Affiliated Tumor Hospital of Xiangya Medical College, Central South University
the National Natural Science Foundation of China (82203448), the Hunan Provincial Natural Science Foundation of China (2025JJ40072),the GuangDong Basic and Applied Basic Research Foundation (2023A1515010624) and the Guangzhou Basic and Applied Basic Research Foundation (2023A03J0413)
Circular RNAs (circRNAs) represent a distinct group of RNA molecules produced through back-splicing of precursor mRNAs. Their covalently closed structure, which lacks both a 5′ cap and a poly(A) tail, renders them highly resistant to exonucleolytic degradation and contributes to their remarkable intracellular stability. Although circRNAs were historically viewed as noncoding transcripts, accumulating evidence indicates that certain circRNAs can undergo translation under appropriate molecular contexts. Two major modes of noncanonical translation have been described so far: initiation mediated by internal ribosome entry sites (IRESs) and translation triggered by N6-methyladenosine (m6A) modification. These findings have broadened the traditional definition of noncoding RNA biology and suggest that circRNAs may contribute previously unrecognized elements to the cellular proteome. Peptides generated from circRNAs have been increasingly implicated in cancer biology. Depending on their molecular functions, these peptides may enhance malignant phenotypes—such as uncontrolled proliferation, motility, invasion, epithelial–mesenchymal transition, metabolic alteration, or drug resistance—or, conversely, exhibit inhibitory effects on oncogenic pathways. Their dual and context-dependent functions highlight the complexity of circRNA-mediated regulation and suggest that these translation products participate in multiple layers of tumor initiation and progression. In this review, we synthesize current knowledge regarding the molecular mechanisms that enable circRNAs to be translated, with particular attention to IRES-driven initiation, m6A-dependent regulation, ribosome accessibility, and the structural determinants required for translation competence. We further summarize well-characterized circRNA-encoded peptides and discuss how they influence tumor-associated signaling networks. In addition, we examine the potential translational applications of these peptides, including their value as diagnostic indicators, prognostic markers, or therapeutic entry points. Their inherent sequence stability, relative expression specificity, and detectability in clinical specimens make circRNA-derived peptides promising candidates for future biomarker and therapeutic development. Overall, circRNA translation research is reshaping our understanding of RNA function and offers new perspectives for studying tumor biology. We propose that expanding investigations into circRNA-encoded peptides will not only improve the mechanistic resolution of cancer research but may also pave the way for innovative strategies in precision oncology, including RNA-based therapeutics and peptide-targeting interventions.
Xiang Qiong, Yang Li Chang, Li Zan, Ling Yun. Translational Mechanisms of Circular RNAs and the Roles of Their Encoded Peptides in Tumor Initiation and Regulation[J]. Progress in Biochemistry and Biophysics,,():
Copy

Scan code to follow ® 2025 Website Copyright ICP:京ICP备05023138号-1 京公网安备 11010502031771号
