Applications of Lactoferrin and Its Nanoparticles in Cancer Therapy
DOI:
CSTR:
Author:
Affiliation:

1)College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China;2)College of Biological Sciences, China Agricultural University, Beijing 100193, China

Clc Number:

Fund Project:

This work was supported by a grant from National Science and Technology Major Project for Agricultural Biological Breeding (2023ZD0404905).

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Cancer remains a leading cause of global mortality, necessitating the development of advanced therapeutic strategies with enhanced efficacy and reduced systemic toxicity. Among promising bioactive agents, lactoferrin (LF)—a multifunctional iron-binding glycoprotein abundantly found in mammalian milk and exocrine secretions—has garnered significant interest for its potent and multifaceted anti-cancer properties. This review provides a comprehensive analysis of the current understanding of LF"s role in oncology, encompassing its structural biology, diverse mechanisms of action, and groundbreaking advancements in its application through nano-engineering. LF exerts anti-tumor effects through multiple pathways, including extracellular action, intracellular action, and immune regulation. It demonstrates a remarkable affinity for cancer cell membranes, binding to overexpressed anionic components such as glycosaminoglycans and sialic acids, as well as to specific receptors including the Low-density Lipoprotein Receptor-related Protein 1 (LRP-1). This selective binding facilitates targeted uptake. Upon internalization, LF orchestrates a direct assault by inducing cell-cycle arrest in phases such as G0/G1 or S phase through the modulation of key regulators including cyclins, CDKs, and p53. Furthermore, it promotes programmed cell death via apoptotic pathways, involving caspase activation and downregulation of anti-apoptotic proteins such as survivin. A more recently elucidated mechanism is the induction of ferroptosis, an iron-dependent form of cell death characterized by overwhelming lipid peroxidation. Beyond direct cytotoxicity, LF acts as a potent immunomodulator. It enhances Natural Killer (NK) cell activity, modulates T-lymphocyte populations, and crucially reprograms Tumor-Associated Macrophages (TAMs) from a pro-tumor M2 state to an anti-tumor M1 state, thereby reversing the immunosuppressive tumor microenvironment (TME). The translation of LF"s potential has been significantly accelerated by nanotechnology. The inherent biocompatibility and natural tumor-targeting capabilities of LF make it an ideal platform for sophisticated drug-delivery systems. This review details various fabrication strategies for LF-based nanoparticles (NPs), including self-assembly, sol-oil emulsion, and electrostatic complexation, among others. Research demonstrates that nano-formulations not only protect LF from degradation but also enhance its bioactivity and anti-cancer potency. More importantly, LF NPs serve as versatile carriers for a wide array of therapeutic agents, including conventional chemotherapeutics, natural compounds, and imaging agents. These engineered systems enable synergistic therapy and facilitate site-specific delivery. Notably, the ability of LF to bind to receptors on the blood-brain barrier (BBB) has been leveraged to develop nano-systems for glioblastoma treatment. Other innovative designs utilize LF to modulate the TME—for instance, by alleviating tumor hypoxia to sensitize cells to radiotherapy and chemotherapy. Despite compelling pre-clinical evidence, the clinical translation of LF and its nano-formulations remains nascent. While early-phase trials have established a favorable safety profile for recombinant human LF, larger Phase III studies have yielded mixed results, underscoring the complexity of its action in humans. Key challenges include enhancing drug targeting, optimizing loading efficiency, ensuring batch-to-batch reproducibility, and achieving deep tumor penetration. Future research must focus on the rational design of next-generation LF-NPs. This entails developing standardized manufacturing protocols, engineering "smart" stimuli-responsive systems for targeted drug release in the TME, and constructing multi-targeting platforms. A concerted interdisciplinary effort is paramount to bridge the gap between bench and bedside. In conclusion, LF, particularly in its nano-engineered forms, represents a highly promising and versatile agent in the oncological arsenal, holding immense potential for precise and effective cancer therapy.

    Reference
    Related
    Cited by
Get Citation

YUE Wen-Tian, HE Shu-Rong, AN Qin, ZOU Yun-Xia, DONG Wen-Wen, MENG Qing-Yong, ZHANG Ya-Li. Applications of Lactoferrin and Its Nanoparticles in Cancer Therapy[J]. Progress in Biochemistry and Biophysics,,():

Copy
Related Videos

Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 24,2025
  • Revised:December 10,2025
  • Adopted:December 12,2025
  • Online: December 13,2025
  • Published:
Article QR Code