1)School of Mechanical Engineering, Tianjin University, Tianjin 300350, China;2)School of Bioengineering, Chongqing University, Chongqing 400044, China
This work was supported by grants from The National Natural Science Foundation of China(11972252)and Tianjin Natural Science Foundation (17JCYBJC29300).
Endothelial cells, as non-excitable cells, were previously thought to lack functional voltage-gated calcium channels (VGCC), such as human umbilical vein endothelial cells, bovine pulmonary artery endothelial cells, bovine aortic endothelial cells, and bovine aorta endothelial cells. With the development of patch clamp technology, fluorescence microscopy technology, and polymerase chain reaction (PCR) technology, more and more VGCC are found in various endothelial cells, such as human aortic endothelial cells, rat aortic endothelial cells, and rat pulmonary microvascular endothelial cells. At present, there are 3 main detection methods for the existence of VGCC: the detection of ion channel current by patch clamp technology, the detection of intracellular calcium ion concentration change by fluorescence microscopy technology, and the detection of ion channel gene or protein expression by PCR. Endothelial cells are not only the physical barrier between blood and other adjacent tissue cells and matrix proteins, but more importantly, exert a significant influence on the physiological changes of cell and vascular tissues through the opening and closing of VGCC on the cell membrane. On the one hand, the effect of VGCC on the change of intracellular calcium ion concentration controls the release of vasodilators such as nitric oxide (NO) and regulates the balance of vascular tone. On the other hand, VGCC, which is an important route for calcium ion inflow, affects endothelial cell migration and proliferation through the induction of a kind of small G protein (Ras) and mitogen-activated proteinkinase kinase (MEK) pathways, the phosphonic acidification of phosphatidylinositol 3 kinase (PI3K) and serine/threonine protein kinase (Akt) pathways. In addition, some physiological phenomena, such as mechanical strain generated by intravascular pressure and shear stress associated with blood flow, activate VGCC by activating mechanical bodies, causing the ATP-sensitive potassium channel (
LI Shuang-Jun, PAN Jun, CUI Yu-Hong. Research Progress on Voltage-gated Calcium Channels and Their Functions in Endothelial Cells[J]. Progress in Biochemistry and Biophysics,2022,49(6):1061-1074
Copy® 2025 All Rights Reserved ICP:京ICP备05023138号-1 京公网安备 11010502031771号