1.Graduate School, People’s Public Security University of China;2.School of Basic Medical Sciences, Henan University;3.Public Security Bureau of Jiangyin;4.Institute of Forensic Science, National Engineering Laboratory for Forensic Science
Others
Objective The proteome of biological evidence contains rich genetic information, namely single amino acid polymorphisms (SAPs) in protein sequences. However, due to the lack of efficient and convenient analysis tools, the application of SAP in public security still faces many challenges. This paper aims to meet the application requirements of SAP analysis for forensic biological evidence’s proteome data. Methods The software is divided into three modules. First, based on a built-in database of common non-synonymous single nucleotide polymorphisms (nsSNPs) and SAPs in East Asian populations, the software integrates and annotates newly identified exonic nsSNPs as SAPs, thereby constructing a customized SAP protein sequence database. It then utilizes a pre-installed search engine—either pFind or MaxQuant—to perform analysis and output SAP typing results, identifying both reference and variant types, along with their corresponding imputed nsSNPs. Finally, SAPTyper compares the proteome-based typing results with the individual’s exome-derived nsSNP profile and outputs the comparison report. Results SAPTyper accepts proteomic DDA mass spectrometry raw data (DDA acquisition mode) and exome sequencing results of nsSNPs as input and outputs the report of SAPs result. The pFind and Maxquant search engines were used to test the proteome data of 2 hair shafts of 2 individuals, and both obtained SAP results. It was found that the results of the Maxquant search engine were slightly less than those of pFind. This result shows that SAPTyper can achieve SAP fingding function. Moreover, the pFind search engine was used to test the proteome data of 3 hair shafts from 1 European person and 1 African person in the literature. Among the sites fully matched by the literature method, sites detected by SAPTyper are also included; for semi-matching sites, that is, nsSNPs are heterozygous , both literature method and SAPTyper method had the risk of missing detection for one type of the allele. Comparing the analysis results of SAPTyper with the SAP test results reported in the literature, it was found that some imputed nsSNP sites identified by the literature method but not detected by SAPTyper had a MAF of less than 0.1% in East Asian populations, and therefore they were not included in the common nsSNP database of East Asian populations constructed by this software. Since the database construction of this software is based on the genetic variation information of East Asian populations, it is currently unable to effectively identify representative unique common variation sites in European or African populations, but it can still identify SAP sites shared by these populations and East Asian populations. Conclusion An automated SAP analysis algorithm was developed for East Asian populations, and the software named SAPTyper was developed. This software provides a convenient and efficient analysis tool for the research and application of forensic proteomic SAP and has important application prospects in individual identification and phenotypic inference based on SAP.
HU Feng, Wang Mengjiao, WU Jia-Lei, DING Dong-Sheng, YangZhi-Yuan, JI An-Quan, FENG Lei, YE Jian. Analysis software of Forensic proteomics SAP typing[J]. Progress in Biochemistry and Biophysics,,():
Copy® 2025 All Rights Reserved ICP:京ICP备05023138号-1 京公网安备 11010502031771号