性阿尔茨海默病发生过程中的作用. 生物化学与生物物理进展, 2012, 39(8): 785-790
LiuJ K, PengY H, LongJ G. Prog Biochem Biophys, 2012, 39(8): 785-790
参考文献 8
HouC , PengY , QinC , et al. Hydrogen-rich water improves cognitive impairment gender-dependently in APP/PS1 mice without affecting Aβ clearance. Free Radical Research, 2018, 52(11-12):1311-1322
参考文献 9
PengY, HouC, YangZ, et al. Hydroxytyrosol mildly improve cognitive function independent of APP processing in APP/PS1 mice. Molecular Nutrition & Food Research, 2016, 60(11): 2331-2342
参考文献 10
JiaJ, WangF, WeiC, et al. The prevalence of dementia in urban and rural areas of China. Alzheimers & Dementia, 2014, 10(1): 1-9
参考文献 11
LiJ Q, TanL, WangH F, et al. Risk factors for predicting progression from mild cognitive impairment to Alzheimer’s disease: a systematic review and meta-analysis of cohort studies. Journal of Neurology Neurosurgery & Psychiatry, 2016, 87(5):476-484
参考文献 12
NomaguchiK M, BianchiS M. Exercise time: gender differences in the effects of marriage, parenthood, and employment. Journal of Marriage & Family, 2004, 66(2): 413–430
参考文献 13
HogervorstE , CliffordA , StockJ , et al. Exercise to prevent cognitive decline and Alzheimer's disease: for whom, when, what, and (most importantly) how much?. Journal of Alzheimer's Disease & Parkinsonism, 2013, 02(3):1-8
参考文献 14
MiddletonL E, BarnesD E, LuiL Y, et al. Physical activity over the life course and its association with cognitive performance and impairment in old age. Journal of the American Geriatrics Society, 2010, 58(7): 1322-1326
参考文献 15
邓莉, 王今朝, 杨莉等. 胆碱转运体与阿尔茨海默病. 生物化学与生物物理进展, 2014, 41(12): 1207-1213
DengL, WangJ Z, YangL, et al. Prog Biochem Biophys, 2014, 41(12): 1207-1213
参考文献 16
Moreno-GonzalezI , EstradaL D , Sanchez-MejiasE , et al. Smoking exacerbates amyloid pathology in a mouse model of Alzheimer’s disease. Nature Communications, 2013, 4(1): 1-8
参考文献 17
SotiropoulosI, SilvaJ, KimuraT, et al. Female hippocampus vulnerability to environmental stress, a precipitating factor in Tau aggregation pathology. Journal of Alzheimers Disease, 2015, 43(3): 763-774
参考文献 18
OrganizationW H . Global Health Observatory (GHO) Data. 2016[2018-09-11].https://www.who.int/
参考文献 19
AssociationA S. 2013 Alzheimer's disease facts and figures. Alzheimers & Dementia, 2013, 9(2): 208-245
参考文献 20
NettiksimmonsJ, TranahG, EvansD S, et al. Gene-based aggregate SNP associations between candidate AD genes and cognitive decline. AGE, 2016, 38(2): 41
参考文献 21
SchellenbergG D, MontineT J. The genetics and neuropathology of Alzheimer’s disease. Acta Neuropathologica, 2012, 124(3): 305-323
参考文献 22
WangC, NajmR, XuQ, et al. Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector. Nature Medicine, 2018, 24(5):647-657
参考文献 23
DamoiseauxJ S , SeeleyW W , ZhouJ , et al. Gender modulates the APOE4 effect in healthy older adults: convergent evidence from functional brain connectivity and spinal fluid tau levels. Journal of Neuroscience, 2012, 32(24):8254-8262
参考文献 24
RileyK P, SnowdonD A, MarkesberyW R. Alzheimer's neurofibrillary pathology and the spectrum of cognitive function: findings from the Nun Study. Annals of Neurology, 2010, 51(5):567-577
参考文献 25
GieddJ N, RaznahanA, MillsK L, et al. Review: magnetic resonance imaging of male/female differences in human adolescent brain anatomy. Biology of Sex Differences, 2012, 3(1): 19
参考文献 26
SkupM, ZhuH, WangY, et al. Sex differences in grey matter atrophy patterns among AD and aMCI patients: results from ADNI. Neuroimage, 2011, 56(3):890-906
参考文献 27
RitchieS J, CoxS R, ShenX, et al. Sex differences in the adult human brain: evidence from 5216 UK biobank participants. Cerebral Cortex, 2018, 28(8):2959-2975
参考文献 28
HsiehT C, LinW Y, DingH J, et al. Sex- and age-related differences in brain FDG metabolism of healthy adults: an SPM analysis. Journal of Neuroimaging, 2012, 22(1):21-27
参考文献 29
PerneczkyR, Diehl-SchmidJ, ö rstl HF, et al. Male gender is associated with greater cerebral hypometabolism in frontotemporal dementia: evidence for sex-related cognitive reserve. International Journal of Geriatric Psychiatry, 2010, 22(11): 1135-1140
参考文献 30
LentiniE , KasaharaM , ArverS , et al. Sex differences in the human brain and the impact of sex chromosomes and sex hormones. Cerebral Cortex, 2013, 23(10):2322-2336
参考文献 31
BrintonR D. Estrogen-induced plasticity from cells to circuits: predictions for cognitive function. Trends in Pharmacological Sciences, 2009, 30(4): 212-222
参考文献 32
AenlleK K , KumarA , CuiL , et al. Estrogen effects on cognition and hippocampal transcription in middle-aged mice. Neurobiology of Aging, 2009, 30(6): 932-945
参考文献 33
YueX, LuM, LancasterT, et al. Brain estrogen deficiency accelerates A plaque formation in an Alzheimer's disease animal model. Proc Nat Acad Sci USA, 2006, 102(52): 19198-19203
参考文献 34
SimpkinsJ W, YiK D, YangS H, et al. Mitochondrial mechanisms of estrogen neuroprotection. BBA - General Subjects, 2010, 1800(10):1113-1120
参考文献 35
ZhaoL, BrintonR D. Estrogen receptor alpha and beta differentially regulate intracellular Ca(2+) dynamics leading to ERK phosphorylation and estrogen neuroprotection in hippocampal neurons. Brain Research, 2007, 1172(5):48-59
参考文献 36
GeorgeS, PetitG H, GourasG K, et al. Nonsteroidal selective androgen receptor modulators and selective estrogen receptor β agonists moderate cognitive deficits and amyloid-β levels in a mouse model of Alzheimer’s disease. Acs Chemical Neuroscience, 2011, 4(12):1537-1548
参考文献 37
WilkinsH M, MahnkenJ D, WelchP, et al. A mitochondrial biomarker-based study of S-equol in Alzheimer's diseasesubjects: results of a single-arm, pilot trial. Journal of Alzheimers Disease Jad, 2017, 59(1): 291-300
参考文献 38
TangY. Early inflammation-associated factors blunt sterol regulatory element-binding proteins-1-mediated lipogenesis in high-fat diet-fed APP SWE /PSEN1dE9 mouse model of Alzheimer's disease. Journal of Neurochemistry, 2016, 136(4):791-803
参考文献 39
ShiL, ZhaoD, HouC, et al. Early interleukin-6 enhances hepatic ketogenesis in APPSWE/PSEN1dE9 mice via 3-hydroxy-3-methylglutary-CoA synthase 2 signaling activation by p38/nuclear factorκB p65. Neurobiology of Aging, 2017,56(1):115-126
参考文献 40
Pines, Alzheimer's diseaseA., menopause and the impact of the estrogenic environment. Climacteric, 2016,19(5): 430-432
参考文献 41
ImtiazB, TuppurainenM, RikkonenT, et al. Postmenopausal hormone therapy and Alzheimer disease: a prospective cohort study. Alzheimers & Dementia the Journal of the Alzheimers Association, 2015, 11(7): 1062-1068
参考文献 42
FeldmanH A, LongcopeC, DerbyC A, et al. Age trends in the level of serum testosterone and other hormones in middle-aged men: longitudinal results from the Massachusetts male aging study. J Clin Endocrinol Metab, 2015, 87(2): 589-598
参考文献 43
SongL, LiX, BaiX X, et al. Calycosin improves cognitive function in a transgenic mouse model of Alzheimer's disease by activating the protein kinase C pathway. Neural Regeneration Research, 2017, 12(11):1870-1876
参考文献 44
TschiffelyA E , SchuhR A , Prokai-TatraiK , et al. An exploratory investigation of brain-selective estrogen treatment in males using a mouse model of Alzheimer's disease. Hormones and Behavior, 2018, 98(1):16-21
参考文献 45
HouM, FuY J, LiuC, et al.Effects of extractionfrom raspberry on hippocampus proteomics of mice suffered from ovariectomized-induced AD. China Journal of Chinese Materia Medica, 2016, 41(15): 2895-2900
参考文献 46
DiazA , TreviñoS, Vázquez-RoqueR, et al. The aminoestrogen prolame increases recognition memory and hippocampal neuronal spine density in aged mice. Synapse, 2017,10(71):1-8
参考文献 47
Jiménez-RubioG, Herrera-PérezJ J, Hernández-HernándezO T, et al. Relationship between androgen deficiency and memory impairment in aging and Alzheimer’s disease. Actas Esp Psiquiatr, 2017, 45(5): 227-247
参考文献 48
VaizuraM N, ImanirwanaS, ChinK Y. A Review on the Effects of testosterone supplementation in hypogonadal men with cognitive impairment. Current Drug Targets, 2017, 19(8): 898-906
参考文献 49
YaoP L, ZhuoS, MeiH, et al. Androgen alleviates neurotoxicity of β-amyloid peptide (Aβ) by promoting microglial clearance of Aβ and inhibiting microglial inflammatory response to Aβ. Cns Neuroscience & Therapeutics, 2017, 23(11):855-865
参考文献 50
LeeJ H, ByunM S, YiD, et al. Sex-specific association of sex hormones and gonadotropins, with brain amyloid and hippocampal neurodegeneration. Neurobiology of Aging, 2017, 58(1):34-40
参考文献 51
SoultanovV, FedotovaJ, NikitinaT, et al. Antidepressant-Like Effect of Ropren® in β-amyloid-(25-35) rat model of Alzheimer's disease with altered levels of androgens. Molecular Neurobiology, 2017, 54(4):2611-2621
参考文献 52
李宏军; 周宝林; 白丽莉, 等. 老年男性痴呆病人雄激素补充治疗初探. 中华男科学杂志,2003(03): 193-196
LiH J, ZhouB L, BaiL L, et al. National Journal of Andrology, 2003, 9(3):193-196
参考文献 53
ChoJ H, JungJ Y, LeeB J, et al. Epimedii herba: a promising herbal medicine for neuroplasticity. Phytotherapy Research, 2017, 31(6):838-848
参考文献 54
李林,张兰. 中药治疗阿尔茨海默病的作用特点. 生物化学与生物物理进展, 2012, 39(8): 816-828
Li L, Zhang L. Prog Biochem Biophys, 2012, 39(8): 816-828
目录 contents

    摘要

    阿尔茨海默病(Alzheimer's disease,AD)是一种神经退行性疾病,严重威胁着人类健康. 流行病学研究表明,性别与AD发病风险密切相关,女性AD发病率显著高于同龄男性. 了解AD病理发生中的性别差异,对于揭示AD发生的规律与特点具有重要的意义. 本文就AD病理发生中的性别差异及社会学、生物学等相关原因进行了分析,并论述了针对性别差异的药物防治AD的研究进展,以期为基于性别差异的AD防治提供新思路.

    Abstract

    Alzheimer's disease (AD) is a neurodegenerative disease, which is a serious threat to human health. Epidemiological studies show that the females are related to the higher risk of AD incidence. Therefore, it is of great significance to explore the regularity and characteristics of AD in view of gender difference in AD pathogenesis. This article summarizes the sex difference in the pathogenesis of AD and the related factors involved in sex-dependent AD incidence, and discusses the progress of the research on the prevention and treatment of AD based on the gender difference, hopefully providing new approach for AD therapy.

    阿尔茨海默病( Alzheimer's disease,AD),是一种与年龄相关的神经退行性疾病,其主要病理特征表现在Aβ沉积、神经纤维缠结以及中枢胆碱能神经元的大量丢失与死亡. 随着疾病的进展,患者主要表现为行动迟缓、记忆力减退以及认知功能障碍等症状,严重影响患者的正常生活. 流行病学数据显示AD在患病率和患病风险中存在性别差异. 截至2016年全球范围内有4 680 万AD患[1],其中女性占2/3[2]. 多项研究表明引起AD发病率在性别上的差异是与性激素水平的差异性变化密切相关[3,4,5,6,7]. 此外,男女性大脑结构差别、教育背景等社会学因素可能均与发病率相关. 我们在前期研究发现,氢分[8]、羟基酪[9]等防治AD的效应有性别依赖性.

    本文从AD患者的性别差异入手,阐明AD与性别差异的关系,分析产生差异的原因,并对激素或类激素药物在不同性别AD患者中的应用进行了论述总结.

  • 1 AD病理发生中的性别差异

    随着中国人口结构老龄化的加快,AD患者人数迅速增长,从1999年仅300万人,达到2016年900万人,到2050年估计将高达3 600万[1]. 有研究对中国65岁以上的6 096名城市人口及4 180名农村人口进行调查统计发现,城市女性AD患病率为3.54%,男性为1.27%;而在农村,女性患病率6.30%,男性1.95%,女性患者所占比例高达3/4[10]. Meta分析显示,与同龄男性相比,女性从轻度认知障碍(MCI)进展到AD的风险为男性的1.33倍. 随着年龄增长到80岁左右,女性的患病风险会显著高于男[11].

  • 2 AD病理发生中性别差异的因素分析

    女性AD患者明显多于男性,可能原因包括以下三个方面:

  • 2.1 社会与个体因素

  • 2.1.1 教育与职业

    教育和职业对AD有着潜在的影响,主要和认知相关. 认知储备的理论最早由Stern提出(Stern Y.Journal of the International Neuropsychological Society,2002,8(3):448-460),该理论认为认知能力较高的受试者(例如,高等教育、更好的职业或生活水平)可能具有更大的应对疾病的能力,或者他们需要更长病理发展时程才会达到痴呆检测的阈值. 因此,高认知储备的患者出现痴呆相关症状的比例低于低认知储备个体. 在过去的一个世纪中,因为性别歧[2],男性比女性有更多的接受高等教育和职业素养的机会. 因此,对于70岁以上的老人来说,教育与职业方面的差异可能是造成AD男女发病率不同的原因之一. 随着社会的发展,男女受教育机会逐渐趋于平等,由此产生的男女差异也会随之改善.

  • 2.1.2 生活习惯

    男性和女性在生活习惯上有差异,如锻炼参与度、吸烟等. 一些研究证明,运动与心肺功能以及AD的患病风险有关,虽然女性被认为比男性更加追求健康,但据统计,女性在整个寿命期间往往比男性运动[12]. 与不常锻炼的女性相比,经常锻炼的女性患AD的风险降[13];与青年时期运动相比,老龄阶段的运动并不会改善AD患病风[14],这提示在青少年时期足量的运动可能对大脑早期的发育有益,也有助于认知储备.

    吸烟与AD患病风险的研究结论还存在争议. 烟气的主要成分是尼古丁,尼古丁可作用于烟碱型乙酰胆碱受体,可能有助于缓解AD患者中烟碱型乙酰胆碱受体含量减少所致的认知能力受[15]. 但烟气成分复杂,除含有尼古丁外还有多种其他毒素,是已知的心血管和肺疾病的危险因素. 研究表明,烟气可能加剧转基因小鼠和大鼠老年痴呆症的病理,包括淀粉样沉淀、Tau蛋白磷酸化、神经炎症和神经退化[16].

  • 2.1.3 抗压能力

    有研究认为慢性压力是AD的风险因素. 慢性压力的主要原因是情绪障碍,女性患情绪紊乱的可能性是男性的2[2]. 在AD转基因小鼠模型中,压力通过促进caspase-3活化从而增加小鼠海马体中Tau蛋白的沉积,且这种作用只发生在雌性小鼠[17].

  • 2.2 生物学因素

  • 2.2.1 寿命

    AD是衰老相关疾病,随着年龄增加,AD发病率显著增高. 全球范围内,女性平均寿命74.2岁,男性平均寿命69.8[18],女性显著高于男性. 如上所述,65岁以上人口中,女性比例明显高于男[19],说明女性较男性寿命长,而AD主要在65岁后开始发病,因此女性AD患病人数较多.

  • 2.2.2 遗传学

    目前报道了17个与AD发病相关的SNP位点,分别是APOE4、SORL1、CD2AP、EPHA1、MS4A4E/MS4A6A、BIN1、CLU、CR1、CD33、ABCA7、CELF1、HLA、MEF2C、PICALM、PTK2B、SLC24A4、PICALM[20,21],但与性别的关联研究较少. APOE4突变是AD最大的遗传因素之一,许多研究表明APOE4蛋白与Aβ沉淀和神经纤维缠结都有关[22],且对女性的影响比男性更大,携带有APOE基因的女性患AD的风险为男性的4[23].

  • 2.2.3 大脑结构与功能的性别差异

    脑储备模型的概念源于Katzman等基于AD的一项研究(Katzn R,et al. Annals of Neurology,1988,23(2):138-144),脑储备能力指的是大脑对脑损伤的抵抗能[24]. 大脑储备的概念认为,在相同的认知能力水平上,脑容量较高则具有较高储备能力,有更强的耐受疾病的能力. 储备机制有助于解释同样病理条件下,患者所表现的认知衰退存在的个体差异.

    男性和女性大脑解剖最显著的差异在于男性的头部尺寸和脑容量较大(≈10%)[25]. 研究发现,从MCI到AD患者发展过程中,女性脑容量的下降速度比男性[26],这证明女性从MCI到AD的进展更快. 因此,即使在考虑了头部大小的差异之后,大脑解剖中也存在着性别差异. 例如,在一些脑区,女性的灰质比例通常更高,而男性的白质比例更[26]. 另一项研究表明,男性皮质表面积和皮质下体积都较高,而女性皮层较厚且白质束较复[27].

    18F-脱氧葡萄糖正电子发射断层扫描(FDG-PET)等功能成像测量结果显示,男性和女性之间脑血流量存在显著性差异,女性在顶叶皮层中较高,而男性在视觉和运动皮层中较[28],提供了大脑功能和行为差异的证据. 几项影像学研究表明,大脑回路中的性别差异导致在特定认知任务上表现出显著差异. 例如,男性在面向视觉的任务上表现得更好. 与处于相同认知障碍水平的女性相比,男性大脑代谢缺陷更为明[29],这表明男性较高的大脑储备的能力可能有助于他们承受更多的病理损伤.

  • 2.2.4 激素水平

    性腺激素是整个生命周期的重要神经营养因子,激素和遗传在男女中的差异(即X染色体和Y染色体)[30]都能够促进AD在发展过程中产生性别差异.

    a. 雌激素

    许多研究表明,女性绝经后卵巢激素的丧失,导致认知功能的下降和患AD的风险增[31]. 在绝经前进行雌激素治疗,可能改善认知,降低AD的风[32]. Li[33]发现,敲除了雌激素合成酶的AD小鼠脑内雌激素显著下降且Aβ沉积增多,说明雌激素确实在雌性AD小鼠的发病过程中扮演着重要角色. 雌激素对AD的影响依赖于雌激素受体,雌激素受体主要有两种形式ERα和ERβ,它们都在神经退行性疾病中有重要作用,其潜在机制包括通过调节钙信号和抗凋亡蛋白介导的信号级联来促进线粒体存[34,35],ERβ主要在脑内发挥神经保护作用. 女性AD患者额叶皮层神经元线粒体雌激素受体(mtERβ)明显降低,提示mtERβ的降低与AD的发生显著关联. 男性体内也有雌激素分布,但雌激素水平随年龄并无显著减少. 男性AD发生与雌激素水平没有显著关联.

    b. 雄激素

    在临床诊断中,男性痴呆发病前期,低血清睾酮和AD风险之间存在明显关联. 雄激素能与雄激素受体(AR)结合,调节脑内认知和记忆功能,雄激素的减少与AD的患病风险显著相关. 研究表明,患有AD的男性中脑和血清中睾酮水平显著降[4],长期使用雄激素剥夺疗法的前列腺癌患者表现出认知功能障碍和患AD的风险增[5],而接受睾酮疗法的AD模型雄鼠在认知行为方面有明显改[36]. 但雄激素与AD风险之间的关系仍有待完全阐明.

  • 3 基于性别差异的药物防治方案

  • 3.1 雌激素类药物

    临床研究表明,雌激素途径的信号传递可以通过雌激素或雌激素受体(ERβ)来实现,ERβ可以改善AD患者的线粒体功[37]. 天然雌激素主要是雌二醇、雌三醇、雌酮,目前临床上常用的雌激素类药物多是以雌二醇为母体人工合成的衍生物,如戊酸雌二醇、去氢吴茱萸碱(DHed)、炔雌醇、炔雌醚、妊马雌酮等.

  • 3.1.1 雌激素

    Wilkins[37]通过评估雌激素疗法对早期和晚期雌性3xTg-AD小鼠饮食诱导肥胖和AD相关病理的有效性,发现雌激素疗法只在中年早期才能减少Aβ沉积,Aβ沉积会触发大脑中的先天性免疫系统的炎性机[38,39],这提示雌激素疗法可能通过脑内抗炎途径来减少Aβ的沉积,进而改善AD模型小鼠的病况. Yun[6]在体内体外实验发现,雌激素可能通过抑制NF-κB的活性来调节Aβ的积累和神经源性炎症,从而减轻记忆障碍,这说明雌激素可能在转录以及翻译基础上,抑制调节神经炎症,对AD起保护作用. 另外,临床研究发现,雌激素疗法在年轻女性中可能具有认知改善效[40]. 芬兰的一项针对骨质疏松症的危险因素及预防研究发现,从1989年至2009年,对8 195名47至56岁的妇女进行调查研究,认为雌激素疗法可降低AD风[41].

    男性中年期会有睾酮水平降低,由睾酮代谢生成的雌激素水平逐渐降[42],但雌激素疗法在男性AD患者中是否具有改善效应,目前鲜有研究.

  • 3.1.2 类雌激素及其他分子

    本实验室对氢分子、羟基酪醇等线粒体营养素在AD中的改善效应进行研究. 侯晨[8]在雌性APP/PS1转基因AD小鼠模型中的研究发现,富氢水显著改善雌性AD小鼠的认知障碍,而未改变脑内Aβ沉积水平,其作用机制主要通过雌激素β受体-脑源性神经营养因子途径实现,但对雄性小鼠作用并不显著. 彭韵桦[9]发现,持续给予雌性AD小鼠灌胃羟基酪醇6个月,结果显示羟基酪醇可以改善小鼠的脑电活性和认知行为,减缓了线粒体蛋白质羰基化,增强了定位于线粒体的SOD2蛋白表达,恢复线粒体复合物酶的活性,提高线粒体功能,进而一方面调节JNK/MAPK通路,抑制磷酸化p38的表达和NF-κB表达,减少炎性因子和炎性小体的释放,从而降低脑内炎症,另一方面下调脑内caspase-3和p53的表达,抑制神经细胞凋亡通路,改善雌性APP/PS1小鼠的认知行为. 实验室近期研究提示,羟基酪醇可能通过脑内雌激素β受体从而发挥抗炎、抗氧化以及神经保护作用(待发表).

    花萼苷是一种典型的植物雌激素,来源于黄芪多糖,与雌激素受体结合产生雌激素效应,可改善AD患者的认知功[43]. 去氢吴茱萸碱(DHed)是17β雌二醇雌激素前体药物,连续给6月龄的AD模型鼠喂DHed 2个月后,小鼠脑内淀粉样前体和Aβ蛋白水平下降,并改善了小鼠的认知能[44]. 通过设置对照试验发现,用树莓提取物覆盆子处理与未处理的小鼠海马体中有66种差异表达蛋白,包括参与能量代谢的蛋白质和与AD相关的蛋白质,这些差异蛋白可能是覆盆子防治AD的靶[45]. 氨基雌激素脯氨酸(N-(3-羟基-1,3,5(10)烯-17-β-基)-3-羟丙胺)是一种具有抗血栓活性的氨基雌激素,可能促进海马的可塑性过程,从而改善长期的认知记忆能[46].

    上述这些活性物质通过拟雌激素作用达到神经保护和认知功能改善的作用,在AD防治中具有一定的潜在应用前景.

  • 3.2 雄激素类药物

    研究表明,雄激素低下与记忆障碍有关. 脑内睾酮、雄激素受体及其应答基因的存在表明睾酮在中枢神经系统具有生物学功能. 男性认知功能和睾酮水平随年龄的增长而下降,低睾酮水平与男性患AD和轻度认知障碍的风险更高有关. 睾酮在体内可转化为雌激素,提示睾酮的部分作用可能是由雌激素介导[47].

  • 3.2.1 雄激素

    体内研究表明:低内源性睾酮水平与健康的老年男性认知能力差有关. 睾酮替代对正常和性腺功能低下的老年男性某些认知领域有积极影[48]. 研究发现,雄激素能够清除Aβ42,并且能够抑制Aβ42诱导的促炎因子IL-1β和α的表达,减轻Aβ42诱导的神经元死[49],这说明雄性激素可能在抗炎抗氧化方面有作用,从而改善AD症状. 有研究对200名60岁以上的受试者接受了临床评估,在女性中,较高的游离睾酮和促性腺激素水平与脑Aβ阳性率降低有关,在男性中,游离睾酮与海马体积呈正相关,与认知显著相关. 进一步的分析表明,这种关联仅在认知功能下降的患者中存在,而在正常受试者中则无显著性. 提示睾酮可抑制女性早期病理Aβ的积累,延缓男性的神经退行性病[50].

  • 3.2.2 类雄激素天然产物

    植物聚戊烯醇制剂(ROPREN)能恢复正常免疫反应、调节正常胆固醇水平以及缓解包括AD在内的神经退行性疾病,在雄激素缺乏的AD雄性大鼠模型中具有明显的抗抑郁作[51]. 十一酸睾酮在雄激素缺乏的痴呆患者中有比较好的治疗效[52]. 淫羊藿是从淫羊藿属植物中提取的一种草本植物,在韩国、中国等被用于治疗脑卒中偏瘫以及AD等神经性疾[53,54]. 这些雄激素类药物可能通过和雄激素受体相结合之后,在脑内发挥作用并达到缓解AD相关疾病的作用.

  • 4 小结

    随着中国人口老龄化日趋严重,AD的发病率呈高速增长趋势,但目前还没有完全能治愈AD的药物. 关口前移、预防为主是AD防治的基本策略. 性别差异不仅体现在AD病理发生过程中,在针对AD的药物筛选和防治中也需要充分关注. 因此,揭示AD病理发生和干预中性别差异的生理机制,对探索新型AD防治靶点和寻找有效的AD治疗药物具有重要意义.

  • 参 考 文 献

    • 1

      Herrera A C, Prince M, Knapp M, et al.World Alzheimer Report 2016: Improving Healthcare For People With Dementia. Coverage, Quality And Costs Now And In The Future. 2016[2018-09-11]. https://www.alz.co.uk/

    • 2

      Erol R, Brooker D, Peel E. Women and Dementia: A Global Research Review. 2015[2018-09-11].https://www.alz.co.uk/

    • 3

      Han X, Aenlle K K, Bean L A, et al. Role of estrogen receptor α and β in preserving hippocampal function during aging. Journal of Neuroscience, 2013, 33(6): 2671-2683

    • 4

      Lv W, Du N, Liu Y, et al. Low Testosterone level and risk of Alzheimer’s disease in the elderly men: a systematic review and meta-analysis. Molecular Neurobiology, 2016, 53(4): 2679-2684

    • 5

      Nead K T, Gaskin G, Chester C, et al. Androgen deprivation therapy and future Alzheimer's disease risk. Journal of Clinical Oncology, 2016, 34(6): 566-571

    • 6

      Yun J , Yeo I J , Hwang C J , et al. Estrogen deficiency exacerbates Aβ-induced memory impairment through enhancement of neuroinflammation, amylodogenesis and NF-κB activation in ovariectomized mice. Brain, Behavior, and Immunity, 2018, 73: 282-293

    • 7

      刘健康, 彭韵桦, 龙建纲. 脑内线粒体雌激素受体β在女性阿尔茨海默病发生过程中的作用. 生物化学与生物物理进展, 2012, 39(8): 785-790

      Liu J K, Peng Y H, Long J G. Prog Biochem Biophys, 2012, 39(8): 785-790

    • 8

      Hou C , Peng Y , Qin C , et al. Hydrogen-rich water improves cognitive impairment gender-dependently in APP/PS1 mice without affecting Aβ clearance. Free Radical Research, 2018, 52(11-12):1311-1322

    • 9

      Peng Y, Hou C, Yang Z, et al. Hydroxytyrosol mildly improve cognitive function independent of APP processing in APP/PS1 mice. Molecular Nutrition & Food Research, 2016, 60(11): 2331-2342

    • 10

      Jia J, Wang F, Wei C, et al. The prevalence of dementia in urban and rural areas of China. Alzheimers & Dementia, 2014, 10(1): 1-9

    • 11

      Li J Q, Tan L, Wang H F, et al. Risk factors for predicting progression from mild cognitive impairment to Alzheimer’s disease: a systematic review and meta-analysis of cohort studies. Journal of Neurology Neurosurgery & Psychiatry, 2016, 87(5):476-484

    • 12

      Nomaguchi K M, Bianchi S M. Exercise time: gender differences in the effects of marriage, parenthood, and employment. Journal of Marriage & Family, 2004, 66(2): 413–430

    • 13

      Hogervorst E , Clifford A , Stock J , et al. Exercise to prevent cognitive decline and Alzheimer's disease: for whom, when, what, and (most importantly) how much?. Journal of Alzheimer's Disease & Parkinsonism, 2013, 02(3):1-8

    • 14

      Middleton L E, Barnes D E, Lui L Y, et al. Physical activity over the life course and its association with cognitive performance and impairment in old age. Journal of the American Geriatrics Society, 2010, 58(7): 1322-1326

    • 15

      邓莉, 王今朝, 杨莉等. 胆碱转运体与阿尔茨海默病. 生物化学与生物物理进展, 2014, 41(12): 1207-1213

      Deng L, Wang J Z, Yang L, et al. Prog Biochem Biophys, 2014, 41(12): 1207-1213

    • 16

      Moreno-Gonzalez I , Estrada L D , Sanchez-Mejias E , et al. Smoking exacerbates amyloid pathology in a mouse model of Alzheimer’s disease. Nature Communications, 2013, 4(1): 1-8

    • 17

      Sotiropoulos I, Silva J, Kimura T, et al. Female hippocampus vulnerability to environmental stress, a precipitating factor in Tau aggregation pathology. Journal of Alzheimers Disease, 2015, 43(3): 763-774

    • 18

      Organization W H . Global Health Observatory (GHO) Data. 2016[2018-09-11].https://www.who.int/

    • 19

      Association A S. 2013 Alzheimer's disease facts and figures. Alzheimers & Dementia, 2013, 9(2): 208-245

    • 20

      Nettiksimmons J, Tranah G, Evans D S, et al. Gene-based aggregate SNP associations between candidate AD genes and cognitive decline. AGE, 2016, 38(2): 41

    • 21

      Schellenberg G D, Montine T J. The genetics and neuropathology of Alzheimer’s disease. Acta Neuropathologica, 2012, 124(3): 305-323

    • 22

      Wang C, Najm R, Xu Q, et al. Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector. Nature Medicine, 2018, 24(5):647-657

    • 23

      Damoiseaux J S , Seeley W W , Zhou J , et al. Gender modulates the APOE4 effect in healthy older adults: convergent evidence from functional brain connectivity and spinal fluid tau levels. Journal of Neuroscience, 2012, 32(24):8254-8262

    • 24

      Riley K P, Snowdon D A, Markesbery W R. Alzheimer's neurofibrillary pathology and the spectrum of cognitive function: findings from the Nun Study. Annals of Neurology, 2010, 51(5):567-577

    • 25

      Giedd J N, Raznahan A, Mills K L, et al. Review: magnetic resonance imaging of male/female differences in human adolescent brain anatomy. Biology of Sex Differences, 2012, 3(1): 19

    • 26

      Skup M, Zhu H, Wang Y, et al. Sex differences in grey matter atrophy patterns among AD and aMCI patients: results from ADNI. Neuroimage, 2011, 56(3):890-906

    • 27

      Ritchie S J, Cox S R, Shen X, et al. Sex differences in the adult human brain: evidence from 5216 UK biobank participants. Cerebral Cortex, 2018, 28(8):2959-2975

    • 28

      Hsieh T C, Lin W Y, Ding H J, et al. Sex- and age-related differences in brain FDG metabolism of healthy adults: an SPM analysis. Journal of Neuroimaging, 2012, 22(1):21-27

    • 29

      Perneczky R, Diehl-Schmid J, F ö rstl H, et al. Male gender is associated with greater cerebral hypometabolism in frontotemporal dementia: evidence for sex-related cognitive reserve. International Journal of Geriatric Psychiatry, 2010, 22(11): 1135-1140

    • 30

      Lentini E , Kasahara M , Arver S , et al. Sex differences in the human brain and the impact of sex chromosomes and sex hormones. Cerebral Cortex, 2013, 23(10):2322-2336

    • 31

      Brinton R D. Estrogen-induced plasticity from cells to circuits: predictions for cognitive function. Trends in Pharmacological Sciences, 2009, 30(4): 212-222

    • 32

      Aenlle K K , Kumar A , Cui L , et al. Estrogen effects on cognition and hippocampal transcription in middle-aged mice. Neurobiology of Aging, 2009, 30(6): 932-945

    • 33

      Yue X, Lu M, Lancaster T, et al. Brain estrogen deficiency accelerates A plaque formation in an Alzheimer's disease animal model. Proc Nat Acad Sci USA, 2006, 102(52): 19198-19203

    • 34

      Simpkins J W, Yi K D, Yang S H, et al. Mitochondrial mechanisms of estrogen neuroprotection. BBA - General Subjects, 2010, 1800(10):1113-1120

    • 35

      Zhao L, Brinton R D. Estrogen receptor alpha and beta differentially regulate intracellular Ca(2+) dynamics leading to ERK phosphorylation and estrogen neuroprotection in hippocampal neurons. Brain Research, 2007, 1172(5):48-59

    • 36

      George S, Petit G H, Gouras G K, et al. Nonsteroidal selective androgen receptor modulators and selective estrogen receptor β agonists moderate cognitive deficits and amyloid-β levels in a mouse model of Alzheimer’s disease. Acs Chemical Neuroscience, 2011, 4(12):1537-1548

    • 37

      Wilkins H M, Mahnken J D, Welch P, et al. A mitochondrial biomarker-based study of S-equol in Alzheimer's diseasesubjects: results of a single-arm, pilot trial. Journal of Alzheimers Disease Jad, 2017, 59(1): 291-300

    • 38

      Tang Y. Early inflammation-associated factors blunt sterol regulatory element-binding proteins-1-mediated lipogenesis in high-fat diet-fed APP SWE /PSEN1dE9 mouse model of Alzheimer's disease. Journal of Neurochemistry, 2016, 136(4):791-803

    • 39

      Shi L, Zhao D, Hou C, et al. Early interleukin-6 enhances hepatic ketogenesis in APPSWE/PSEN1dE9 mice via 3-hydroxy-3-methylglutary-CoA synthase 2 signaling activation by p38/nuclear factorκB p65. Neurobiology of Aging, 2017,56(1):115-126

    • 40

      Pines, A. Alzheimer's disease, menopause and the impact of the estrogenic environment. Climacteric, 2016,19(5): 430-432

    • 41

      Imtiaz B, Tuppurainen M, Rikkonen T, et al. Postmenopausal hormone therapy and Alzheimer disease: a prospective cohort study. Alzheimers & Dementia the Journal of the Alzheimers Association, 2015, 11(7): 1062-1068

    • 42

      Feldman H A, Longcope C, Derby C A, et al. Age trends in the level of serum testosterone and other hormones in middle-aged men: longitudinal results from the Massachusetts male aging study. J Clin Endocrinol Metab, 2015, 87(2): 589-598

    • 43

      Song L, Li X, Bai X X, et al. Calycosin improves cognitive function in a transgenic mouse model of Alzheimer's disease by activating the protein kinase C pathway. Neural Regeneration Research, 2017, 12(11):1870-1876

    • 44

      Tschiffely A E , Schuh R A , Prokai-Tatrai K , et al. An exploratory investigation of brain-selective estrogen treatment in males using a mouse model of Alzheimer's disease. Hormones and Behavior, 2018, 98(1):16-21

    • 45

      Hou M, Fu Y J, Liu C, et al.Effects of extractionfrom raspberry on hippocampus proteomics of mice suffered from ovariectomized-induced AD. China Journal of Chinese Materia Medica, 2016, 41(15): 2895-2900

    • 46

      Diaz A , Treviño S, Vázquez-Roque R, et al. The aminoestrogen prolame increases recognition memory and hippocampal neuronal spine density in aged mice. Synapse, 2017,10(71):1-8

    • 47

      Jiménez-Rubio G, Herrera-Pérez J J, Hernández-Hernández O T, et al. Relationship between androgen deficiency and memory impairment in aging and Alzheimer’s disease. Actas Esp Psiquiatr, 2017, 45(5): 227-247

    • 48

      Vaizura M N, Imanirwana S, Chin K Y. A Review on the Effects of testosterone supplementation in hypogonadal men with cognitive impairment. Current Drug Targets, 2017, 19(8): 898-906

    • 49

      Yao P L, Zhuo S, Mei H, et al. Androgen alleviates neurotoxicity of β-amyloid peptide (Aβ) by promoting microglial clearance of Aβ and inhibiting microglial inflammatory response to Aβ. Cns Neuroscience & Therapeutics, 2017, 23(11):855-865

    • 50

      Lee J H, Byun M S, Yi D, et al. Sex-specific association of sex hormones and gonadotropins, with brain amyloid and hippocampal neurodegeneration. Neurobiology of Aging, 2017, 58(1):34-40

    • 51

      Soultanov V, Fedotova J, Nikitina T, et al. Antidepressant-Like Effect of Ropren® in β-amyloid-(25-35) rat model of Alzheimer's disease with altered levels of androgens. Molecular Neurobiology, 2017, 54(4):2611-2621

    • 52

      李宏军; 周宝林; 白丽莉, 等. 老年男性痴呆病人雄激素补充治疗初探. 中华男科学杂志,2003(03): 193-196

      Li H J, Zhou B L, Bai L L, et al. National Journal of Andrology, 2003, 9(3):193-196

    • 53

      Cho J H, Jung J Y, Lee B J, et al. Epimedii herba: a promising herbal medicine for neuroplasticity. Phytotherapy Research, 2017, 31(6):838-848

    • 54

      李林,张兰. 中药治疗阿尔茨海默病的作用特点. 生物化学与生物物理进展, 2012, 39(8): 816-828

      Li L, Zhang L. Prog Biochem Biophys, 2012, 39(8): 816-828

王珍

机 构:西安交通大学生命科学与技术学院,线粒体生物医学研究所,生物医学信息工程教育部重点实验室,西安 710049

Affiliation:Center of Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiao Tong University, Xi'an 710049, China

高佩佩

机 构:西安交通大学生命科学与技术学院,线粒体生物医学研究所,生物医学信息工程教育部重点实验室,西安 710049

Affiliation:Center of Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiao Tong University, Xi'an 710049, China

彭韵桦

机 构:西安交通大学生命科学与技术学院,线粒体生物医学研究所,生物医学信息工程教育部重点实验室,西安 710049

Affiliation:Center of Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiao Tong University, Xi'an 710049, China

刘健康

机 构:西安交通大学生命科学与技术学院,线粒体生物医学研究所,生物医学信息工程教育部重点实验室,西安 710049

Affiliation:Center of Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiao Tong University, Xi'an 710049, China

龙建纲

机 构:西安交通大学生命科学与技术学院,线粒体生物医学研究所,生物医学信息工程教育部重点实验室,西安 710049

Affiliation:Center of Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiao Tong University, Xi'an 710049, China

image /
  • 参 考 文 献

    • 1

      Herrera A C, Prince M, Knapp M, et al.World Alzheimer Report 2016: Improving Healthcare For People With Dementia. Coverage, Quality And Costs Now And In The Future. 2016[2018-09-11]. https://www.alz.co.uk/

    • 2

      Erol R, Brooker D, Peel E. Women and Dementia: A Global Research Review. 2015[2018-09-11].https://www.alz.co.uk/

    • 3

      Han X, Aenlle K K, Bean L A, et al. Role of estrogen receptor α and β in preserving hippocampal function during aging. Journal of Neuroscience, 2013, 33(6): 2671-2683

    • 4

      Lv W, Du N, Liu Y, et al. Low Testosterone level and risk of Alzheimer’s disease in the elderly men: a systematic review and meta-analysis. Molecular Neurobiology, 2016, 53(4): 2679-2684

    • 5

      Nead K T, Gaskin G, Chester C, et al. Androgen deprivation therapy and future Alzheimer's disease risk. Journal of Clinical Oncology, 2016, 34(6): 566-571

    • 6

      Yun J , Yeo I J , Hwang C J , et al. Estrogen deficiency exacerbates Aβ-induced memory impairment through enhancement of neuroinflammation, amylodogenesis and NF-κB activation in ovariectomized mice. Brain, Behavior, and Immunity, 2018, 73: 282-293

    • 7

      刘健康, 彭韵桦, 龙建纲. 脑内线粒体雌激素受体β在女性阿尔茨海默病发生过程中的作用. 生物化学与生物物理进展, 2012, 39(8): 785-790

      Liu J K, Peng Y H, Long J G. Prog Biochem Biophys, 2012, 39(8): 785-790

    • 8

      Hou C , Peng Y , Qin C , et al. Hydrogen-rich water improves cognitive impairment gender-dependently in APP/PS1 mice without affecting Aβ clearance. Free Radical Research, 2018, 52(11-12):1311-1322

    • 9

      Peng Y, Hou C, Yang Z, et al. Hydroxytyrosol mildly improve cognitive function independent of APP processing in APP/PS1 mice. Molecular Nutrition & Food Research, 2016, 60(11): 2331-2342

    • 10

      Jia J, Wang F, Wei C, et al. The prevalence of dementia in urban and rural areas of China. Alzheimers & Dementia, 2014, 10(1): 1-9

    • 11

      Li J Q, Tan L, Wang H F, et al. Risk factors for predicting progression from mild cognitive impairment to Alzheimer’s disease: a systematic review and meta-analysis of cohort studies. Journal of Neurology Neurosurgery & Psychiatry, 2016, 87(5):476-484

    • 12

      Nomaguchi K M, Bianchi S M. Exercise time: gender differences in the effects of marriage, parenthood, and employment. Journal of Marriage & Family, 2004, 66(2): 413–430

    • 13

      Hogervorst E , Clifford A , Stock J , et al. Exercise to prevent cognitive decline and Alzheimer's disease: for whom, when, what, and (most importantly) how much?. Journal of Alzheimer's Disease & Parkinsonism, 2013, 02(3):1-8

    • 14

      Middleton L E, Barnes D E, Lui L Y, et al. Physical activity over the life course and its association with cognitive performance and impairment in old age. Journal of the American Geriatrics Society, 2010, 58(7): 1322-1326

    • 15

      邓莉, 王今朝, 杨莉等. 胆碱转运体与阿尔茨海默病. 生物化学与生物物理进展, 2014, 41(12): 1207-1213

      Deng L, Wang J Z, Yang L, et al. Prog Biochem Biophys, 2014, 41(12): 1207-1213

    • 16

      Moreno-Gonzalez I , Estrada L D , Sanchez-Mejias E , et al. Smoking exacerbates amyloid pathology in a mouse model of Alzheimer’s disease. Nature Communications, 2013, 4(1): 1-8

    • 17

      Sotiropoulos I, Silva J, Kimura T, et al. Female hippocampus vulnerability to environmental stress, a precipitating factor in Tau aggregation pathology. Journal of Alzheimers Disease, 2015, 43(3): 763-774

    • 18

      Organization W H . Global Health Observatory (GHO) Data. 2016[2018-09-11].https://www.who.int/

    • 19

      Association A S. 2013 Alzheimer's disease facts and figures. Alzheimers & Dementia, 2013, 9(2): 208-245

    • 20

      Nettiksimmons J, Tranah G, Evans D S, et al. Gene-based aggregate SNP associations between candidate AD genes and cognitive decline. AGE, 2016, 38(2): 41

    • 21

      Schellenberg G D, Montine T J. The genetics and neuropathology of Alzheimer’s disease. Acta Neuropathologica, 2012, 124(3): 305-323

    • 22

      Wang C, Najm R, Xu Q, et al. Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector. Nature Medicine, 2018, 24(5):647-657

    • 23

      Damoiseaux J S , Seeley W W , Zhou J , et al. Gender modulates the APOE4 effect in healthy older adults: convergent evidence from functional brain connectivity and spinal fluid tau levels. Journal of Neuroscience, 2012, 32(24):8254-8262

    • 24

      Riley K P, Snowdon D A, Markesbery W R. Alzheimer's neurofibrillary pathology and the spectrum of cognitive function: findings from the Nun Study. Annals of Neurology, 2010, 51(5):567-577

    • 25

      Giedd J N, Raznahan A, Mills K L, et al. Review: magnetic resonance imaging of male/female differences in human adolescent brain anatomy. Biology of Sex Differences, 2012, 3(1): 19

    • 26

      Skup M, Zhu H, Wang Y, et al. Sex differences in grey matter atrophy patterns among AD and aMCI patients: results from ADNI. Neuroimage, 2011, 56(3):890-906

    • 27

      Ritchie S J, Cox S R, Shen X, et al. Sex differences in the adult human brain: evidence from 5216 UK biobank participants. Cerebral Cortex, 2018, 28(8):2959-2975

    • 28

      Hsieh T C, Lin W Y, Ding H J, et al. Sex- and age-related differences in brain FDG metabolism of healthy adults: an SPM analysis. Journal of Neuroimaging, 2012, 22(1):21-27

    • 29

      Perneczky R, Diehl-Schmid J, F ö rstl H, et al. Male gender is associated with greater cerebral hypometabolism in frontotemporal dementia: evidence for sex-related cognitive reserve. International Journal of Geriatric Psychiatry, 2010, 22(11): 1135-1140

    • 30

      Lentini E , Kasahara M , Arver S , et al. Sex differences in the human brain and the impact of sex chromosomes and sex hormones. Cerebral Cortex, 2013, 23(10):2322-2336

    • 31

      Brinton R D. Estrogen-induced plasticity from cells to circuits: predictions for cognitive function. Trends in Pharmacological Sciences, 2009, 30(4): 212-222

    • 32

      Aenlle K K , Kumar A , Cui L , et al. Estrogen effects on cognition and hippocampal transcription in middle-aged mice. Neurobiology of Aging, 2009, 30(6): 932-945

    • 33

      Yue X, Lu M, Lancaster T, et al. Brain estrogen deficiency accelerates A plaque formation in an Alzheimer's disease animal model. Proc Nat Acad Sci USA, 2006, 102(52): 19198-19203

    • 34

      Simpkins J W, Yi K D, Yang S H, et al. Mitochondrial mechanisms of estrogen neuroprotection. BBA - General Subjects, 2010, 1800(10):1113-1120

    • 35

      Zhao L, Brinton R D. Estrogen receptor alpha and beta differentially regulate intracellular Ca(2+) dynamics leading to ERK phosphorylation and estrogen neuroprotection in hippocampal neurons. Brain Research, 2007, 1172(5):48-59

    • 36

      George S, Petit G H, Gouras G K, et al. Nonsteroidal selective androgen receptor modulators and selective estrogen receptor β agonists moderate cognitive deficits and amyloid-β levels in a mouse model of Alzheimer’s disease. Acs Chemical Neuroscience, 2011, 4(12):1537-1548

    • 37

      Wilkins H M, Mahnken J D, Welch P, et al. A mitochondrial biomarker-based study of S-equol in Alzheimer's diseasesubjects: results of a single-arm, pilot trial. Journal of Alzheimers Disease Jad, 2017, 59(1): 291-300

    • 38

      Tang Y. Early inflammation-associated factors blunt sterol regulatory element-binding proteins-1-mediated lipogenesis in high-fat diet-fed APP SWE /PSEN1dE9 mouse model of Alzheimer's disease. Journal of Neurochemistry, 2016, 136(4):791-803

    • 39

      Shi L, Zhao D, Hou C, et al. Early interleukin-6 enhances hepatic ketogenesis in APPSWE/PSEN1dE9 mice via 3-hydroxy-3-methylglutary-CoA synthase 2 signaling activation by p38/nuclear factorκB p65. Neurobiology of Aging, 2017,56(1):115-126

    • 40

      Pines, A. Alzheimer's disease, menopause and the impact of the estrogenic environment. Climacteric, 2016,19(5): 430-432

    • 41

      Imtiaz B, Tuppurainen M, Rikkonen T, et al. Postmenopausal hormone therapy and Alzheimer disease: a prospective cohort study. Alzheimers & Dementia the Journal of the Alzheimers Association, 2015, 11(7): 1062-1068

    • 42

      Feldman H A, Longcope C, Derby C A, et al. Age trends in the level of serum testosterone and other hormones in middle-aged men: longitudinal results from the Massachusetts male aging study. J Clin Endocrinol Metab, 2015, 87(2): 589-598

    • 43

      Song L, Li X, Bai X X, et al. Calycosin improves cognitive function in a transgenic mouse model of Alzheimer's disease by activating the protein kinase C pathway. Neural Regeneration Research, 2017, 12(11):1870-1876

    • 44

      Tschiffely A E , Schuh R A , Prokai-Tatrai K , et al. An exploratory investigation of brain-selective estrogen treatment in males using a mouse model of Alzheimer's disease. Hormones and Behavior, 2018, 98(1):16-21

    • 45

      Hou M, Fu Y J, Liu C, et al.Effects of extractionfrom raspberry on hippocampus proteomics of mice suffered from ovariectomized-induced AD. China Journal of Chinese Materia Medica, 2016, 41(15): 2895-2900

    • 46

      Diaz A , Treviño S, Vázquez-Roque R, et al. The aminoestrogen prolame increases recognition memory and hippocampal neuronal spine density in aged mice. Synapse, 2017,10(71):1-8

    • 47

      Jiménez-Rubio G, Herrera-Pérez J J, Hernández-Hernández O T, et al. Relationship between androgen deficiency and memory impairment in aging and Alzheimer’s disease. Actas Esp Psiquiatr, 2017, 45(5): 227-247

    • 48

      Vaizura M N, Imanirwana S, Chin K Y. A Review on the Effects of testosterone supplementation in hypogonadal men with cognitive impairment. Current Drug Targets, 2017, 19(8): 898-906

    • 49

      Yao P L, Zhuo S, Mei H, et al. Androgen alleviates neurotoxicity of β-amyloid peptide (Aβ) by promoting microglial clearance of Aβ and inhibiting microglial inflammatory response to Aβ. Cns Neuroscience & Therapeutics, 2017, 23(11):855-865

    • 50

      Lee J H, Byun M S, Yi D, et al. Sex-specific association of sex hormones and gonadotropins, with brain amyloid and hippocampal neurodegeneration. Neurobiology of Aging, 2017, 58(1):34-40

    • 51

      Soultanov V, Fedotova J, Nikitina T, et al. Antidepressant-Like Effect of Ropren® in β-amyloid-(25-35) rat model of Alzheimer's disease with altered levels of androgens. Molecular Neurobiology, 2017, 54(4):2611-2621

    • 52

      李宏军; 周宝林; 白丽莉, 等. 老年男性痴呆病人雄激素补充治疗初探. 中华男科学杂志,2003(03): 193-196

      Li H J, Zhou B L, Bai L L, et al. National Journal of Andrology, 2003, 9(3):193-196

    • 53

      Cho J H, Jung J Y, Lee B J, et al. Epimedii herba: a promising herbal medicine for neuroplasticity. Phytotherapy Research, 2017, 31(6):838-848

    • 54

      李林,张兰. 中药治疗阿尔茨海默病的作用特点. 生物化学与生物物理进展, 2012, 39(8): 816-828

      Li L, Zhang L. Prog Biochem Biophys, 2012, 39(8): 816-828