en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
HershkoA, CiechanoverA. The ubiquitin system. Annual Review of Biochemistry, 1998, 67(1): 425-479
参考文献 2
方帅, 赵博. 泛素化及相关疾病研究进展. 生物化学与生物物理进展, 2017, 44(5): 377-384
Fang S, Zhao B. Progress in Biochemistry and Biophysics, 2017, 44(5): 377-384
参考文献 3
YogeshK, DavidK. Atypical ubiquitylation-the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nature Reviews Molecular Cell Biology, 2012, 13(8): 508-523
参考文献 4
AkutsuM, DikicI, BremmA. Ubiquitin chain diversity at a glance. Journal of Cell Science, 2016, 129(5): 875-880
参考文献 5
VolkS, WangM, PickartC M. Chemical and genetic strategies for manipulating polyubiquitin chain structure. Methods in Enzymology, 2005, 399(399): 3-20
参考文献 6
WangC, DengL, HongM, et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature, 2001, 412(6844): 346-351
参考文献 7
WuT, MerblY, HuoY, et al. UBE2S drives elongation of K11-linked ubiquitin chains by the Anaphase-Promoting Complex. Proc Natl Acad Sci USA, 2010, 107(4): 1355-1360
参考文献 8
HongJ H, NgD, SrikumarT, et al. The use of ubiquitin lysine mutants to characterize E2-E3 linkage specificity: mass spectrometry offers a cautionary "tail". Proteomics, 2015, 15(17): 2910-2915
参考文献 9
TurnerT, ShaoQ, WangW, et al. Differential contributions of ubiquitin-modified APOBEC3G lysine residues to HIV-1 Vif-induced degradation. Journal of Molecular Biology, 2016, 428(17): 3529-3539
参考文献 10
MasahiroF, TadashiN, YasuyukiN, et al. Involvement of polyubiquitin chains via specific chain linkages in stress response in mammalian cells. Biological & Pharmaceutical Bulletin, 2005, 28(12): 2315-2318
参考文献 11
PingX, DuongD M, SeyfriedN T, et al. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell, 2009, 137(1): 133-145
参考文献 12
BeaudetteP, PoppO, DittmarG. Proteomic techniques to probe the ubiquitin landscape. Proteomics, 2016, 16(2): 273-287
参考文献 13
OrdureauA, MünchC, HarperJ W. Quantifying ubiquitin signaling. Molecular Cell, 2015, 58(4): 660-676
参考文献 14
CannonJ R, KirbyM F, RobothamS A, et al. Top-down 193-nm ultraviolet photodissociation mass spectrometry for simultaneous determination of polyubiquitin chain length and topology. Analytical Chemistry, 2015, 87(3): 1812-1820
参考文献 15
KlizaK, TaumerC, PinzutiI, et al. Internally tagged ubiquitin: a tool to identify linear polyubiquitin-modified proteins by mass spectrometry. Nature Methods, 2017, 14(5): 504-512
参考文献 16
MeyerH J, RapeM. Enhanced protein degradation by branched ubiquitin chains. Cell, 2014, 157(4): 910-921
参考文献 17
OhtakeF, SaekiY, IshidoS, et al. The K48-K63 branched ubiquitin chain regulates NF-κB signaling. Molecular Cell, 2016, 64(2): 251-266
参考文献 18
SwatekK N, KomanderD. Ubiquitin modifications. Cell Research, 2016, 26(4): 399-422
参考文献 19
KomanderD, RapeM. The ubiquitin code. Annual Review of Biochemistry, 2012, 81(7): 203-229
参考文献 20
MevissenT E T, KomanderD. Mechanisms of deubiquitinase specificity and regulation. Annual Review of Biochemistry, 2017, 86:159-192
参考文献 21
ZhengN, ShabekN. Ubiquitin ligases: structure, function, and regulation. Annual Review of Biochemistry, 2017, 86(1): 129-157
参考文献 22
HerhausL, DikicI. Expanding the ubiquitin code through post-translational modification. EMBO Reports, 2015, 16(9): 1071-1083
参考文献 23
KoyanoF, OkatsuK, KosakoH, et al. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature, 2014, 510(7503): 162-166
参考文献 24
KaneL A, LazarouM, FogelA I, et al. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. The Journal of Cell Biology, 2014, 205(2): 143-153
参考文献 25
KazlauskaiteA, KondapalliC, GourlayR, et al. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. The Biochemical Journal, 2014, 460(1): 127-139
参考文献 26
WauerT, SwatekK N, WagstaffJ L, et al. Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis. The EMBO Journal, 2015, 34(3): 307-325
参考文献 27
ChoudharyC, KumarC, GnadF, et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science, 2009, 325(5942): 834-840
参考文献 28
OhtakeF, SaekiY, SakamotoK, et al. Ubiquitin acetylation inhibits polyubiquitin chain elongation. EMBO Reports, 2015, 16(2): 192-201
参考文献 29
YauR, RapeM. The increasing complexity of the ubiquitin code. Nature Cell Biology, 2016, 18(6): 579-586
参考文献 30
DwaneL, GallagherW M, NíC T, et al. The emerging role of non-traditional ubiquitination in oncogenic pathways. Journal of Biological Chemistry, 2017, 292(9): 3543-3551
参考文献 31
WickliffeK E, WilliamsonA, MeyerH J, et al. K11-linked ubiquitin chains as novel regulators of cell division. Trends in Cell Biology, 2011, 21(11): 656-663
参考文献 32
ChenZ J. Ubiquitin signaling in the NF-κB pathway. Nature Cell Biology, 2005, 7(8): 758-765
参考文献 33
DengL, WangC, SpencerE, et al. Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell, 2000, 103(2): 351-361
参考文献 34
IwaiK, FujitaH, SasakiY. Linear ubiquitin chains: NF-κB signalling, cell death and beyond. Nature Reviews Molecular Cell Biology, 2014, 15(8): 503-508
参考文献 35
BremmA, KomanderD. Emerging roles for Lys11-linked polyubiquitin in cellular regulation. Trends in Biochemical Sciences, 2011, 36(7): 355-363
参考文献 36
DurcanT M, TangM Y, PérusseJ L R, et al. USP8 regulates mitophagy by removing K6-linked ubiquitin conjugates from parkin. The EMBO Journal, 2015, 33(21): 2473-2491
参考文献 37
GattiM, PinatoS, MaiolicaA, et al. RNF168 promotes noncanonical K27 ubiquitination to signal DNA damage. Cell Reports, 2015, 10(2): 226-238
参考文献 38
NuciforaF C, NuciforaL G, C-HNg, et al. Ubiqutination via K27 and K29 chains signals aggregation and neuronal protection of LRRK2 by WSB1. Nature Communications, 2016, 7:11792
参考文献 39
LiuH, ZhangL, SunJ, et al. Endoplasmic reticulum protein SCAP inhibits dengue virus NS2B3 protease by suppressing its k27-linked polyubiquitylation. Journal of Virology, 2017, 92(9): e02234-16
参考文献 40
LiuJ, HanC, XieB, et al. Rhbdd3 controls autoimmunity by suppressing the production of IL-6 by dendritic cells via K27-linked ubiquitination of the regulator NEMO. Nature Immunology, 2014, 15(7): 612-622
参考文献 41
YuanW-C, Y-RLee, LinS-Y, et al. K33-linked polyubiquitination of coronin 7 by Cul3-KLHL20 ubiquitin E3 ligase regulates protein trafficking. Molecular Cell, 2014, 54(4): 586-600
参考文献 42
StolzA, DikicI. Heterotypic ubiquitin chains: seeing is believing. Trends in Cell Biology, 2018, 28(1): 1-3
参考文献 43
EmmerichC H, AlbanO, SamS, et al. Activation of the canonical IKK complex by K63/M1-linked hybrid ubiquitin chains. Proc Natl Acad Sci USA, 2013, 110(38): 15247-15252
参考文献 44
LiuC, LiuW, YeY, et al. Ufd2p synthesizes branched ubiquitin chains to promote the degradation of substrates modified with atypical chains. Nature Communications, 2017, 8:14274
参考文献 45
OhtakeF, TsuchiyaH, SaekiY, et al. K63 ubiquitylation triggers proteasomal degradation by seeding branched ubiquitin chains. Proc Natl Acad Sci, 2018, 115(7): E1401-E1408
参考文献 46
OhtakeF, TsuchiyaH. The emerging complexity of ubiquitin architecture. Journal of Biochemistry, 2016, 161(2): 125-133
参考文献 47
NewtonK, MatsumotoM L, WertzI E, et al. Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies. Cell, 2008, 134(4): 668-678
参考文献 48
FellouseF A, EsakiK, BirtalanS, et al. High-throughput generation of synthetic antibodies from highly functional minimalist phage-displayed libraries. Journal of Molecular Biology, 2007, 373(4): 924-940
参考文献 49
WangH, MatsuzawaA, BrownS A, et al. Analysis of nondegradative protein ubiquitylation with a monoclonal antibody specific for lysine-63-linked polyubiquitin. Proc Natl Acad Sci USA, 2008, 105(51): 20197-20202
参考文献 50
MatsumotoM L, WickliffeK E, DongK C, et al. K11-linked polyubiquitination in cell cycle control revealed by a K11 linkage-specific antibody. Molecular Cell, 2010, 39(3): 477-484
参考文献 51
LeeC V, LiangW C, DennisM S, et al. High-affinity human antibodies from phage-displayed synthetic Fab libraries with a single framework scaffold. Journal of Molecular Biology, 2004, 340(5): 1073-1093
参考文献 52
MatsumotoM L, DongK C, YuC, et al. Engineering and structural characterization of a linear polyubiquitin-specific antibody. Journal of Molecular Biology, 2012, 418(3-4): 134-144
参考文献 53
YauR G, DoernerK, CastellanosE R, et al. Assembly and function of heterotypic ubiquitin chains in cell-cycle and protein quality control. Cell, 2017, 171(4): 918-933
参考文献 54
MerchantA M, ZhuZ, YuanJ Q, et al. An efficient route to human bispecific IgG. Nature Biotechnology, 1998, 16(7): 677-681
参考文献 55
ChristianT, TangA a S, DeaconS E, et al. Adhiron: a stable and versatile peptide display scaffold for molecular recognition applications. Protein Engineering Design & Selection Peds, 2014, 27(5): 145-155
参考文献 56
KyleS. Affimer proteins: theranostics of the future? Trends in Biochemical Sciences, 2018, 43(4): 230-232.
参考文献 57
TiedeC, BedfordR, HeseltineS J, et al. Affimer proteins are versatile and renewable affinity reagents. eLife, 2017, 6. pii:24903
参考文献 58
MichelM A, SwatekK N, HospenthalM K, et al. Ubiquitin linkage-specific affimers reveal insights into K6-linked ubiquitin signaling. Molecular Cell, 2017, 681): 233-246(e5)
参考文献 59
HughesD J, TiedeC, PenswickN, et al. Generation of specific inhibitors of SUMO-1-and SUMO-2/3-mediated protein-protein interactions using Affimer (Adhiron) technology. Science Signaling, 2017, 10(505). pii: eaaj2005
参考文献 60
MuyldermansS. Nanobodies: natural single-domain antibodies. Annual Review of Biochemistry, 2013, 82:775-797
参考文献 61
HelmaJ, CardosoM C, MuyldermansS, et al. Nanobodies and recombinant binders in cell biology. The Journal of Cell Biology, 2015, 209(5): 633-644
参考文献 62
De MeyerT, MuyldermansS, DepickerA. Nanobody-based products as research and diagnostic tools. Trends in Biotechnology, 2014, 32(5): 263-270
参考文献 63
ChakravartyR, GoelS, CaiW. Nanobody: the "magic bullet" for molecular imaging? Theranostics, 2014, 4(4): 386-398
参考文献 64
KomanderD. The emerging complexity of protein ubiquitination. Biochemical Society Transactions, 2009, 37(5): 937-953
参考文献 65
HickeL, SchubertH L, HillC P. Ubiquitin-binding domains. Nature Reviews Molecular Cell Biology, 2005, 6(8): 610-621
参考文献 66
HusnjakK, DikicI. Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annual Review of Biochemistry, 2012, 81:291-322
参考文献 67
SimsJ J, ScavoneF, CooperE M, et al. Polyubiquitin-sensor proteins reveal localization and linkage-type dependence of cellular ubiquitin signaling. Nature Methods, 2012, 9(3): 303-309
参考文献 68
Van WijkS J, FiskinE, PutyrskiM, et al. Fluorescence-based sensors to monitor localization and functions of linear and K63-linked ubiquitin chains in cells. Molecular Cell, 2012, 47(5): 797-809
参考文献 69
MevissenT E, HospenthalM K, GeurinkP P, et al. OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis. Cell, 2013, 154(1): 169-184
参考文献 70
HospenthalM K, MevissenT E T, KomanderD. Deubiquitinase-based analysis of ubiquitin chain architecture using Ubiquitin Chain Restriction (UbiCRest). Nature Protocols, 2015, 10(2): 349-361
参考文献 71
PickartC M, RaasiS. Controlled synthesis of polyubiquitin chains. Methods in Enzymology, 2005, 399:21-36
参考文献 72
KomanderD, LordC J, ScheelH, et al. The structure of the CYLD USP domain explains its specificity for Lys63-linked polyubiquitin and reveals a B box module. Molecular Cell, 2008, 29(4): 451-464
参考文献 73
TrempeJ F, BrownN R, LoweE D, et al. Mechanism of Lys48-linked polyubiquitin chain recognition by the Mud1 UBA domain. The EMBO Journal, 2005, 24(18): 3178-3189
参考文献 74
DawsonP E, MuirT W, Clark-LewisI, et al. Synthesis of proteins by native chemical ligation. Science, 1994, 266(5186): 776-779
参考文献 75
FangG M, LiY M, ShenF, et al. Protein chemical synthesis by ligation of peptide hydrazides. Angewandte Chemie, 2011, 50(33): 7645-7649
参考文献 76
TangS, LiangL J, SiY Y, et al. Practical chemical synthesis of atypical ubiquitin chains by using an isopeptide-linked Ub isomer. Angewandte Chemie, 2017, 56(43): 13333-13337
参考文献 77
PanM, GaoS, ZhengY, et al. Quasi-racemic X-ray structures of K27-linked ubiquitin chains prepared by total chemical synthesis. Journal of the American Chemical Society, 2016, 138(23): 7429-7435
参考文献 78
PanM, ZhengQ, DingS, et al. Chemical protein synthesis enabled mechanistic studies on the molecular recognition of K27-linked ubiquitin chains. Angewandte Chemie, 2019, 58(9): 2627-2631
参考文献 79
FieselF C, AndoM, HudecR, et al. (Patho-)physiological relevance of PINK1-dependent ubiquitin phosphorylation. EMBO Reports, 2015, 16(9): 1114-1130
参考文献 80
PingX, JunminP. Characterization of polyubiquitin chain structure by middle-down mass spectrometry. Analytical Chemistry, 2008, 80(9): 3438-3444
参考文献 81
AsjbR, GeY, StrieterE R. Ubiquitin chain enrichment middle-down mass spectrometry (UbiChEM-MS) reveals cell-cycle dependent formation of Lys11/Lys48 branched ubiquitin chains. Journal of Proteome Research, 2017, 16(9): 3363-3369
参考文献 82
ValkevichE M, SanchezN A, YingG, et al. Middle-down mass spectrometry enables characterization of branched ubiquitin chains. Biochemistry, 2014, 53(30): 4979-4989
参考文献 83
LowT Y, MagliozziR, GuardavaccaroD, et al. Unraveling the ubiquitin-regulated signaling networks by mass spectrometry-based proteomics. Proteomics, 2013, 13(3-4): 526-537
目录 contents

    摘要

    泛素化是最具多样性的蛋白质翻译后修饰之一,广泛参与蛋白质降解、细胞信号转导、DNA损伤修复等重要的生物学过程. 其中,泛素的8个位点(M1、K6、K11、K27、K29、K33、K48、K63)都可以与另一个泛素分子的C末端结合,形成结构复杂的泛素链. 不同结构泛素链的功能不同. 由于缺乏检测泛素链的特异性工具,许多类型泛素链的功能尚未清楚. 已开发的泛素连接特异性抗体等亲和试剂为研究泛素链提供了重要的分析工具. 本文综述了目前已报道的几种泛素连接特异性抗体的开发以及应用,同时总结了其他可分析泛素链的特异性亲和工具,例如Affimer、基于UBD的荧光传感蛋白等. 同时,本文还对开发泛素连接特异性抗体所需抗原的获得方法进行了简单的介绍.

    Abstract

    Protein ubiquitination is one of the most versatile post-translational modifications, and is widely involved in multiple cellular processes including protein degradation, cellular signaling transduction and DNA damage responses. The eight sites (M1, K6, K11, K27, K29, K33, K48, K63) of ubiquitin help to form individual complex chains by being attached to C-terminus of another ubiquitin molecule. In addition, these different ubiquitin chains play distinct biological functions. However, functions of most ubiquitin chain types are poorly understood, due to the lack of tools that enable ubiquitin linkage-specific detection. Affinity reagents such as ubiquitin linkage-specific antibodies are powerful tools for the studies of the ubiquitin chains. This review focuses on the development and applications of several ubiquitin linkage-specific antibodies, as well as other specific affinity tools, which can be used for identifying of ubiquitin chains such as Affimer and UBD-based fluorescent sensors proteins. This review also briefly introduces the methods of obtaining antigens for the discovery of these ubiquitin linkage-specific antibodies.

    蛋白质泛素化是真核细胞内最为普遍和复杂的翻译后修饰之一,调节众多的细胞功[1,2]. 一个含有76个氨基酸残基的泛素(ubiquitin,Ub)通过泛素活化酶(ubiquitin-activating enzyme,E1)、泛素结合酶(ubiquitin-conjugating enzyme,E2)、泛素连接酶(ubiquitin Ligase,E3)的级联反应,其C末端通过异肽键连接到蛋白质底物上,即为蛋白质的泛素化. 在此基础上,若多个泛素分子通过E1-E2-E3的级联反应,其C末端连接到底物-泛素复合物的泛素分子N端(Met1)或者7个K(K6、K11、K27、K29、K33、K48、K63)中的任意一个,即形成了多聚泛素链(polyubiquitin chains).

    相对于其他连接泛素链,通过K48和K63连接形成的泛素链在生物体内丰度较高,并且对这两种连接类型泛素链研究较多,所以一般称这两种连接类型泛素链为经典泛素链(typical ubiquitin chains),其余连接类型(M1、K6、K11、K27、K29、K33连接)泛素链称为非经典泛素链(atypical ubiquitin chains[3,4]. 受限于现有的研究方法和工具,非经典泛素链的功能知之甚少. 目前广泛使用泛素突变体和质谱鉴定泛素链连接类型. 一般将泛素上的一个或者多个K突变成R,即可以得到不同的泛素突变[5],在体外使用这些泛素突变体进行泛素化反应,限制了特定连接类型泛素链的延[6,7,8];或者在细胞中通过泛素突变体的过表达阻断特定类型的聚泛素[9,10],从而判断被修饰底物上的泛素链连接类型. 但是由于泛素突变体与野生型泛素不同,因此可能影响泛素和其他蛋白质的相互作用,不能反映正常泛素的功能. 并且在泛素的敲除、敲减、敲入实验中,由于不能消除体内野生型泛素的影响,有时会使分析变得更加复杂. 质谱对于泛素链的定性和定量分析具有深远的意[11]. 利用胰蛋白酶消化,产生在修饰的K位点上含有“diGly”标签的特异泛素多肽,通过鉴定带有“diGly”标签的特异泛素多肽可以鉴定泛素链的连接类型. 另外,通过离子强度,可以相对定量各种泛素链的丰度,若使用同位素标记的泛素多肽作为内参,还可以定量各种泛素链的丰[12,13]. 不断改进的质谱技术,如使用紫外光解离的质谱可以同时测定组成泛素链的泛素分子数目(即泛素链长度)和连接类[14]. 质谱对所测定的蛋白质的纯度、质量要求较高,所以对于测定内源的泛素链,特别是丰度较低的泛素链,首先需要使用亲和试剂进行富集,并对仪器的灵敏度有较高要求. 此外,对于异型泛素链,质谱检测能力下降,仅限于测定两个相邻K(如K27/K29)连接的泛素链,若在一定程度对泛素分子进行修饰或改[15,16,17]或者结合其他方[18],该系统可以分析一些通过较远K连接的异型泛素链,如K11/K48或者K11/K63泛素链. 但是泛素突变体和质谱都不能观察泛素链在亚细胞内的定位.

    除了使用泛素突变体和质谱鉴定泛素链的连接类型,还可以使用泛素连接特异性抗体等亲和工具. 泛素连接特异性抗体等可以通过蛋白质印迹检测泛素链的连接类型,避免了使用泛素突变体和质谱的繁琐,并且可以用于富集特定连接类型的泛素链,联合质谱对泛素链进行定性定量分析,应用于免疫荧光等显微成像分析,可观察细胞中不同连接类型泛素链与其修饰底物的共定位. 由此表明泛素连接特异性抗体等亲和工具可以在一定程度上弥补泛素突变体和质谱的不足,为研究泛素化提供不可或缺的重要工具. 本文综述了泛素连接特异性抗体和其他分析泛素链亲和工具的开发和应用,以及泛素链蛋白的获取,并讨论了检测其余连接类型泛素链和泛素磷酸化修饰等亲和工具的开发和不同工具的联合使用对于解密泛素链的意义.

  • 1 泛素链的总体认识

    泛素是一个由76个氨基酸残基组成、高度保守的小分子质量蛋白质(PDB: 1ubq),其中8个位点可以形成泛素链,分别是M1、K6、K11、K27、K29、K33、K48和K63(图1). 泛素链根据连接类型可分为同型泛素链(homotypic ubiquitin chains)、混合泛素链(mixed ubiquitin chains)和分支泛素链(branched ubiquitin chains),其中混合泛素链和分支泛素链统称为异型泛素链(heterotypic ubiquitin chains)(图2). 如果都在同一位点的氨基酸残基(K或者M1)上延伸泛素链,则为同型泛素链;若在泛素链延伸中,至少有一个连接位点改变了,则为异型泛素链. 异型泛素链中,若每一个泛素分子至多只能被一个泛素分子修饰,则为混合泛素链,若泛素链上的一个泛素分子同时被两个或者更多的泛素分子修饰,则为分支泛素链.

    图1
                            泛素分子上可形成泛素链的8个位点(PDB: 1ubq, 使用PyMOL软件分析)

    图1 泛素分子上可形成泛素链的8个位点(PDB: 1ubq, 使用PyMOL软件分析)

    Fig. 1 8 sites forming ubiquitin chains in ubquitin

    图2
                            泛素链类型

    图2 泛素链类型

    Fig. 2 Types of ubiquitin chains

    注:(a)同型泛素链;(b)混合泛素链;(c)分支泛素链.

    蛋白质泛素化调节众多的生物学过程,泛素链是决定其修饰的底物参与不同信号通路的重要因素,此为泛素密码的定义. 研究不同泛素链的组装、去组装、编辑和解读,是解译泛素密码的重要内容. 很多泛素链组装特异性由E3决定,这里的E3通常是指HECT(homologous to E6AP C-terminus)和RBR(RING-in-between-RING)家族的E3. 对于RING(really interesting new gene)家族的E3,由于泛素是从E2直接传递到底物,所以其参与形成的泛素链特异性一般由E2决[19]. 泛素链形成后,可以被包含泛素结合域(ubiquitin binding domains,UBDs)的底物所识别,泛素结合域可以区分不同连接类型和长度的泛素链拓扑结构,从而将结构中所编辑的信息解读出来,调控不同的细胞过程. 另外,泛素化是一个可逆的过程,泛素链以及泛素与底物蛋白之间的连接可以被去泛素化酶(deubiquitinating enzyme,DUB)切除,使足够的泛素分子能重新参与泛素化过[4]. 其中,一些DUB可以高度特异地切除泛素链连[20]. E1、E2、E3,包含UBD的底物和DUB构成了泛素链在组装、识别和去组装的三层特异[21],同时也分别对应泛素密码的“writer”、“reader”和“eraser”. 在泛素化过程中,一种泛素链可能被其他具有不同拓扑结构的泛素链所替换,从而改变了所修饰底物的命运,该过程即为泛素链的编辑. DUB和E3以及一些因子有序地参与泛素链的编辑,使得编辑过程非常复[19].

    此外,泛素和泛素链还可能被磷酸化和乙酰化修饰以及类泛素化修饰. 类泛素化修饰包括SUMO(small ubiquitin-like modifier protein)修饰和NEDD8(neural precursor cell expressed, developmentally downregulated 8)修[18]等. 由于这些修饰与不同长度、不同连接泛素链的多种组合,大大增加了泛素密码的多样性和复杂[22],每种修饰都可能明显地改变泛素信号的结果. 虽然蛋白质翻译后修饰有很多种,但对泛素磷酸化和乙酰化修饰研究较多,而且泛素是否被甲基化修饰或者糖基化修饰,目前还不清楚. 泛素及泛素链上的S、T和Y位点可以被磷酸化,目前研究主要集中在S65磷酸化,其主要与线粒体的质量控制有关. 蛋白质激酶PINK1(PTEN-induced putative kinase 1)可以磷酸化泛素S65,磷酸化的泛素可以使Parkin(一种与帕金森病密切相关的泛素连接酶)变构而被活化,被磷酸化泛素修饰后而活化的Parkin,最终激活线粒体自噬,清除受损伤的线粒[23,24,25]. 磷酸化的泛素分子不影响其与E1、E2的结合,但会抑制其和E2的解离以及随后形成泛素链的功能,并且会减弱去泛素化酶对包含S65磷酸化泛素分子的泛素链去组装能[26]. 泛素分子上的K位点可以被乙酰化修饰,已经在泛素的K6和K48检测到乙酰化修[27],K6乙酰化的泛素可以稳定被单泛素化修饰的组蛋白H2B[28]. 由于乙酰化修饰与泛素连接竞争使用K位点,所以泛素乙酰化修饰可能会影响泛素链的延[28]. 泛素及泛素链的K位点(K6、K11、K27、K48和K63)还可以被SUMO修[18],并且泛素和泛素链也可以修饰SUMO链,形成了一个相对复杂的交叉网络. 针对泛素及泛素链磷酸化和乙酰化修饰以及类泛素化修饰的特异性组装、识别和相应的生物学功能仍需要更多研究和发现.

    目前,K48、K63泛素链已经得到广泛深入的研究,并且证实K48泛素链主要靶向蛋白质经26 S蛋白酶体降[1],而K63泛素链在蛋白质转运、激酶信号转导、DNA损伤应答等生物学过程中发挥非降解作[29]. 所有泛素连接类型都共存于细胞中,并且不同泛素链的丰度有差别. 组学研究发现K48泛素链的丰度最大,其次为K63泛素链,虽然各种泛素链的丰度在细胞不同时期会有差异,但这两种泛素链的丰度在细胞中超过泛素链总量的一半,而K27和K33泛素链的丰度很[3,11]. 此外,对非经典泛素链的功能也有一定了[4,18,29,30],如K11、K63和M1泛素链都参与细胞周期的调[31]和NF-κB的活[4,32,33,34],其中K11泛素链还是有效的降解信号,并且还有其他的功[35],K6泛素链与线粒体的质量控制有[36],K27泛素链参与DNA损伤应[37]和固有免[38,39,40],K29泛素链为Wnt信号的抑制[4],K33泛素链调节蛋白质转[41]. 虽然近年来对非经典泛素链的功能研究逐渐增多,但对于K6、K27、K29和K33泛素链的更多功能仍需要深入的研究.

    另外,有关异型泛素链的组装和识别及其功能正成为新的研究热点. 理论上,有56种混合泛素链和28种分支泛素[42],而且泛素链可以在泛素部分多于2个氨基酸残基位点进行分支,所以异型泛素链的种类可能更多. 如已经鉴定的K11/K48分支泛素链可由泛素连接酶后期促进复合物/细胞周期体(anaphase-promoting complex /cyclosome,APC/C)组装并修饰APC/C底物;如细胞周期调控子,加强这些控制子在有丝分裂期被蛋白酶体识别而快速被降[16];还有作用于NF-κB信号的K63/M1泛素[43];可以促进底物降解但不是靶向蛋白酶体的K29/K48泛素[44];参与蛋白酶体降[45]和调节NF-κB信[17]的K48/K63泛素链. 有趣的是,虽然都是K48/K63分支泛素链,但由于被不同的E3组装,其底物和拓扑结构不同,所参与的细胞过程也不同. 由此可见,目前我们对异型泛素链的研究仍然处于早期阶段,还有很多问题仍没有研究清楚. 因为异型泛素链较为复[29,46],所以更加需要有合适的方法和工具解密泛素链.

  • 2 泛素连接特异性抗体

  • 2.1 K48连接泛素链特异性抗体

    2008年,Newton[47]首次报道了泛素连接特异性抗体,开发的K48连接泛素链特异性抗体可用于蛋白质印迹、免疫沉淀、免疫荧光和免疫组织化学. 他们从最少多样性的二价Fab噬菌体抗体[48]中筛选抗K48连接泛素链的特异性克隆. 由于从该库中筛选出抗K48连接泛素链特异性抗体的亲和力比较低,所以需要优化亲和力. 在抗K48连接泛素链的抗体中,重链CDR3对K48连接泛素链的识别起主要作用,因此在重链CDR3增加额外的多样性. 将从第一代库中筛选出的最高亲和力、最大特异性的抗体克隆转变单价的形式,并以此为模板,在重链CDR3引入额外的多样性,并由此构建了第二代抗体库. 从第二代库中筛选出对K48-diUb有最大亲和力的Fab克隆Apu2.07(Kd = 1.2 nmol/L).

    由于需要在蛋白质印迹、免疫沉淀和免疫荧光等实验中检测抗体特异识别和结合K48泛素链的能力,这些实验需要使用二抗进行信号放大和检测,而二抗具有种属特异性,因此首先将得到的Fab转换成全长的IgG. 该特异性抗体(已转换全长的人IgG)能应用于蛋白质印迹分析纯化的K48泛素链和检测各种细胞裂解物中的K48泛素链,并且在免疫沉淀实验中能将过表达的K48泛素链修饰的NF-κB抑制蛋白α(inhibitor of NF-κB α,IκBα)拉下来,这些结果证明该抗体能用于蛋白质印迹和免疫沉淀分析. 使用质谱分析该抗体免疫沉淀的细胞裂解物,发现裂解物中含有K48、K63和K11泛素链,进一步表明K48连接泛素链特异性抗体在免疫沉淀实验中可以将包含了K48泛素链修饰的蛋白质底物拉下来,但是这些底物可能还被其他连接类型的泛素链所修饰,这说明该K48连接泛素链特异性抗体可用于免疫沉淀,但是不能区分包含K48泛素链修饰的底物上整体泛素链修饰的情况:仅有同型的K48连接泛素链?还是包含K48连接的异型泛素链?或者是两者的组合.

    使用该抗体进行免疫荧光分析K48泛素链在细胞内的分布,发现细胞核和细胞质均被染色,并且在细胞核内核仁的染色程度更弱些,这符合K48泛素链可以靶向26S蛋白酶体导致底物降解的功能. 最后使用该特异性抗体证明了受体相互作用蛋白1(receptor-interacting protein 1,RIP1)和白介素1受体相关激酶 1(interleukin-1 receptor-associated kinase 1,IRAK1)这2个底物在体内经过泛素编辑,先被K63泛素链修饰,后被K48泛素链修饰,最终靶向蛋白酶体被降解. 在研究体内的RIP1和IRAK1的泛素编辑过程和所参与的信号通路中,也证明了K48连接泛素链特异性抗体用于分析体内泛素信号的能力.

  • 2.2 K63连接泛素链特异性抗体

    2008年,两个实验室分别报道了不同的K63连接泛素链特异性抗[47,49]. Wang[49]使用传统的杂交瘤技术,以U63U(泛素肽(71~76,RLRGG)的C端通过K63连接到另一泛素肽(58~66,DYNIQKEST))结合血蓝素为免疫原,最终筛选出特异性识别K63泛素链的HWA4C4 mAb(IgG2a). ELISA和Biocore分析HWA4C4对于模拟其他7种连接泛素链的泛素分支多肽没有交叉反应性,证实该抗体对U63U有高的特异性(Kd= 8.8 nmol/L). 进一步通过蛋白质印迹分析该抗体对体外合成泛素链的特异性,发现该抗体特异性识别K63泛素链,但是对高浓度的游离泛素有弱的反应性. 通过泛素突变体的过表达和特异性组装K63泛素链的E2——Ubc13的敲减更进一步证明了该抗体的特异性. 为了证明抗体的另一个重要的特性——灵敏度,分别在体外和离体的情况下检测了两种K63泛素链修饰的可自泛素化蛋白:TNF受体关联因子6(TNF receptor-associated factor 6,TRAF6)和丝裂原活化蛋白激酶激酶激酶1 (MAP kinase kinase kinase 1,MEKK1),最终结果表明该抗体对K63泛素链具有很好的特异性和用于检测内源底物的能力. 在证明该抗体能够灵敏地检测K63泛素链修饰底物的同时,也表明了MEKK1被K63泛素链修饰需要Ubc13、TRAF2(TNF receptor-associated factor 2)和IκB 激酶γ(IκB kinase γ,IKKγ),但不清楚MEKK1泛素化是直接还是间接需要TRAF2.

    此外,不经过预先免疫沉淀底物的情况下,该抗体可以直接检测总细胞裂解物中K63泛素修饰的底物蛋白,但并未证明该抗体可以用于免疫沉淀K63泛素链修饰的底物. 总体来看,采用传统的杂交瘤技术产生的K63连接泛素链特异性单克隆抗体,其亲和力受到一定的限制,并对高浓度的游离泛素有较高的交叉反应性. 由于抗体本身性质的影响,其应用受到一定制约,特别是不能用于免疫沉淀K63连接泛素链修饰的底物.

    Vishva M. Dixit实验室在开发K48连接泛素链特异性抗体的同时,也开发出了K63连接泛素链特异性抗[47]. 开发的方法同开发K48连接泛素链特异性抗体相同,但是从第二代库所得到最大特异性的抗K63泛素链(Kd=92 nmol/L)的Apu2.16 Fab抗体片段也对K48泛素链有一定的结合力(Kd=42 μmol/L),所以需要继续提高对K63泛素链的亲和力. 采用结构指导亲和力成熟的方法,通过分析Apu2.16 Fab与K63-diUb的共晶结构,发现轻链CDR2和重链CDR2是识别K63泛素链表位的重要组成部分,因此在轻链CDR2和重链CDR2引入序列多样性以进行亲和力成熟,最终得到Apu3.A8(Kd=8.7 nmol/L)等3个亲和力进一步提高的K63连接泛素链的特异性抗体. 该抗体应用的验证实验与K48连接泛素链特异性抗体相似.

    目前,用于研究K63泛素链一般采用Vishva M. Dixit实验室所开发的K63连接泛素链的特异性抗体,所以通过合成噬菌体抗体库技术和结构指导亲和力成熟的策略开发泛素连接特异性抗体,比单纯采用传统的杂交瘤技术有更大的优势.

  • 2.3 K11 连接泛素链特异性抗体

    Vishva M. Dixit实验[50]继开发了K48和K63连接泛素链特异性抗体后,接着采用相似的技术和方法开发了K11连接泛素链特异性抗体. 首先,通过竞争筛选方法,从合成的二价Fab噬菌体[51]中筛选出K11泛素二聚体的特异性克隆(G3),以此为模板分别在抗体轻链CDR1和重链CDR2引入突变,建立亲和力成熟库,分别筛选得到最高亲和力的克隆2A3和2E6,然后将2A3的轻链和2E6的重链重组,最终得到亲和力进一步提高的K11连接泛素链的特异性抗体2A3/2E6(Kd= 12 nmol/L).

    在使用该抗体进行体内外分析之前,将Fab抗体片段转化成全长的IgG. 通过蛋白质印迹和免疫沉淀分析,证实该抗体能特异性识别体外酶催化产生和内源的K11泛素链,与单泛素和其他类型泛素链没有产生交叉反应. 通过蛋白质印迹、免疫荧光显微和亲和纯化分析,验证K11泛素链与APC/C的关系以及更深入研究K11泛素链在细胞周期调控中作为降解信号的功能.

    在细胞有丝分裂期,随着APC/C底物的降解,细胞内的K11泛素链含量逐渐增加;免疫荧光显微可以观察K11泛素链在纺锤体中部聚集,这些结果表明K11泛素链参与细胞周期的调控,并由APC/C组装. 通过敲减APC/C特异的E2——UbcH10和Ube2S以及APC/C的亚基——Cdc27、Apc11和Cdh1,发现细胞内的K11泛素链含量减少,而K48泛素链含量几乎没有变化;过表达Cdh1和Ube2S,激活APC/C,发现细胞内的K11泛素链含量上调. 并且,通过直接调控APC/C的活性,进行K11泛素链的动力学分析发现体内的K11泛素链含量依赖于APC/C的活性. 这些结果表明在人体细胞中APC/C是组装K11泛素链主要的E3. 这些发现证明了K11连接泛素链特异性抗体在分析体内泛素化信号中的应用价值.

  • 2.4 M1连接泛素链特异性抗体

    同K63、K11连接泛素链特异性抗体一样,Matsumoto[52]采用噬菌体抗体库技术开发了可用于蛋白质印迹、免疫沉淀和免疫荧光分析的M1连接泛素链特异性抗体. 首先从二价的Fab噬菌体库中筛选出抗M1泛素二聚体的特异性克隆1E3. 在亲和力成熟的过程中,考虑到M1泛素链与K63泛素链的结构具有高度相似性,为了保留对M1泛素链的特异性,采取了特殊的方法提高抗体对M1泛素链的亲和力. 在每个CDR中仅限于单个氨基酸残基位点上进行20个氨基酸随机替换的策略引入突变,并从亲和力成熟库中平行筛选出分别抗M1-diUb和K63-diUb的两类克隆,然后只将抗M1-diUb的克隆进一步分析. 这种方法在维持对M1泛素链特异性的同时,提高了抗体对M1泛素链的亲和力. 单突变位点依次经2个和3个突变位点随机组合,最终从亲和力成熟库得到对M1-diUb有最大特异性和灵敏度的3位点突变抗体1F11/3F5/Y102L.

    由于M1泛素链与K63泛素链的结构高度相似,因此该抗体在常规的免疫沉淀中对K63泛素链有明显的交叉反应性. 在改进免疫沉淀实验中,以7 mol/L尿素作为变性剂,该抗体对M1泛素链有明显的特异性. 使用该抗体在检测体内泛素化过程中,蛋白质印迹分析细胞裂解物,检测到底物泛素化的条带,经质谱分析却发现拉下来的裂解物中没有M1泛素链,表明了当K63泛素链的含量远大于M1泛素链时,该抗体对K63泛素链有弱的交叉反应性. 过表达LUBAC(linear Ub chain assembly complex),提高体内M1泛素链含量,从而能使用该抗体在蛋白质印迹和免疫荧光实验中检测到M1泛素链. 值得注意的是,使用质谱分析免疫沉淀下来的过表达细胞裂解物,其中M1泛素链只有泛素链总量的75%,还含有较多的K48连接和K63连接泛素链,表明拉下来的裂解物中所包含其他连接泛素链可能来自于同一底物的异型泛素链或者不溶于7 mol/L尿素的复合物. 之前已表明M1泛素链参与NF-κB信号,使用该抗体证实了在TNFα刺激下,胞内M1泛素链上调,并且M1泛素链上调与IκBα的降解有关.

  • 2.5 K11/K48连接泛素链双特异性抗体

    在证明K11、K48和K63连接泛素链特异性抗体用于检测体内泛素化能力时,免疫沉淀下来的裂解物经质谱分析发现还存在其他连接类型泛素链,局限于当时的技术和工具,无法确认这些泛素链是来自同一底物的异型泛素链还是不溶于沉淀试剂的复合[47,50]. 最近,Yau[53]开发了K11/K48连接泛素链的双特异性抗体,为解决这些问题提供了一种有效的方法,更重要的是有助于深入研究K11/K48泛素链的功[42].

    通过已经开发的K11和K48连接泛素链特异性抗[47,50],采用“knobs-into-holes”异型二聚体的技[54],对每种抗体的重链进行修饰和配对得到K11/K48连接泛素链双特异性抗体. 重链的可变区来自K11连接泛素链特异性抗体(克隆2A3/2E6[50]和K48连接泛素链特异性抗体(克隆Apu2.07[47],重链恒定区为人类的IgG1的重链恒定区. 在恒定区中,对K11连接泛素链特异性抗体的重链CH3结构域进行了“knob”突变,对K48连接泛素链特异性抗体的重链CH3进行了“hole”突变,带有“knob”和“hole”的半个抗体分别在CHO细胞中表达,纯化后在体外组装形成K11/K48连接泛素链双特异性的lgG. 该双特异性抗体同时结合K11和K48连接,虽然可以特异地检测K11/K48异型泛素链,但是不能区分是混合泛素链还是分支泛素链,如可结合K11/K48分支的泛素三聚体和K11/K48混合的泛素三聚体中K11和K48连接,并且仅当K11和K48连接的距离较近时,才能结合到靶标上.

    结合泛素突变体分析,直接证明了APC/C合成的是K11/K48分支泛素链,并非K11/K48混合泛素链. 免疫荧光显微发现当有丝分裂期间的APC/C靶向其底物时,K11/K48泛素链的含量增加;通过敲减处于有丝分裂期的APC/C特异性E2——UBE2S,K11/K48泛素链的含量低于检测下限,表明了有丝分裂期K11/K48泛素链含量增加,并且其含量取决于UBE2S的存在. 除了证实K11/K48泛素链具有细胞周期调控功能之外,还证明了通过抑制蛋白酶体、HSP70和HSP90造成蛋白质毒性的应激下,K11/K48泛素链含量增加. 进一步发现,抑制HSP70和HSP90引发了细胞质内易聚集蛋白的累积,而这些累积的易聚集蛋白广泛地被K11/K48泛素链修饰,表明了K11/K48泛素链可作为蛋白酶体的降解信号参与初期蛋白质底物的质量控制,但是在蛋白质毒性的应激下,K11/K48泛素链调控蛋白质质量的能力有限,这种有限的调控能力可能与神经退行性疾病有关.

  • 3 其他分析泛素链的特异性亲和工具

  • 3.1 Affimer 和纳米抗体

    除了传统的特异性抗体,还有一些新型的特异性亲和试剂也被开发出来,用于泛素链连接类型的鉴定和功能的研究. Affimer是一类分子质量为12~13 ku的人工骨架蛋白,与抗体相似,这类蛋白质能以较高亲和力特异地结合靶分子. Affimer来源于两类骨架:第一类基于人蛋白酶抑制剂stefin A(human protease inhibitor stefin A),第二类基于植物半胱氨酸蛋白酶抑制剂(phytocystatin protein)(基于这种骨架的Affimer早期称为Adhiron[55]). Affimer的结构包含4个β折叠和1个α螺旋,骨架上的2个可变环提供与特定靶分子相互作用的表面,并且2个可变环的一段短的氨基酸序列可被9个氨基酸随机替换,可产生库容量>1010的噬菌体库. 通过噬菌体展示技术,可筛选出特异性结合某一特定靶标的Affimer,并且亲和力可达到纳摩尔级别. 相比传统的抗体,Affimer分子小,比较稳定,没有PTM和半胱氨酸,在体内不会与其他不相关蛋白质相互作用,并且较容易地在细胞内表达[56]. 由于Affimer具有这些优点,目前已开发了一些针对特定靶标的Affimer,不仅应用于传统的ELISA、蛋白质印迹、亲和纯化、流式细胞术等分析,还作为蛋白质相互作用的抑制剂,研究相关蛋白质的功能以及细胞通路,或者应用于更高分辨率的显微成像[57].

    David Komander实验[58]开发了特异靶向K6和K33/K11泛素链的Affimer,并且验证了这两种Affimer能够用于蛋白质印迹、共聚焦显微分析和蛋白质沉降. 通过分析K6和K33 Affimer分别和K6连接的diUb和K33连接的diUb结合的共晶结构,发现晶体结构中Affimer二聚体化,提供2个与diUb结合的泛素结合位点. 在结构分析指导下,将相同的2个Affimer融合,得到了亲和力提高的二聚体化Affimer. 在蛋白质印迹实验中,二聚体化的K6 Affimer特异性识别K6泛素链,对其他连接泛素链的交叉反应变弱. 此外,二聚体化的K33 Affimer也能在蛋白质印迹中检测K33和K11泛素链(对K33泛素链检测信号约为K11泛素链4倍). 使用亲和力提高的Affimer,在体外能检测特异E2或者E3组装的特定连接泛素链,并且使用这些Affimer检测两个同源RBR家族的E3——RNF144A和RNF144B组装的泛素链连接类型,发现这两种E3在体外可以组装K11和K48泛素链. 将特异性更高的K6 Affimer用于检测细胞内的K6泛素链,由于胞内的K6泛素链丰度很低(小于总泛素链的1%),所以在总细胞裂解物中没有检测出K6泛素链. 经过泛素链的富集,K6 Affimer可以检测到K6泛素链. 这些结果证明了K6 Affimer能够特异性检测体内外产生的K6泛素链的能力. 通过优化K6泛素链富集的方法,在蛋白质沉降实验中,可以拉下来包含K6泛素链修饰底物的复合物,并且发现K6 Affimer能拉下来一种泛素连接酶——HUWE1. 质谱分析拉下来的泛素链组合物,发现组合物中包含K11、K48、K6(26%)和K63连接. 通过敲减HUWE1,发现K6泛素链的含量降低75%,说明了HUWE1是细胞内组装K6泛素链重要的泛素连接酶.

    除了已开发的K6和K33/K11 Affimer,还有使用Affimer技术产生特异性抑制SUMO1、SUMO-2/3介导蛋白质相互作用的Affimer[59]. 从Affimer噬菌体库中筛选特异靶向人类SUMO蛋白亚型的S-Affs,由于Affimer能够在细胞内表达,所以通过将所获得的S-Affs在胞内过表达,验证这些S-Affs在胞内的检测能力. 发现特异靶向SUMO-1和SUMO-2的S-Affs 能在细胞内保持特异性. 多聚SUMO-2通过与SUMO靶向的泛素连接酶——RNF4(E3 ubiquitin ligase RING finger protein 4)上的SUMO相互作用基序(SUMO interacting motifs,SIMs)作用可以增强RNF4的活性,由于S-Affs可以抑制通过SIM依赖的蛋白质相互作用,所以在体外通过使用特异性靶向SUMO-2的 S-Affs,可以抑制多聚SUMO-2的泛素化. 这些结果表明特异性靶向SUMO蛋白亚型的S-Affs也可以用来研究SUMO与泛素之间的相互修饰.

    纳米抗体(nanobody)也是一种新型的、可用于研究细胞过程的高亲和力试剂. 纳米抗体是一种来源于骆驼科重链抗体(heavy (H)-chain antibodies,HCAbs)重组的单域抗原结合片段(也称为VHH). 纳米抗体识别抗原与传统的抗体不同,传统抗体的表位会形成腔、沟槽或者平面,而纳米抗体会形成凸的表位,使其非常适合插入到抗原空腔内,可以识别传统抗体难以到达或者隐藏的表位. 此外,相比于抗体的VH环,纳米抗体的环序列更[60]. 另外,一般纳米抗体库容量可以比较容易达到108~109,多样性大于95%. 同时由于VHH只有一个可变区,库容在106时也能筛选到特异性抗体,但是在普通的Fab和scFv抗体库中,需要足够大的库容量才能更容易筛选到抗体. 纳米抗体分子质量小(约15 ku),比较稳定,能在活细胞内表达,并且由于是单域结构,可以通过简单的克隆方法从天然或者免疫的纳米抗体库中筛选出来. 由于具有这些优点,目前纳米抗体也应用于细胞生物学的研[61],如蛋白质纯化、免疫共沉[62]和分子成[63]等方面. 但是目前几乎没有靶向特异连接泛素链纳米抗体的报道.

    Affimer和纳米抗体具有类似的优点,并且要获得具有一定特异性和亲和力的Affimer和纳米抗体,首先需要构建具有一定库容量的库,一般是噬菌体库. 是否获得高亲和力的特异Affimer和纳米抗体很大程度上取决于库容量的大小以及所用技术的筛选条件.

  • 3.2 基于UBD和DUB的亲和工具

    由于泛素结合结构域(UBD)和去泛素化酶(DUB)具有固有的泛素连接特异性,因此具有特异性的UBD和DUB可用于鉴定泛素链的连接类型和研究泛素链的功[18,64].

    泛素结合蛋白一般包含由20~150个氨基酸残基组成、能够独立折叠的泛素结合结构域,泛素结合域可以直接与泛素或者泛素链相互作用. 泛素结合域具有结构多样性,并且不同结构的泛素结合域一般有不同的功[65]. 目前,已鉴定出超过20个不同家族的UBD,其中一些泛素结合域对特定连接的泛素链具有特异性,如可以优先结合K63、K48和M1泛素链的UBD[66]. 基于UBD对不同连接泛素链的选择性,开发了UBD偶联荧光蛋白的荧光传感蛋白,用于体内外检测泛素链的连接类型以及研究与之关联的功[67,68]. 通过使用一段短肽作为linker,将3个与K63泛素链直接结合的泛素相互作用基序(ubiquitin-interacting motifs,tUIMs)串联起来(以提高亲和力),得到与K63泛素链特异性结合的高亲和力蛋白质. 在细胞内表达这种荧光传感蛋白,可以定位K63泛素[67]. 另外,利用分别对M1和K63连接泛素链有特异性的UBD偶联荧光蛋白的荧光传感蛋白,在DNA损伤和自噬等过程中观察到K63泛素链产生和累积的位[68]. 基于UBD的荧光传感蛋白可以在免疫荧光显微或者高分辨的活体成像中观察到特定类型泛素链的位置,并且可以通过突变等方法提高亲和力,也可以作为蛋白质相互作用的抑制剂,影响特定类型泛素链参与的细胞通路等. 但局限于目前对UBD与不同连接泛素链特异性机制的了解以及具有泛素连接特异性UBD的鉴定,基于UBD的荧光传感蛋白仅用于很小部分泛素链连接类型的鉴定,如K63、M1泛素链. 另外由于很多UBD的特异性不强,也限制了基于UBD的荧光传感蛋白的开发和应用.

    人类细胞中大约有100个DUB,基于结构特征DUB可以分为6大家族,其中OUT(ovarian tumor proteases)家族的DUB具有明显的泛素连接特异[20]. 其中,OTUB1、OTUD1和OTULIN分别对K48、K63和M1连接具有高度特异性,TRABID对K29、K33连接具有特异性[69]. 利用这些具有高度特异性的DUB,可以进行泛素链限制分析(ubiquitin chain restriction,UbiCRest). 泛素链限制分析是通过使用一系列具有互补的泛素连接特异性的DUB,平行处理泛素化蛋白或者泛素链,然后通过蛋白质印迹进行定性分析泛素链类型或者定量内源泛素化蛋白的一种方[70]. UbiCRest可以快速鉴定泛素链连接类型,因为目前可获得对K11、K48、K63和M1连接具有高度特异性的DUB,所以这些DUB可用于K11、K48、K63和M1泛素链的鉴定. 另外,由于具有泛素连接特异性的DUB在高浓度下,也可以切除其他非特异连接的泛素链,因此该方法需要严格控制DUB浓度等反应条件. 目前泛素链限制分析一般用于分析泛素二聚体,可能难以检测更长的泛素链.

  • 4 泛素链蛋白的获取

    非经典泛素链在体内的丰度较低,在自然状态下难以获得高质量、结构均一的泛素链蛋白. 泛素链蛋白可以用于泛素链结构和特异性识别分子机制的研究,并且从噬菌体库中筛选某一连接泛素链的特异性亲和试剂也需要高质量、结构均一、长度明确的泛素链蛋白作为抗原. 所以非经典泛素链以及杂合泛素链的研究还受限于泛素链蛋白的获取. 虽然通过传统的酶学方法已经获得K48、K63[71,72,73]和K11连接的泛素链,但由于缺乏特异的酶促合成系统,不易获得其他连接、长度明确的泛素链蛋白. 近期蛋白质合成化学的发展为获取各种泛素链蛋白带来了新的机遇. 蛋白质化学合成可以克服蛋白质表达的限制,能够产生预期的设计并且能够在原子尺度精准修饰蛋白质. 自然化学连接[74]以及改进的多肽酰肼连接[75],为化学合成泛素链提供了有效的方法. 通过预合成异肽键连接的泛素异构体,基于多肽酰肼连接法,可以有效地全合成K27连接的泛素链(K27-Ub4)和K11/K48连接的分支泛素[76],并有助于深入研究K27泛素链的结构和特异性识别的分子机[77,78].

  • 5 讨论

    目前已经开发K48、K63、K11、M1和K11/K48连接泛素链的特异性抗体(表1)和K6连接泛素链的Affimer,并用于研究相应类型泛素链的功能. 这些泛素连接特异性抗体已经商业化,在蛋白质印迹、免疫沉淀、免疫荧光显微等方面得到应用,促进了泛素链的深入研究. 目前,还不能精确定义非经典泛素链的功能,尤其是胞内丰度低的K6、K27、K29和K33泛素链,所以开发其余连接泛素链(K6、K27、K29和K33泛素链)特异性抗体等亲和工具对于解析非经典泛素链具有重要的意义. 但是也应该认识到,开发其余泛素连接特异性抗体可能要比已报道的泛素连接特异性抗体难度更大. 因为泛素分子是一个高度保守的小分子质量蛋白质,自然情况下在体内较难产生泛素连接特异性抗体,所以这些特异性抗体的开发主要通过从合成抗体库中使用噬菌体展示技术筛选出某一特异连接泛素链的特异性抗体,然后通过亲和力成熟得到亲和力进一步提高的特异性抗体. 已开发出来的K48、K63、K11、M1连接泛素链特异性抗体,不能区分出同型泛素链和异型泛素链,并且有一定的弱交叉反应性. 另外,K11/K48连接泛素链双特异性抗体不能明确区分杂合和分支泛素链. 已报道的K6连接泛素链特异性的Affimer能以较高亲和力特异性识别K6连接泛素链,但K33连接泛素链特异性的Affimer却对K11连接泛素链有较明显的交叉反应[58]. 虽然不同连接泛素链的构象不同,但有些泛素链的构象相似程度较大,导致所开发的抗体和Affimer不可避免具有一定的交叉反应性. 对于丰度较低的泛素链,所开发的抗体的灵敏度要足够高,才有可能在正常条件下(如非过表达)检测出相应的泛素连接类型. 未来其余连接泛素链的特异性抗体开发应该考虑如何基于抗体结构分析进行亲和力成熟,使用更加合适的筛选条件筛选出更高亲和力和灵敏度的泛素连接特异性抗体.

    Table 1 Ubiquitin chain linkage-specific antibodies表1 泛素连接的特异性抗体

    连接特异性抗体特点应用开发方法(技术)参考文献

    K48连接泛素链特异性抗体

    对K48-diUb的Kd=1.2 nmol/L

    蛋白质印迹、免疫沉淀、免疫荧光、免疫组织化学合成噬菌体抗体库、结构指导亲和力成熟

    [47]

    K63连接泛素链特异性抗体

    对K63-diUb的Kd=6~8 nmol/L

    蛋白质印迹、免疫沉淀、免疫荧光合成噬菌体抗体库、结构指导亲和力成熟

    [47]

    K63连接泛素链特异性单克隆抗体

    WB实验中对高度浓度的Ub有反应

    蛋白质印迹、免疫沉淀、免疫荧光

    杂交瘤技术

    [49]

    K11连接泛素链特异性抗体

    对K11-diUb的Kd=12 nmol/L

    蛋白质印迹、免疫沉淀、免疫荧光合成噬菌体抗体库、结构指导亲和力成熟

    [50]

    M1连接泛素链特异性抗体

    WB实验中对K63连接的泛素链有弱的交叉性;

    IP实验中,使用7 mol/L尿素作为变性剂对M1连接泛素链有最大特异性

    蛋白质印迹、免疫沉淀、免疫荧光

    合成噬菌体抗体库、结构指导亲和力成熟

    [52]

    K11/K48连接泛素链双特异性抗体

    同时识别和结合相邻的K11/ K48连接

    蛋白质印迹、免疫沉淀、免疫荧光、免疫组织化学“knobs-into-holes”异型二聚体技术

    [53]

    目前,非经典泛素链,尤其是在细胞内丰度低的K6、K27、K29和K33泛素链以及异型泛素链的组装、特异性识别和生物学功能正成为研究泛素密码的主要热点内容. 另外,泛素以及泛素链的磷酸化、乙酰化等翻译后修饰以及包括SUMO修饰的类泛素修饰增加了泛素密码的复杂性,针对这些修饰的组装、识别和与之关联的功能研究较少,所以开发出包括抗体在内的特异性识别这些修饰的亲和试剂具有很大意义,如特异性识别S65磷酸化泛素的多克隆抗体,在研究PINK1依赖的泛素磷酸化的生理功能中发挥重要作[79]. 因为目前缺乏检测泛素及泛素链翻译后修饰和类泛素修饰的特异性亲和试剂,所以一般通过质谱鉴定这些泛素修饰.

    对于越来越复杂的泛素密码的解译需要联合使用多种方法和工具,质谱对于泛素链的研究具有深远的意义. 质谱研究泛素信号依赖胰蛋白酶消化,“Bottom-up”质谱可以鉴别2个泛素分子之间的连接类型,但由于胰蛋白酶的充分消化,无法测定泛素链的长度和复杂的结[13,46],“Middle-up”质谱将胰蛋白酶的消化降低到最低程度,可以测定泛素链的长度和复杂泛素链的连接类[80]. 对于近年来相继鉴定的异型泛素链,主要是依靠“Middle-up”质谱进行定性和定量分[81,82]. 但质谱一般只能检测两个相邻K连接的异型泛素链,若要鉴定距离较远的异型泛素链,如K48/K63泛素链,则需要其他方法的辅助才能鉴[17]. 在使用质谱研究泛素链之前,对于从体内得到的裂解物,需要使用泛素或者泛素连接特异性抗体、UBD、DUB等亲和试剂富集某些特定连接泛素链-底物的复合[83],所以可以使用泛素连接特异性抗体结合质谱分析复杂的泛素[81]. 目前对于异型泛素链的认识一般是基于一些酶和底物,但这些异型泛素链是怎么组装,如何被特异性识别,发挥哪些具体功能,又是如何被去组装仍然需要研究清楚,因此开发异型泛素链的特异性抗体等亲和工具对于解析复杂的异型泛素链同样具有深远的意义.

    Tel: 86-21-34205430, E-mail: bozhao@sjtu. edu. cn

  • 参考文献

    • 1

      Hershko A, Ciechanover A. The ubiquitin system. Annual Review of Biochemistry, 1998, 67(1): 425-479

    • 2

      方帅, 赵博. 泛素化及相关疾病研究进展. 生物化学与生物物理进展, 2017, 44(5): 377-384

      Fang S, Zhao B. Progress in Biochemistry and Biophysics, 2017, 44(5): 377-384

    • 3

      Yogesh K, David K. Atypical ubiquitylation-the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nature Reviews Molecular Cell Biology, 2012, 13(8): 508-523

    • 4

      Akutsu M, Dikic I, Bremm A. Ubiquitin chain diversity at a glance. Journal of Cell Science, 2016, 129(5): 875-880

    • 5

      Volk S, Wang M, Pickart C M. Chemical and genetic strategies for manipulating polyubiquitin chain structure. Methods in Enzymology, 2005, 399(399): 3-20

    • 6

      Wang C, Deng L, Hong M, et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature, 2001, 412(6844): 346-351

    • 7

      Wu T, Merbl Y, Huo Y, et al. UBE2S drives elongation of K11-linked ubiquitin chains by the Anaphase-Promoting Complex. Proc Natl Acad Sci USA, 2010, 107(4): 1355-1360

    • 8

      Hong J H, Ng D, Srikumar T, et al. The use of ubiquitin lysine mutants to characterize E2-E3 linkage specificity: mass spectrometry offers a cautionary "tail". Proteomics, 2015, 15(17): 2910-2915

    • 9

      Turner T, Shao Q, Wang W, et al. Differential contributions of ubiquitin-modified APOBEC3G lysine residues to HIV-1 Vif-induced degradation. Journal of Molecular Biology, 2016, 428(17): 3529-3539

    • 10

      Masahiro F, Tadashi N, Yasuyuki N, et al. Involvement of polyubiquitin chains via specific chain linkages in stress response in mammalian cells. Biological & Pharmaceutical Bulletin, 2005, 28(12): 2315-2318

    • 11

      Ping X, Duong D M, Seyfried N T, et al. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell, 2009, 137(1): 133-145

    • 12

      Beaudette P, Popp O, Dittmar G. Proteomic techniques to probe the ubiquitin landscape. Proteomics, 2016, 16(2): 273-287

    • 13

      Ordureau A, Münch C, Harper J W. Quantifying ubiquitin signaling. Molecular Cell, 2015, 58(4): 660-676

    • 14

      Cannon J R, Kirby M F, Robotham S A, et al. Top-down 193-nm ultraviolet photodissociation mass spectrometry for simultaneous determination of polyubiquitin chain length and topology. Analytical Chemistry, 2015, 87(3): 1812-1820

    • 15

      Kliza K, Taumer C, Pinzuti I, et al. Internally tagged ubiquitin: a tool to identify linear polyubiquitin-modified proteins by mass spectrometry. Nature Methods, 2017, 14(5): 504-512

    • 16

      Meyer H J, Rape M. Enhanced protein degradation by branched ubiquitin chains. Cell, 2014, 157(4): 910-921

    • 17

      Ohtake F, Saeki Y, Ishido S, et al. The K48-K63 branched ubiquitin chain regulates NF-κB signaling. Molecular Cell, 2016, 64(2): 251-266

    • 18

      Swatek K N, Komander D. Ubiquitin modifications. Cell Research, 2016, 26(4): 399-422

    • 19

      Komander D, Rape M. The ubiquitin code. Annual Review of Biochemistry, 2012, 81(7): 203-229

    • 20

      Mevissen T E T, Komander D. Mechanisms of deubiquitinase specificity and regulation. Annual Review of Biochemistry, 2017, 86:159-192

    • 21

      Zheng N, Shabek N. Ubiquitin ligases: structure, function, and regulation. Annual Review of Biochemistry, 2017, 86(1): 129-157

    • 22

      Herhaus L, Dikic I. Expanding the ubiquitin code through post-translational modification. EMBO Reports, 2015, 16(9): 1071-1083

    • 23

      Koyano F, Okatsu K, Kosako H, et al. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature, 2014, 510(7503): 162-166

    • 24

      Kane L A, Lazarou M, Fogel A I, et al. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. The Journal of Cell Biology, 2014, 205(2): 143-153

    • 25

      Kazlauskaite A, Kondapalli C, Gourlay R, et al. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. The Biochemical Journal, 2014, 460(1): 127-139

    • 26

      Wauer T, Swatek K N, Wagstaff J L, et al. Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis. The EMBO Journal, 2015, 34(3): 307-325

    • 27

      Choudhary C, Kumar C, Gnad F, et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science, 2009, 325(5942): 834-840

    • 28

      Ohtake F, Saeki Y, Sakamoto K, et al. Ubiquitin acetylation inhibits polyubiquitin chain elongation. EMBO Reports, 2015, 16(2): 192-201

    • 29

      Yau R, Rape M. The increasing complexity of the ubiquitin code. Nature Cell Biology, 2016, 18(6): 579-586

    • 30

      Dwane L, Gallagher W M, Ní C T, et al. The emerging role of non-traditional ubiquitination in oncogenic pathways. Journal of Biological Chemistry, 2017, 292(9): 3543-3551

    • 31

      Wickliffe K E, Williamson A, Meyer H J, et al. K11-linked ubiquitin chains as novel regulators of cell division. Trends in Cell Biology, 2011, 21(11): 656-663

    • 32

      Chen Z J. Ubiquitin signaling in the NF-κB pathway. Nature Cell Biology, 2005, 7(8): 758-765

    • 33

      Deng L, Wang C, Spencer E, et al. Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell, 2000, 103(2): 351-361

    • 34

      Iwai K, Fujita H, Sasaki Y. Linear ubiquitin chains: NF-κB signalling, cell death and beyond. Nature Reviews Molecular Cell Biology, 2014, 15(8): 503-508

    • 35

      Bremm A, Komander D. Emerging roles for Lys11-linked polyubiquitin in cellular regulation. Trends in Biochemical Sciences, 2011, 36(7): 355-363

    • 36

      Durcan T M, Tang M Y, Pérusse J L R, et al. USP8 regulates mitophagy by removing K6-linked ubiquitin conjugates from parkin. The EMBO Journal, 2015, 33(21): 2473-2491

    • 37

      Gatti M, Pinato S, Maiolica A, et al. RNF168 promotes noncanonical K27 ubiquitination to signal DNA damage. Cell Reports, 2015, 10(2): 226-238

    • 38

      Nucifora F C, Nucifora L G, Ng C-H, et al. Ubiqutination via K27 and K29 chains signals aggregation and neuronal protection of LRRK2 by WSB1. Nature Communications, 2016, 7:11792

    • 39

      Liu H, Zhang L, Sun J, et al. Endoplasmic reticulum protein SCAP inhibits dengue virus NS2B3 protease by suppressing its k27-linked polyubiquitylation. Journal of Virology, 2017, 92(9): e02234-16

    • 40

      Liu J, Han C, Xie B, et al. Rhbdd3 controls autoimmunity by suppressing the production of IL-6 by dendritic cells via K27-linked ubiquitination of the regulator NEMO. Nature Immunology, 2014, 15(7): 612-622

    • 41

      Yuan W-C, Lee Y-R, Lin S-Y, et al. K33-linked polyubiquitination of coronin 7 by Cul3-KLHL20 ubiquitin E3 ligase regulates protein trafficking. Molecular Cell, 2014, 54(4): 586-600

    • 42

      Stolz A, Dikic I. Heterotypic ubiquitin chains: seeing is believing. Trends in Cell Biology, 2018, 28(1): 1-3

    • 43

      Emmerich C H, Alban O, Sam S, et al. Activation of the canonical IKK complex by K63/M1-linked hybrid ubiquitin chains. Proc Natl Acad Sci USA, 2013, 110(38): 15247-15252

    • 44

      Liu C, Liu W, Ye Y, et al. Ufd2p synthesizes branched ubiquitin chains to promote the degradation of substrates modified with atypical chains. Nature Communications, 2017, 8:14274

    • 45

      Ohtake F, Tsuchiya H, Saeki Y, et al. K63 ubiquitylation triggers proteasomal degradation by seeding branched ubiquitin chains. Proc Natl Acad Sci, 2018, 115(7): E1401-E1408

    • 46

      Ohtake F, Tsuchiya H. The emerging complexity of ubiquitin architecture. Journal of Biochemistry, 2016, 161(2): 125-133

    • 47

      Newton K, Matsumoto M L, Wertz I E, et al. Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies. Cell, 2008, 134(4): 668-678

    • 48

      Fellouse F A, Esaki K, Birtalan S, et al. High-throughput generation of synthetic antibodies from highly functional minimalist phage-displayed libraries. Journal of Molecular Biology, 2007, 373(4): 924-940

    • 49

      Wang H, Matsuzawa A, Brown S A, et al. Analysis of nondegradative protein ubiquitylation with a monoclonal antibody specific for lysine-63-linked polyubiquitin. Proc Natl Acad Sci USA, 2008, 105(51): 20197-20202

    • 50

      Matsumoto M L, Wickliffe K E, Dong K C, et al. K11-linked polyubiquitination in cell cycle control revealed by a K11 linkage-specific antibody. Molecular Cell, 2010, 39(3): 477-484

    • 51

      Lee C V, Liang W C, Dennis M S, et al. High-affinity human antibodies from phage-displayed synthetic Fab libraries with a single framework scaffold. Journal of Molecular Biology, 2004, 340(5): 1073-1093

    • 52

      Matsumoto M L, Dong K C, Yu C, et al. Engineering and structural characterization of a linear polyubiquitin-specific antibody. Journal of Molecular Biology, 2012, 418(3-4): 134-144

    • 53

      Yau R G, Doerner K, Castellanos E R, et al. Assembly and function of heterotypic ubiquitin chains in cell-cycle and protein quality control. Cell, 2017, 171(4): 918-933

    • 54

      Merchant A M, Zhu Z, Yuan J Q, et al. An efficient route to human bispecific IgG. Nature Biotechnology, 1998, 16(7): 677-681

    • 55

      Christian T, Tang A a S, Deacon S E, et al. Adhiron: a stable and versatile peptide display scaffold for molecular recognition applications. Protein Engineering Design & Selection Peds, 2014, 27(5): 145-155

    • 56

      Kyle S. Affimer proteins: theranostics of the future? Trends in Biochemical Sciences, 2018, 43(4): 230-232.

    • 57

      Tiede C, Bedford R, Heseltine S J, et al. Affimer proteins are versatile and renewable affinity reagents. eLife, 2017, 6. pii:24903

    • 58

      Michel M A, Swatek K N, Hospenthal M K, et al. Ubiquitin linkage-specific affimers reveal insights into K6-linked ubiquitin signaling. Molecular Cell, 2017, 681): 233-246(e5)

    • 59

      Hughes D J, Tiede C, Penswick N, et al. Generation of specific inhibitors of SUMO-1-and SUMO-2/3-mediated protein-protein interactions using Affimer (Adhiron) technology. Science Signaling, 2017, 10(505). pii: eaaj2005

    • 60

      Muyldermans S. Nanobodies: natural single-domain antibodies. Annual Review of Biochemistry, 2013, 82:775-797

    • 61

      Helma J, Cardoso M C, Muyldermans S, et al. Nanobodies and recombinant binders in cell biology. The Journal of Cell Biology, 2015, 209(5): 633-644

    • 62

      De Meyer T, Muyldermans S, Depicker A. Nanobody-based products as research and diagnostic tools. Trends in Biotechnology, 2014, 32(5): 263-270

    • 63

      Chakravarty R, Goel S, Cai W. Nanobody: the "magic bullet" for molecular imaging? Theranostics, 2014, 4(4): 386-398

    • 64

      Komander D. The emerging complexity of protein ubiquitination. Biochemical Society Transactions, 2009, 37(5): 937-953

    • 65

      Hicke L, Schubert H L, Hill C P. Ubiquitin-binding domains. Nature Reviews Molecular Cell Biology, 2005, 6(8): 610-621

    • 66

      Husnjak K, Dikic I. Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annual Review of Biochemistry, 2012, 81:291-322

    • 67

      Sims J J, Scavone F, Cooper E M, et al. Polyubiquitin-sensor proteins reveal localization and linkage-type dependence of cellular ubiquitin signaling. Nature Methods, 2012, 9(3): 303-309

    • 68

      Van Wijk S J, Fiskin E, Putyrski M, et al. Fluorescence-based sensors to monitor localization and functions of linear and K63-linked ubiquitin chains in cells. Molecular Cell, 2012, 47(5): 797-809

    • 69

      Mevissen T E, Hospenthal M K, Geurink P P, et al. OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis. Cell, 2013, 154(1): 169-184

    • 70

      Hospenthal M K, Mevissen T E T, Komander D. Deubiquitinase-based analysis of ubiquitin chain architecture using Ubiquitin Chain Restriction (UbiCRest). Nature Protocols, 2015, 10(2): 349-361

    • 71

      Pickart C M, Raasi S. Controlled synthesis of polyubiquitin chains. Methods in Enzymology, 2005, 399:21-36

    • 72

      Komander D, Lord C J, Scheel H, et al. The structure of the CYLD USP domain explains its specificity for Lys63-linked polyubiquitin and reveals a B box module. Molecular Cell, 2008, 29(4): 451-464

    • 73

      Trempe J F, Brown N R, Lowe E D, et al. Mechanism of Lys48-linked polyubiquitin chain recognition by the Mud1 UBA domain. The EMBO Journal, 2005, 24(18): 3178-3189

    • 74

      Dawson P E, Muir T W, Clark-Lewis I, et al. Synthesis of proteins by native chemical ligation. Science, 1994, 266(5186): 776-779

    • 75

      Fang G M, Li Y M, Shen F, et al. Protein chemical synthesis by ligation of peptide hydrazides. Angewandte Chemie, 2011, 50(33): 7645-7649

    • 76

      Tang S, Liang L J, Si Y Y, et al. Practical chemical synthesis of atypical ubiquitin chains by using an isopeptide-linked Ub isomer. Angewandte Chemie, 2017, 56(43): 13333-13337

    • 77

      Pan M, Gao S, Zheng Y, et al. Quasi-racemic X-ray structures of K27-linked ubiquitin chains prepared by total chemical synthesis. Journal of the American Chemical Society, 2016, 138(23): 7429-7435

    • 78

      Pan M, Zheng Q, Ding S, et al. Chemical protein synthesis enabled mechanistic studies on the molecular recognition of K27-linked ubiquitin chains. Angewandte Chemie, 2019, 58(9): 2627-2631

    • 79

      Fiesel F C, Ando M, Hudec R, et al. (Patho-)physiological relevance of PINK1-dependent ubiquitin phosphorylation. EMBO Reports, 2015, 16(9): 1114-1130

    • 80

      Ping X, Junmin P. Characterization of polyubiquitin chain structure by middle-down mass spectrometry. Analytical Chemistry, 2008, 80(9): 3438-3444

    • 81

      Asjb R, Ge Y, Strieter E R. Ubiquitin chain enrichment middle-down mass spectrometry (UbiChEM-MS) reveals cell-cycle dependent formation of Lys11/Lys48 branched ubiquitin chains. Journal of Proteome Research, 2017, 16(9): 3363-3369

    • 82

      Valkevich E M, Sanchez N A, Ying G, et al. Middle-down mass spectrometry enables characterization of branched ubiquitin chains. Biochemistry, 2014, 53(30): 4979-4989

    • 83

      Low T Y, Magliozzi R, Guardavaccaro D, et al. Unraveling the ubiquitin-regulated signaling networks by mass spectrometry-based proteomics. Proteomics, 2013, 13(3-4): 526-537

李贞

机 构:上海交通大学细胞工程和抗体药物教育部工程研究中心,上海交通大学药学院,上海 200240

Affiliation:Engineering Research Center of Cell and Therapeutic Antibody Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China

赵博

机 构:上海交通大学细胞工程和抗体药物教育部工程研究中心,上海交通大学药学院,上海 200240

Affiliation:Engineering Research Center of Cell and Therapeutic Antibody Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China

角 色:通讯作者

Role:Corresponding author

html/pibbcn/20190040/alternativeImage/68b70332-bd87-4c78-b34b-b2d35e98efb3-F001.png
html/pibbcn/20190040/alternativeImage/68b70332-bd87-4c78-b34b-b2d35e98efb3-F002.png
连接特异性抗体特点应用开发方法(技术)参考文献

K48连接泛素链特异性抗体

对K48-diUb的Kd=1.2 nmol/L

蛋白质印迹、免疫沉淀、免疫荧光、免疫组织化学合成噬菌体抗体库、结构指导亲和力成熟

[47]

K63连接泛素链特异性抗体

对K63-diUb的Kd=6~8 nmol/L

蛋白质印迹、免疫沉淀、免疫荧光合成噬菌体抗体库、结构指导亲和力成熟

[47]

K63连接泛素链特异性单克隆抗体

WB实验中对高度浓度的Ub有反应

蛋白质印迹、免疫沉淀、免疫荧光

杂交瘤技术

[49]

K11连接泛素链特异性抗体

对K11-diUb的Kd=12 nmol/L

蛋白质印迹、免疫沉淀、免疫荧光合成噬菌体抗体库、结构指导亲和力成熟

[50]

M1连接泛素链特异性抗体

WB实验中对K63连接的泛素链有弱的交叉性;

IP实验中,使用7 mol/L尿素作为变性剂对M1连接泛素链有最大特异性

蛋白质印迹、免疫沉淀、免疫荧光

合成噬菌体抗体库、结构指导亲和力成熟

[52]

K11/K48连接泛素链双特异性抗体

同时识别和结合相邻的K11/ K48连接

蛋白质印迹、免疫沉淀、免疫荧光、免疫组织化学“knobs-into-holes”异型二聚体技术

[53]

图1 泛素分子上可形成泛素链的8个位点(PDB: 1ubq, 使用PyMOL软件分析)

Fig. 1 8 sites forming ubiquitin chains in ubquitin

图2 泛素链类型

Fig. 2 Types of ubiquitin chains

Table 1 Ubiquitin chain linkage-specific antibodies表1 泛素连接的特异性抗体

image /

无注解

(a)同型泛素链;(b)混合泛素链;(c)分支泛素链.

无注解

  • 参考文献

    • 1

      Hershko A, Ciechanover A. The ubiquitin system. Annual Review of Biochemistry, 1998, 67(1): 425-479

    • 2

      方帅, 赵博. 泛素化及相关疾病研究进展. 生物化学与生物物理进展, 2017, 44(5): 377-384

      Fang S, Zhao B. Progress in Biochemistry and Biophysics, 2017, 44(5): 377-384

    • 3

      Yogesh K, David K. Atypical ubiquitylation-the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nature Reviews Molecular Cell Biology, 2012, 13(8): 508-523

    • 4

      Akutsu M, Dikic I, Bremm A. Ubiquitin chain diversity at a glance. Journal of Cell Science, 2016, 129(5): 875-880

    • 5

      Volk S, Wang M, Pickart C M. Chemical and genetic strategies for manipulating polyubiquitin chain structure. Methods in Enzymology, 2005, 399(399): 3-20

    • 6

      Wang C, Deng L, Hong M, et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature, 2001, 412(6844): 346-351

    • 7

      Wu T, Merbl Y, Huo Y, et al. UBE2S drives elongation of K11-linked ubiquitin chains by the Anaphase-Promoting Complex. Proc Natl Acad Sci USA, 2010, 107(4): 1355-1360

    • 8

      Hong J H, Ng D, Srikumar T, et al. The use of ubiquitin lysine mutants to characterize E2-E3 linkage specificity: mass spectrometry offers a cautionary "tail". Proteomics, 2015, 15(17): 2910-2915

    • 9

      Turner T, Shao Q, Wang W, et al. Differential contributions of ubiquitin-modified APOBEC3G lysine residues to HIV-1 Vif-induced degradation. Journal of Molecular Biology, 2016, 428(17): 3529-3539

    • 10

      Masahiro F, Tadashi N, Yasuyuki N, et al. Involvement of polyubiquitin chains via specific chain linkages in stress response in mammalian cells. Biological & Pharmaceutical Bulletin, 2005, 28(12): 2315-2318

    • 11

      Ping X, Duong D M, Seyfried N T, et al. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell, 2009, 137(1): 133-145

    • 12

      Beaudette P, Popp O, Dittmar G. Proteomic techniques to probe the ubiquitin landscape. Proteomics, 2016, 16(2): 273-287

    • 13

      Ordureau A, Münch C, Harper J W. Quantifying ubiquitin signaling. Molecular Cell, 2015, 58(4): 660-676

    • 14

      Cannon J R, Kirby M F, Robotham S A, et al. Top-down 193-nm ultraviolet photodissociation mass spectrometry for simultaneous determination of polyubiquitin chain length and topology. Analytical Chemistry, 2015, 87(3): 1812-1820

    • 15

      Kliza K, Taumer C, Pinzuti I, et al. Internally tagged ubiquitin: a tool to identify linear polyubiquitin-modified proteins by mass spectrometry. Nature Methods, 2017, 14(5): 504-512

    • 16

      Meyer H J, Rape M. Enhanced protein degradation by branched ubiquitin chains. Cell, 2014, 157(4): 910-921

    • 17

      Ohtake F, Saeki Y, Ishido S, et al. The K48-K63 branched ubiquitin chain regulates NF-κB signaling. Molecular Cell, 2016, 64(2): 251-266

    • 18

      Swatek K N, Komander D. Ubiquitin modifications. Cell Research, 2016, 26(4): 399-422

    • 19

      Komander D, Rape M. The ubiquitin code. Annual Review of Biochemistry, 2012, 81(7): 203-229

    • 20

      Mevissen T E T, Komander D. Mechanisms of deubiquitinase specificity and regulation. Annual Review of Biochemistry, 2017, 86:159-192

    • 21

      Zheng N, Shabek N. Ubiquitin ligases: structure, function, and regulation. Annual Review of Biochemistry, 2017, 86(1): 129-157

    • 22

      Herhaus L, Dikic I. Expanding the ubiquitin code through post-translational modification. EMBO Reports, 2015, 16(9): 1071-1083

    • 23

      Koyano F, Okatsu K, Kosako H, et al. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature, 2014, 510(7503): 162-166

    • 24

      Kane L A, Lazarou M, Fogel A I, et al. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. The Journal of Cell Biology, 2014, 205(2): 143-153

    • 25

      Kazlauskaite A, Kondapalli C, Gourlay R, et al. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. The Biochemical Journal, 2014, 460(1): 127-139

    • 26

      Wauer T, Swatek K N, Wagstaff J L, et al. Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis. The EMBO Journal, 2015, 34(3): 307-325

    • 27

      Choudhary C, Kumar C, Gnad F, et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science, 2009, 325(5942): 834-840

    • 28

      Ohtake F, Saeki Y, Sakamoto K, et al. Ubiquitin acetylation inhibits polyubiquitin chain elongation. EMBO Reports, 2015, 16(2): 192-201

    • 29

      Yau R, Rape M. The increasing complexity of the ubiquitin code. Nature Cell Biology, 2016, 18(6): 579-586

    • 30

      Dwane L, Gallagher W M, Ní C T, et al. The emerging role of non-traditional ubiquitination in oncogenic pathways. Journal of Biological Chemistry, 2017, 292(9): 3543-3551

    • 31

      Wickliffe K E, Williamson A, Meyer H J, et al. K11-linked ubiquitin chains as novel regulators of cell division. Trends in Cell Biology, 2011, 21(11): 656-663

    • 32

      Chen Z J. Ubiquitin signaling in the NF-κB pathway. Nature Cell Biology, 2005, 7(8): 758-765

    • 33

      Deng L, Wang C, Spencer E, et al. Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell, 2000, 103(2): 351-361

    • 34

      Iwai K, Fujita H, Sasaki Y. Linear ubiquitin chains: NF-κB signalling, cell death and beyond. Nature Reviews Molecular Cell Biology, 2014, 15(8): 503-508

    • 35

      Bremm A, Komander D. Emerging roles for Lys11-linked polyubiquitin in cellular regulation. Trends in Biochemical Sciences, 2011, 36(7): 355-363

    • 36

      Durcan T M, Tang M Y, Pérusse J L R, et al. USP8 regulates mitophagy by removing K6-linked ubiquitin conjugates from parkin. The EMBO Journal, 2015, 33(21): 2473-2491

    • 37

      Gatti M, Pinato S, Maiolica A, et al. RNF168 promotes noncanonical K27 ubiquitination to signal DNA damage. Cell Reports, 2015, 10(2): 226-238

    • 38

      Nucifora F C, Nucifora L G, Ng C-H, et al. Ubiqutination via K27 and K29 chains signals aggregation and neuronal protection of LRRK2 by WSB1. Nature Communications, 2016, 7:11792

    • 39

      Liu H, Zhang L, Sun J, et al. Endoplasmic reticulum protein SCAP inhibits dengue virus NS2B3 protease by suppressing its k27-linked polyubiquitylation. Journal of Virology, 2017, 92(9): e02234-16

    • 40

      Liu J, Han C, Xie B, et al. Rhbdd3 controls autoimmunity by suppressing the production of IL-6 by dendritic cells via K27-linked ubiquitination of the regulator NEMO. Nature Immunology, 2014, 15(7): 612-622

    • 41

      Yuan W-C, Lee Y-R, Lin S-Y, et al. K33-linked polyubiquitination of coronin 7 by Cul3-KLHL20 ubiquitin E3 ligase regulates protein trafficking. Molecular Cell, 2014, 54(4): 586-600

    • 42

      Stolz A, Dikic I. Heterotypic ubiquitin chains: seeing is believing. Trends in Cell Biology, 2018, 28(1): 1-3

    • 43

      Emmerich C H, Alban O, Sam S, et al. Activation of the canonical IKK complex by K63/M1-linked hybrid ubiquitin chains. Proc Natl Acad Sci USA, 2013, 110(38): 15247-15252

    • 44

      Liu C, Liu W, Ye Y, et al. Ufd2p synthesizes branched ubiquitin chains to promote the degradation of substrates modified with atypical chains. Nature Communications, 2017, 8:14274

    • 45

      Ohtake F, Tsuchiya H, Saeki Y, et al. K63 ubiquitylation triggers proteasomal degradation by seeding branched ubiquitin chains. Proc Natl Acad Sci, 2018, 115(7): E1401-E1408

    • 46

      Ohtake F, Tsuchiya H. The emerging complexity of ubiquitin architecture. Journal of Biochemistry, 2016, 161(2): 125-133

    • 47

      Newton K, Matsumoto M L, Wertz I E, et al. Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies. Cell, 2008, 134(4): 668-678

    • 48

      Fellouse F A, Esaki K, Birtalan S, et al. High-throughput generation of synthetic antibodies from highly functional minimalist phage-displayed libraries. Journal of Molecular Biology, 2007, 373(4): 924-940

    • 49

      Wang H, Matsuzawa A, Brown S A, et al. Analysis of nondegradative protein ubiquitylation with a monoclonal antibody specific for lysine-63-linked polyubiquitin. Proc Natl Acad Sci USA, 2008, 105(51): 20197-20202

    • 50

      Matsumoto M L, Wickliffe K E, Dong K C, et al. K11-linked polyubiquitination in cell cycle control revealed by a K11 linkage-specific antibody. Molecular Cell, 2010, 39(3): 477-484

    • 51

      Lee C V, Liang W C, Dennis M S, et al. High-affinity human antibodies from phage-displayed synthetic Fab libraries with a single framework scaffold. Journal of Molecular Biology, 2004, 340(5): 1073-1093

    • 52

      Matsumoto M L, Dong K C, Yu C, et al. Engineering and structural characterization of a linear polyubiquitin-specific antibody. Journal of Molecular Biology, 2012, 418(3-4): 134-144

    • 53

      Yau R G, Doerner K, Castellanos E R, et al. Assembly and function of heterotypic ubiquitin chains in cell-cycle and protein quality control. Cell, 2017, 171(4): 918-933

    • 54

      Merchant A M, Zhu Z, Yuan J Q, et al. An efficient route to human bispecific IgG. Nature Biotechnology, 1998, 16(7): 677-681

    • 55

      Christian T, Tang A a S, Deacon S E, et al. Adhiron: a stable and versatile peptide display scaffold for molecular recognition applications. Protein Engineering Design & Selection Peds, 2014, 27(5): 145-155

    • 56

      Kyle S. Affimer proteins: theranostics of the future? Trends in Biochemical Sciences, 2018, 43(4): 230-232.

    • 57

      Tiede C, Bedford R, Heseltine S J, et al. Affimer proteins are versatile and renewable affinity reagents. eLife, 2017, 6. pii:24903

    • 58

      Michel M A, Swatek K N, Hospenthal M K, et al. Ubiquitin linkage-specific affimers reveal insights into K6-linked ubiquitin signaling. Molecular Cell, 2017, 681): 233-246(e5)

    • 59

      Hughes D J, Tiede C, Penswick N, et al. Generation of specific inhibitors of SUMO-1-and SUMO-2/3-mediated protein-protein interactions using Affimer (Adhiron) technology. Science Signaling, 2017, 10(505). pii: eaaj2005

    • 60

      Muyldermans S. Nanobodies: natural single-domain antibodies. Annual Review of Biochemistry, 2013, 82:775-797

    • 61

      Helma J, Cardoso M C, Muyldermans S, et al. Nanobodies and recombinant binders in cell biology. The Journal of Cell Biology, 2015, 209(5): 633-644

    • 62

      De Meyer T, Muyldermans S, Depicker A. Nanobody-based products as research and diagnostic tools. Trends in Biotechnology, 2014, 32(5): 263-270

    • 63

      Chakravarty R, Goel S, Cai W. Nanobody: the "magic bullet" for molecular imaging? Theranostics, 2014, 4(4): 386-398

    • 64

      Komander D. The emerging complexity of protein ubiquitination. Biochemical Society Transactions, 2009, 37(5): 937-953

    • 65

      Hicke L, Schubert H L, Hill C P. Ubiquitin-binding domains. Nature Reviews Molecular Cell Biology, 2005, 6(8): 610-621

    • 66

      Husnjak K, Dikic I. Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annual Review of Biochemistry, 2012, 81:291-322

    • 67

      Sims J J, Scavone F, Cooper E M, et al. Polyubiquitin-sensor proteins reveal localization and linkage-type dependence of cellular ubiquitin signaling. Nature Methods, 2012, 9(3): 303-309

    • 68

      Van Wijk S J, Fiskin E, Putyrski M, et al. Fluorescence-based sensors to monitor localization and functions of linear and K63-linked ubiquitin chains in cells. Molecular Cell, 2012, 47(5): 797-809

    • 69

      Mevissen T E, Hospenthal M K, Geurink P P, et al. OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis. Cell, 2013, 154(1): 169-184

    • 70

      Hospenthal M K, Mevissen T E T, Komander D. Deubiquitinase-based analysis of ubiquitin chain architecture using Ubiquitin Chain Restriction (UbiCRest). Nature Protocols, 2015, 10(2): 349-361

    • 71

      Pickart C M, Raasi S. Controlled synthesis of polyubiquitin chains. Methods in Enzymology, 2005, 399:21-36

    • 72

      Komander D, Lord C J, Scheel H, et al. The structure of the CYLD USP domain explains its specificity for Lys63-linked polyubiquitin and reveals a B box module. Molecular Cell, 2008, 29(4): 451-464

    • 73

      Trempe J F, Brown N R, Lowe E D, et al. Mechanism of Lys48-linked polyubiquitin chain recognition by the Mud1 UBA domain. The EMBO Journal, 2005, 24(18): 3178-3189

    • 74

      Dawson P E, Muir T W, Clark-Lewis I, et al. Synthesis of proteins by native chemical ligation. Science, 1994, 266(5186): 776-779

    • 75

      Fang G M, Li Y M, Shen F, et al. Protein chemical synthesis by ligation of peptide hydrazides. Angewandte Chemie, 2011, 50(33): 7645-7649

    • 76

      Tang S, Liang L J, Si Y Y, et al. Practical chemical synthesis of atypical ubiquitin chains by using an isopeptide-linked Ub isomer. Angewandte Chemie, 2017, 56(43): 13333-13337

    • 77

      Pan M, Gao S, Zheng Y, et al. Quasi-racemic X-ray structures of K27-linked ubiquitin chains prepared by total chemical synthesis. Journal of the American Chemical Society, 2016, 138(23): 7429-7435

    • 78

      Pan M, Zheng Q, Ding S, et al. Chemical protein synthesis enabled mechanistic studies on the molecular recognition of K27-linked ubiquitin chains. Angewandte Chemie, 2019, 58(9): 2627-2631

    • 79

      Fiesel F C, Ando M, Hudec R, et al. (Patho-)physiological relevance of PINK1-dependent ubiquitin phosphorylation. EMBO Reports, 2015, 16(9): 1114-1130

    • 80

      Ping X, Junmin P. Characterization of polyubiquitin chain structure by middle-down mass spectrometry. Analytical Chemistry, 2008, 80(9): 3438-3444

    • 81

      Asjb R, Ge Y, Strieter E R. Ubiquitin chain enrichment middle-down mass spectrometry (UbiChEM-MS) reveals cell-cycle dependent formation of Lys11/Lys48 branched ubiquitin chains. Journal of Proteome Research, 2017, 16(9): 3363-3369

    • 82

      Valkevich E M, Sanchez N A, Ying G, et al. Middle-down mass spectrometry enables characterization of branched ubiquitin chains. Biochemistry, 2014, 53(30): 4979-4989

    • 83

      Low T Y, Magliozzi R, Guardavaccaro D, et al. Unraveling the ubiquitin-regulated signaling networks by mass spectrometry-based proteomics. Proteomics, 2013, 13(3-4): 526-537