Fluorescence resonance energy transfer (FRET) is the energy transfer from an activated donor fluorophore to a receiving fluorophore. The efficiency of the energy transfer is the function of the distance between the two fluorophores, and is very sensitive to the distance. Its effective response distance is between 1~10 nm, thus it can be used to measure the distance between atoms or molecules. The feature of FRET is very useful in researches on conformational changes, interaction between macromolecules and signal transductions within live cells, and FRET has become a powerful tool in biomedical investigations. However, biological processes often involve interactions between more than two macromolecules, and FRET using two color fluorophores cannot meet the research demand. Recently, two research groups made breakthrough, establishing a novel FRET technique using three color fluorophores based on confocol microscopy and flow cytometry, respectively. The invention will significantly advance researches in biological and related fields.
LIU Chun-Chun, HANG Hai-Ying. A Progress in Detection of Interactions Between Macromolecules: Linked FRET Using Three Color Fluorophore[J]. Progress in Biochemistry and Biophysics,2006,33(3):292-296
Copy® 2025 All Rights Reserved ICP:京ICP备05023138号-1 京公网安备 11010502031771号