en
×

分享给微信好友或者朋友圈

使用微信“扫一扫”功能。
参考文献 1
SelkoeD J. Amyloid beta-protein and the genetics of Alzheimer's disease. The Journal of Biological Chemistry, 1996, 271(31): 18295-18298
参考文献 2
JanA T, AzamM, RahmanS, et al. Perspective insights into disease progression, diagnostics, and therapeutic approaches in Alzheimer's disease: a judicious update. Frontiers in Aging Neuroscience, 2017, 9: 356
参考文献 3
LaneD J R, AytonS, BushA I. Iron and Alzheimer's disease: an update on emerging mechanisms. Journal of Alzheimer's Disease : JAD, 2018, 64(s1): S379-S395
参考文献 4
ThompsonK J, ShohamS, ConnorJ R. Iron and neurodegenerative disorders. Brain Research Bulletin, 2001, 55(2): 155-164
参考文献 5
ConnorJ R, MenziesS L. Relationship of iron to oligodendrocytes and myelination. Glia, 1996, 17(2): 83-93
参考文献 6
TodorichB, PasquiniJ M, GarciaC I, et al. Oligodendrocytes and myelination: the role of iron. Glia, 2009, 57(5): 467-478
参考文献 7
GeorgieffM K. Iron assessment to protect the developing brain. The American Journal Of Clinical Nutrition, 2017, 106(Suppl 6): 1588S-1593S
参考文献 8
AshrafA, ClarkM, SoP W. The aging of iron man. Frontiers in Aging Neuroscience, 2018, 10: 65.
参考文献 9
MillsE, DongX P, WangF, et al. Mechanisms of brain iron transport: insight into neurodegeneration and CNS disorders. Future Medicinal Chemistry, 2010, 2(1): 51-64
参考文献 10
MccarthyR C, KosmanD J. Iron transport across the blood-brain barrier: development, neurovascular regulation and cerebral amyloid angiopathy. Cellular and Molecular Life Sciences : CMLS, 2015, 72(4): 709-727
参考文献 11
RouaultT A. Post-transcriptional regulation of human iron metabolism by iron regulatory proteins. Blood Cells, Molecules & Diseases, 2002, 29(3): 309-314
参考文献 12
MccarthyR C, KosmanD J. Mechanisms and regulation of iron trafficking across the capillary endothelial cells of the blood-brain barrier. Frontiers in Molecular Neuroscience, 2015, 8:31
参考文献 13
NemethE, TuttleM S, PowelsonJ, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science, 2004, 306(5704): 2090-2093
参考文献 14
WangS M, FuL J, DuanX L, et al. Role of hepcidin in murine brain iron metabolism. Cellular and Molecular Life Sciences : CMLS, 2010, 67(1): 123-133
参考文献 15
YouL H, YanC Z, ZhengB J, et al. Astrocyte hepcidin is a key factor in LPS-induced neuronal apoptosis. Cell Death & Disease, 2017, 8(3): e2676
参考文献 16
ConnorJ R, MenziesS L, St MartinS M, et al. A histochemical study of iron, transferrin, and ferritin in Alzheimer's diseased brains. Journal of Neuroscience Research, 1992, 31(1): 75-83
参考文献 17
AntharamV, CollingwoodJ F, BullivantJ P, et al. High field magnetic resonance microscopy of the human hippocampus in Alzheimer's disease: quantitative imaging and correlation with iron. NeuroImage, 2012, 59(2): 1249-1260
参考文献 18
MeadowcroftM D, ConnorJ R, SmithM B, et al. MRI and histological analysis of beta-amyloid plaques in both human Alzheimer's disease and APP/PS1 transgenic mice. Journal of Magnetic Resonance Imaging : JMRI, 2009, 29(5): 997-1007
参考文献 19
AytonS, LeiP, BushA I. Biometals and their therapeutic implications in Alzheimer's disease. Neurotherapeutics : the Journal of the American Society for Experimental NeuroTherapeutics, 2015, 12(1): 109-120
参考文献 20
LilligC H, BerndtC, HolmgrenA. Glutaredoxin systems. Biochimica et Biophysica Acta, 2008, 1780(11): 1304-1317
参考文献 21
MackenzieE L, IwasakiK, TsujiY. Intracellular iron transport and storage: from molecular mechanisms to health implications. Antioxidants & Redox Signaling, 2008, 10(6): 997-1030
参考文献 22
BushA I. Metals and neuroscience. Current Opinion in Chemical Biology, 2000, 4(2): 184-191
参考文献 23
SalvadorG A, UrangaR M, GiustoN M. Iron and mechanisms of neurotoxicity. International Journal of Alzheimer's Disease, 2010, 2011: 720658
参考文献 24
GuillemotJ, CanuelM, EssalmaniR, et al. Implication of the proprotein convertases in iron homeostasis: proprotein convertase 7 sheds human transferrin receptor 1 and furin activates hepcidin. Hepatology, 2013, 57(6): 2514-2524
参考文献 25
SilvestriL, CamaschellaC. A potential pathogenetic role of iron in Alzheimer's disease. Journal of Cellular and Molecular Medicine, 2008, 12(5A): 1548-1550
参考文献 26
LiX, LiuY, ZhengQ, et al. Ferritin light chain interacts with PEN-2 and affects gamma-secretase activity. Neuroscience Letters, 2013, 548:90-94
参考文献 27
RogersJ T, RandallJ D, CahillC M, et al. An iron-responsive element type II in the 5'-untranslated region of the Alzheimer's amyloid precursor protein transcript. The Journal of Biological Chemistry, 2002, 277(47): 45518-45528
参考文献 28
GamblinT C, KingM E, KuretJ, et al. Oxidative regulation of fatty acid-induced tau polymerization. Biochemistry, 2000, 39(46): 14203-14210
参考文献 29
Jin JungK, Hyun KimD, Kyeong LeeE, et al. Oxidative stress induces inactivation of protein phosphatase 2A, promoting proinflammatory NF-kappaB in aged rat kidney. Free Radical Biology & Medicine, 2013, 61: 206-217
参考文献 30
MulthaupG, HuberO, BueeL, et al. Amyloid precursor protein (APP) metabolites APP intracellular fragment (AICD), Abeta42, and Tau in nuclear roles. The Journal of Biological Chemistry, 2015, 290(39): 23515-23522
参考文献 31
DuceJ A, TsatsanisA, CaterM A, et al. Iron-export ferroxidase activity of beta-amyloid precursor protein is inhibited by zinc in Alzheimer's disease. Cell, 2010, 142(6): 857-867
参考文献 32
RadiE, FormichiP, BattistiC, et al. Apoptosis and oxidative stress in neurodegenerative diseases. Journal of Alzheimer's Disease : JAD, 2014, 42(Suppl 3): S125-152
参考文献 33
DavydovV, HansenL A, ShackelfordD A. Is DNA repair compromised in Alzheimer's disease?. Neurobiology of Aging, 2003, 24(7): 953-968
参考文献 34
LassmannH, BancherC, BreitschopfH, et al. Cell death in Alzheimer's disease evaluated by DNA fragmentation in situ. Acta Neuropathologica, 1995, 89(1): 35-41
参考文献 35
DixonS J, LembergK M, LamprechtM R, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell, 2012, 149(5): 1060-1072
参考文献 36
CaoJ Y, DixonS J. Mechanisms of ferroptosis. Cellular and Molecular Life Sciences : CMLS, 2016, 73(11-12): 2195-2209
参考文献 37
WuJ R, TuoQ Z, LeiP. Ferroptosis, a recent defined form of critical cell death in neurological disorders. Journal of Molecular Neuroscience : MN, 2018, 66(2): 197-206
参考文献 38
GuineyS J, AdlardP A, BushA I, et al. Ferroptosis and cell death mechanisms in Parkinson's disease. Neurochemistry International, 2017, 104: 34-48
参考文献 39
HambrightW S, FonsecaR S, ChenL, et al. Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration. Redox Biology, 2017, 12:8-17
参考文献 40
StockwellB R, Friedmann AngeliJ P, BayirH, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell, 2017, 171(2): 273-285
参考文献 41
FischerP, GotzM E, DanielczykW, et al. Blood transferrin and ferritin in Alzheimer's disease. Life Sciences, 1997, 60(25): 2273-2278
参考文献 42
Van RensburgS J, CarstensM E, PotocnikF C, et al. Increased frequency of the transferrin C2 subtype in Alzheimer's disease. Neuroreport, 1993, 4(11): 1269-1271
参考文献 43
GiuntaS, GaleazziR, ValliM B, et al. Transferrin neutralization of amyloid beta 25-35 cytotoxicity. Clinica Chimica Acta; International Journal of Clinical Chemistry, 2004, 350(1-2): 129-136
参考文献 44
RaditsisA V, MilojevicJ, MelaciniG. Abeta association inhibition by transferrin. Biophysical Journal, 2013, 105(2): 473-480
参考文献 45
LuC D, MaJ K, LuoZ Y, et al. Transferrin is responsible for mediating the effects of iron ions on the regulation of anterior pharynx-derective-1 alpha/beta and Presenilin 1 expression via PGE(2) and PGD(2) at the early stage of Alzheimer's disease. Aging-Us, 2018, 10(11): 3117-3135
参考文献 46
LehmannD J, SchuurM, WardenD R, et al. Transferrin and HFE genes interact in Alzheimer's disease risk: the Epistasis Project. Neurobiology of aging, 2012, 33(1): 202.e1-13
参考文献 47
KanodiaJ S, GadkarK, BumbacaD, et al. Prospective Design of anti-transferrin receptor bispecific antibodies for optimal delivery into the human brain. CPT: Pharmacometrics & Systems Pharmacology, 2016, 5(5): 283-291
参考文献 48
MorrisC M, CandyJ M, KeithA B, et al. Brain iron homeostasis. Journal of Inorganic Biochemistry, 1992, 47(3-4): 257-265
参考文献 49
Xian-HuiD, Wei-JuanG, Tie-MeiS, et al. Age-related changes of brain iron load changes in the frontal cortex in APPswe/PS1DeltaE9 transgenic mouse model of Alzheimer's disease. Journal of Trace Elements in Medicine and Biology, 2015, 30: 118-123
参考文献 50
LuL N, QianZ M, WuK C, et al. Expression of iron transporters and pathological hallmarks of Parkinson's and Alzheimer's diseases in the brain of young, adult, and aged rats. Molecular neurobiology, 2017, 54(7): 5213-5224
参考文献 51
ZhengW, XinN, ChiZ H, et al. Divalent metal transporter 1 is involved in amyloid precursor protein processing and Abeta generation. FASEB J, 2009, 23(12): 4207-4217
参考文献 52
TianJ, ZhengW, LiX L, et al. Lower expression of Ndfip1 is associated with Alzheimer disease pathogenesis through decreasing DMT1 degradation and increasing iron influx. Frontiers in Aging Neuroscience, 2018, 10: 165
参考文献 53
XuH M, JiangH, XieJ X. New insights into the crosstalk between NMDARs and iron: implications for understanding pathology of neurological diseases. Frontiers in Molecular Neuroscience, 2017, 10: 71
参考文献 54
ConnorJ R, MenziesS L, St MartinS M, et al. Cellular distribution of transferrin, ferritin, and iron in normal and aged human brains. Journal of Neuroscience Research, 1990, 27(4): 595-611
参考文献 55
LiW, GarringerH J, GoodwinC B, et al. Systemic and cerebral iron homeostasis in ferritin knock-out mice. PloS One, 2015, 10(1): e0117435
参考文献 56
Grundke-IqbalI, FlemingJ, TungY C, et al. Ferritin is a component of the neuritic (senile) plaque in Alzheimer dementia. Acta Neuropathologica, 1990, 81(2): 105-110
参考文献 57
LopesK O, SparksD L, StreitW J. Microglial dystrophy in the aged and Alzheimer's disease brain is associated with ferritin immunoreactivity. Glia, 2008, 56(10): 1048-1060
参考文献 58
Kwiatek-MajkusiakJ, DicksonD W, TacikP, et al. Relationships between typical histopathological hallmarks and the ferritin in the hippocampus from patients with Alzheimer's disease. Acta Neurobiologiae Experimentalis, 2015, 75(4): 391-398
参考文献 59
KuiperM A, MulderC, Van KampG J, et al. Cerebrospinal fluid ferritin levels of patients with Parkinson's disease, Alzheimer's disease, and multiple system atrophy. Journal of Neural Transmission Parkinson's Disease and Dementia Section, 1994, 7(2): 109-114
参考文献 60
AytonS, FauxN G, BushA I, et al. Ferritin levels in the cerebrospinal fluid predict Alzheimer's disease outcomes and are regulated by APOE. Nature Communications, 2015, 6: 6760
参考文献 61
NieG, SheftelA D, KimS F, et al. Overexpression of mitochondrial ferritin causes cytosolic iron depletion and changes cellular iron homeostasis. Blood, 2005, 105(5): 2161-2167
参考文献 62
WangL, YangH, ZhaoS, et al. Expression and localization of mitochondrial ferritin mRNA in Alzheimer's disease cerebral cortex. PloS One, 2011, 6(7): e22325
参考文献 63
GaoG, ZhangN, WangY Q, et al. Mitochondrial ferritin protects hydrogen peroxide-induced neuronal cell damage. Aging and Disease, 2017, 8(4): 458-470
参考文献 64
WangY Q, ChangS Y, WuQ, et al. The protective role of mitochondrial ferritin on erastin-induced ferroptosis. Frontiers in Aging Neuroscience, 2016, 8: 308
参考文献 65
WuW S, ZhaoY S, ShiZ H, et al. Mitochondrial ferritin attenuates beta-amyloid-induced neurotoxicity: reduction in oxidative damage through the Erk/P38 mitogen-activated protein kinase pathways. Antioxidants & Redox Signaling, 2013, 18(2): 158-169
参考文献 66
RahaA A, VaishnavR A, FriedlandR P, et al. The systemic iron-regulatory proteins hepcidin and ferroportin are reduced in the brain in Alzheimer's disease. Acta Neuropathologica Communications, 2013, 1: 55
参考文献 67
HoferT, PerryG. Nucleic acid oxidative damage in Alzheimer's disease-explained by the hepcidin-ferroportin neuronal iron overload hypothesis?. Journal of Trace Elements in Medicine and Biology, 2016, 38: 1-9
参考文献 68
WongB X, TsatsanisA, LimL Q, et al. beta-Amyloid precursor protein does not possess ferroxidase activity but does stabilize the cell surface ferrous iron exporter ferroportin. PloS One, 2014, 9(12): e114174
参考文献 69
MccarthyR C, ParkY H, KosmanD J. sAPP modulates iron efflux from brain microvascular endothelial cells by stabilizing the ferrous iron exporter ferroportin. EMBO Reports, 2014, 15(7): 809-815
参考文献 70
RoeserH P, LeeG R, NachtS, et al. The role of ceruloplasmin in iron metabolism. The Journal of Clinical Investigation, 1970, 49(12): 2408-2417
参考文献 71
PatelB N, DavidS. A novel glycosylphosphatidylinositol-anchored form of ceruloplasmin is expressed by mammalian astrocytes. The Journal of Biological Chemistry, 1997, 272(32): 20185-20190
参考文献 72
LoefflerD A, SimaA A, LewittP A. Ceruloplasmin immunoreactivity in neurodegenerative disorders. Free Radical Research, 2001, 35(2): 111-118
参考文献 73
ConnorJ R, TuckerP, JohnsonM, et al. Ceruloplasmin levels in the human superior temporal gyrus in aging and Alzheimer's disease. Neuroscience Letters, 1993, 159(1-2): 88-90
参考文献 74
ZhaoY S, ZhangL H, YuP P, et al. Ceruloplasmin, a potential therapeutic agent for Alzheimer's disease. Antioxidants & Redox Signaling, 2018, 28(14): 1323-1337
参考文献 75
SmithM A, WehrK, HarrisP L, et al. Abnormal localization of iron regulatory protein in Alzheimer's disease. Brain Research, 1998, 788(1-2): 232-236
参考文献 76
PineroD J, HuJ, ConnorJ R. Alterations in the interaction between iron regulatory proteins and their iron responsive element in normal and Alzheimer's diseased brains. Cellular and Molecular Biology, 2000, 46(4): 761-776
参考文献 77
RogersJ T, BushA I, ChoH H, et al. Iron and the translation of the amyloid precursor protein (APP) and ferritin mRNAs: riboregulation against neural oxidative damage in Alzheimer's disease. Biochemical Society Transactions, 2008, 36(Pt 6): 1282-1287
参考文献 78
BandyopadhyayS, HuangX, ChoH, et al. Metal specificity of an iron-responsive element in Alzheimer's APP mRNA 5'untranslated region, tolerance of SH-SY5Y and H4 neural cells to desferrioxamine, clioquinol, VK-28, and a piperazine chelator. Journal of Neural Transmission Supplementum, 2006(71): 237-247
参考文献 79
ChoH H, CahillC M, VanderburgC R, et al. Selective translational control of the Alzheimer amyloid precursor protein transcript by iron regulatory protein-1. The Journal of Biological Chemistry, 2010, 285(41): 31217-31232
参考文献 80
UrrutiaP J, HirschE C, Gonzalez-BillaultC, et al. Hepcidin attenuates amyloid beta-induced inflammatory and pro-oxidant responses in astrocytes and microglia. Journal of Neurochemistry, 2017, 142(1): 140-152
参考文献 81
DuF, QianZ M, LuoQ, et al. Hepcidin suppresses brain iron accumulation by downregulating iron transport proteins in iron-overloaded rats. Molecular Neurobiology, 2015, 52(1): 101-114
参考文献 82
VelaD. The Dual Role of Hepcidin in brain iron load and inflammation. Frontiers in Neuroscience, 2018, 12: 740
参考文献 83
AdlardP A, BushA I. Metals and Alzheimer's disease: how far have we come in the clinic?. Journal of Alzheimer's Disease : JAD, 2018, 62(3): 1369-1379
参考文献 84
Crapper MclachlanD R, DaltonA J, KruckT P, et al. Intramuscular desferrioxamine in patients with Alzheimer's disease. Lancet, 1991, 337(8753): 1304-1308
参考文献 85
KupershmidtL, AmitT, Bar-AmO, et al. The novel multi-target iron chelating-radical scavenging compound M30 possesses beneficial effects on major hallmarks of Alzheimer's disease. Antioxidants & Redox Signaling, 2012, 17(6): 860-877
参考文献 86
ZhangY, HeM L. Deferoxamine enhances alternative activation of microglia and inhibits amyloid beta deposits in APP/PS1 mice. Brain Research, 2017, 1677: 86-92
参考文献 87
GuoC, WangP, ZhongM L, et al. Deferoxamine inhibits iron induced hippocampal tau phosphorylation in the Alzheimer transgenic mouse brain. Neurochemistry International, 2013, 62(2): 165-172
参考文献 88
GuoC, ZhangY X, WangT, et al. Intranasal deferoxamine attenuates synapse loss via up-regulating the P38/HIF-1alpha pathway on the brain of APP/PS1 transgenic mice. Frontiers in Aging Neuroscience, 2015, 7: 104
参考文献 89
YouL, WangJ, LiuT, et al. Targeted brain delivery of rabies virus glycoprotein 29-modified deferoxamine-loaded nanoparticles reverses functional deficits in Parkinsonian mice. ACS Nano, 2018, 12(5): 4123-4139
参考文献 90
TuckerS, AhlM, ChoH H, et al. RNA therapeutics directed to the non coding regions of APP mRNA, in vivo anti-amyloid efficacy of paroxetine, erythromycin, and N-acetyl cysteine. Current Alzheimer Research, 2006, 3(3): 221-227
参考文献 91
MaccecchiniM L, ChangM Y, PanC, et al. Posiphen as a candidate drug to lower CSF amyloid precursor protein, amyloid-beta peptide and tau levels: target engagement, tolerability and pharmacokinetics in humans. Journal of Neurology, Neurosurgery, and Psychiatry, 2012, 83(9): 894-902
参考文献 92
ZhouY F, ZhangC, YangG, et al. Hepcidin protects neuron from hemin-mediated injury by reducing iron. Frontiers in Physiology, 2017, 8: 332
参考文献 93
KaganV E, MaoG, QuF, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nature Chemical Biology, 2017, 13(1): 81-90
参考文献 94
EpperlyT, DunayM A, BoiceJ L. Alzheimer disease: pharmacologic and nonpharmacologic therapies for cognitive and functional symptoms. Am Fam Physician, 2017, 95(12): 771-778
参考文献 95
GugliandoloA, BramantiP, MazzonE. Role of vitamin E in the treatment of Alzheimer's disease: evidence from animal models. International Journal of Molecular Sciences, 2017, 18(12): 2504
参考文献 96
PerssonH L, YuZ, TiroshO, et al. Prevention of oxidant-induced cell death by lysosomotropic iron chelators. Free Radical Biology & Medicine, 2003, 34(10): 1295-1305
参考文献 97
HagerK, KenkliesM, McafooseJ, et al. alpha-Lipoic acid as a new treatment option for Alzheimer's disease - a 48 months follow-up analysis. J Neural Transm-Supp, 2007(72): 189-193
参考文献 98
ZhangY H, WangD W, XuS F, et al. alpha-Lipoic acid improves abnormal behavior by mitigation of oxidative stress, inflammation, ferroptosis, and tauopathy in P301S Tau transgenic mice. Redox Biology, 2018, 14: 535-548
目录 contents

    摘要

    脑铁稳态对于维持脑的正常发育和控制细胞氧化应激水平具有重要作用. 大量研究已显示,脑铁稳态的失衡与阿尔茨海默病(Alzheimer’s disease,AD)的发病存在密切关系,但其机理尚需深入研究. 本文结合本实验室的研究结果,总结了脑铁代谢失衡参与AD病变的研究进展,重点讨论了脑铁增高与AD症状及细胞损伤的关系,及负责铁摄入、储存、释放和调控的几种铁代谢关键分子在AD中的表达变化,并展望了改善脑铁水平、调节铁代谢相关分子平衡、降低氧化应激等方法作为AD治疗策略的前景. 本文旨在为今后深入研究脑铁代谢及相关分子在AD病理过程中的作用,开发预防和治疗AD新药物提供参考.

    Abstract

    Brain iron homeostasis plays an important role in maintaining normal brain development and controlling cellular oxidative stress. Accumulating studies have shown that the imbalance of brain iron homeostasis is closely involved in the pathogenesis of Alzheimer’s disease (AD). Here, we reviewed the research progress of the role of iron metabolism in the pathogenesis of AD, particularly focusing on the alterations of several key molecules responsible for cellular iron uptake, storage, release and regulation, and discussed potential therapeutic strategies for AD against the elevated brain iron and altered cellular iron metabolic pathways. This review may contribute to further studies focusing on the role of iron metabolism and related molecules in AD pathogenesis, and provide new insight for the development of AD drugs targeting these molecules.

    常彦忠. Tel:0311-80787502, E-mail: chang7676@163.com

    阿尔茨海默病(Alzheimer’s disease,AD)是一种以进行性记忆减退、认知功能障碍为主要临床特征的神经退行性疾病. AD的主要病理特征为,患者脑内β淀粉样蛋白(amyloid β-peptide,Aβ)在细胞外沉积形成不可溶性淀粉样斑块,和tau蛋白过度磷酸化形成神经元细胞内纤维缠结,以及大量神经元的死[1]. 迄今,AD的起因及发生发展的确切机制仍未得以揭[2]. 近年来,多个研究团队对脑铁代谢紊乱与神经性相关疾病的研究成果显示,脑铁增高及铁代谢调控分子的失衡可能在AD发病过程中起着重要作[3]. 靶向降低脑铁水平、调节铁代谢相关分子平衡及抑制氧化应激等的药物研发有望为AD治疗提供新手段.

  • 1 脑铁的生理功能及代谢过程

  • 1.1 脑铁的生理功能

    铁是人体含量最高、不可缺少的必需微量元素. 铁在生物体内主要参与氧的运输及DNA、RNA和蛋白质的合成,电子传递和细胞呼吸等. 在中枢神经系统中,铁除了参与上述生理活动外,还参与多巴胺等神经递质的合成、髓磷脂合成、神经髓鞘的合成和发育等重要生理过[4]. 中枢系统铁摄入的高峰期与髓鞘形成的高峰期一[5]. 此时,少突胶质细胞摄入的铁主要用于形成髓磷脂合成所需的还原型辅酶Ⅱ合成酶的辅因[6]. 婴幼儿早期发育中的铁缺乏,可使髓鞘形成减少,从而引起认知下降、运动和情感障碍以及神经发育迟缓等症[7]. 人脑中的铁含量与年龄呈现相关性,随年龄的增长而增[8].

  • 1.2 脑铁代谢及调控过程

    脑组织中的铁主要来源于脑微血管中运输的血清铁. 血浆中的Fe3+由转铁蛋白(transferrin,Tf)携带,以Tf-Fe复合物的形式与血管管腔面高表达的转铁蛋白受体(transferrin receptor 1,TfR1)结合,通过胞吞作用进入脑微血管内皮细胞. 在内吞小泡的酸性环境中,Fe3+与Tf分离且被还原为Fe2+,经由二价金属离子转运体(divalent metal transporter 1,DMT1)释放入胞[9]. 内皮细胞内的Fe2+通过膜铁转运蛋白(ferroportin 1,FPN1)跨越微血管内皮细胞基底膜,并在辅助蛋白hephaestin或铜蓝蛋白(cerulplasmin,CP)的作用下氧化为Fe3+,释放入脑组[9,10].

    进入到脑组织内的Fe3+可被神经元和胶质细胞摄取和利用. 神经元和各种胶质细胞表面也均表达TfR1、DMT1、FPN1等铁摄入和排出分子. Fe3+可被细胞膜上表达的十二指肠细胞色素B(duodenal cytochrome b,Dcytb)还原为Fe2+,再通过DMT1摄入细胞[9,10]. 细胞内的铁可被细胞利用,也可被氧化成Fe3+存储于储铁蛋白(ferritin)中,多余的铁经由FPN1释放入脑细胞间隙,供其他细胞再摄入利用. 神经元和各胶质细胞内的铁均要维持在一定水平,既要保障细胞内的各种需要铁参与的生理活动正常进行,又不因为不稳定铁池(labile iron pool,LIP)的升高而造成氧化应激水平增加.

    目前认为,脑铁水平的调控过程与外周系统类似,分为细胞水平和整体水平两个层次的调控. 细胞铁代谢调控主要由细胞质内的铁调节蛋白(iron regulatory proteins,IRPs)实现,包括IRP1和IRP2. IRPs可以和ferritin、DMT1、FPN1、TfR1等mRNA上的铁反应元件(iron responsive element,IRE)结合,组成IRP-IRE调控系[11]. 当细胞内铁水平上升时,IRPs与ferritin、FPN1 mRNA的5'非翻译区(untranslated region,UTR)上的IRE序列解离,解除了其对翻译的抑制作用,使二者表达量均升高. Ferritin的增高可将大量的自由铁转入其内部,减少铁在胞内的浓度;FPN1的增高,可增加细胞铁释放,同样起到降低胞内铁水平的作用. 同时,IRPs与TfR1、DMT1 mRNA 3'-UTR上的IRE解离,使其稳定性下降、表达量降低,从而使细胞内的铁水平降低. 当细胞内铁水平下降时,则反之,以上调细胞内铁水[11]. 整体水平上,脑铁总水平主要取决于跨越血脑屏障(blood brain barrier,BBB)进入脑内铁的量,所以BBB处的铁摄取须受到严格调控. 铁调素(hepcidin)可能在控制脑铁摄入过程中起着重要作[12]. 外周系统中,hepcidin可识别并结合细胞膜上的FPN1,引起其内化降解,从而减少铁从细胞向外释[13]. 我们实验室的研究发现,hepcidin在各脑区的神经细胞和胶质细胞中均有分布,其中以星形胶质细胞中的表达量最[14,15]. McCarthy[12]报道,星形胶质细胞分泌的hepcidin可能在BBB处作用于脑微血管内皮细胞基底面上的FPN1,通过降低其水平来调节铁向脑组织的释放. 然而,脑铁水平调控的详细机制仍有待进一步研究.

  • 2 AD中脑铁增高及与AD症状的关系

  • 2.1 AD中脑铁异常增高

    铁在AD病人脑中Aβ斑块和神经元缠结中的分布早有报道. 1992年,Connor[16]的研究显示,在AD患者脑切片中,铁在Aβ形成的老年斑及其周围聚集的细胞中分布显著增多,这提示AD中存在脑铁沉积和铁稳态的破坏. MRI诊断技术发现AD发病早期的Aβ积聚过程中已经伴随着铁浓度的升[17,18]. 与正常人相比,AD患者的脑皮质和海马区域均出现明显的铁沉积,且与Aβ斑块的分布共定[3,18]. 利用动物模型研究发现,增加脑内铁含量可加剧Aβ的聚集、加剧病变脑区神经细胞的死[18],而使用铁螯合剂降低脑铁水平则对AD症状起到明显的改善作[19].

  • 2.2 脑铁增高参与AD病变的途径

  • 2.2.1 铁诱导ROS及氧化应激增加

    铁含量的增加可以通过Fenton反应形成羟基自由基和超氧基阴离子,产生过氧化物. 这些活性氧(reactive oxygen species,ROS)会损伤细胞大分子,包括蛋白质、脂质和DNA. 正常情况下,细胞内存在几种解毒系统和抗氧化防御机制来防止这种损害,如过氧化氢酶和谷胱甘肽过氧化物酶(glutathione peroxidase,GPX)[20]. 然而,当ROS的形成超过细胞的解毒/抗氧化系统时,细胞就会发生氧化应激反应. 铁诱导的氧化应激是极其危险的,它会导致含铁的蛋白,如ferritin、血红素蛋白和铁硫簇等,进一步释放铁,形成破坏性的细胞内正反馈循环,加剧铁超负荷的毒性作[21]. 在机体衰老过程中,脑部多个区域的铁水平增高,使其更易发生年龄依赖性的神经退行性病[22]. 铁诱导的蛋白质和脂质的氧化损伤,可导致突触功能障碍,并启动神经元的调节性死亡信号通路,加剧神经元死[23].

  • 2.2.2 铁沉积与Aβ积聚、Tau异常磷酸化

    脑铁增高不仅诱导氧化应激、导致细胞损伤,同时也直接参与AD病理症状的形成,即铁增高不仅直接诱导Aβ产生增多,也增加tau蛋白功能障碍、导致神经元纤维缠[3]. 铁的增加可通过多种机制导致Aβ产生,包括增加Aβ前体蛋白(amyloid precursor protein,APP)的表达,及其随后的淀粉样变性过程. 正常情况下,多数APP经非Aβ生成途径裂解:α分泌酶和γ分泌酶相继剪切APP,释放其N端片段P3,在细胞膜中留下APP胞内结构域;而少数APP可以经由β分泌酶(BACE-1)和γ分泌酶剪切产生Aβ,此为Aβ生成途[24]. α分泌酶和β分泌酶的活化受弗林蛋白酶(furin)调控,而furin的转录受到细胞内铁浓度的调[24,25]. 当总铁水平较高时,furin蛋白浓度降低,β分泌酶活性增强,导致Aβ产生增多;相反,铁缺乏时furin活性增强、蛋白浓度增加,进而使α分泌酶活性增强并刺激非Aβ生成途径的发[25]. 高铁水平还可以增强γ分泌酶活性,导致Aβ产生加[26]. 此外,研究也发现APP的翻译受到铁水平的影响. 由于APP mRNA的5'-UTR中存在IRE,可与IRPs结合,受其调[27]. 在细胞内低铁条件下,IRPs结合在APP mRNA的IRE上,抑制其翻译;但在细胞内高铁条件下,IRPs与铁离子结合,解除了对APP mRNA的抑制,导致APP翻译增加,进而增加脑内Aβ的产[27].

    铁过载也会加剧tau蛋白的功能障碍和神经元纤维缠结. 在AD脑中,铁增多诱导的脂质过氧化可以促进tau聚合,进而进一步驱动AD中氧化应激的增多和tau原纤维病变形[28]. 体外实验表明,铁超载可导致神经元中tau蛋白异常磷酸化增[29]. 已有研究显示tau缺乏可影响APP的翻译后运输过程,致使其滞留在内质网内,无法转运到膜表[30]. 而APP具有亚铁氧化酶的活性,可能通过稳定细胞膜上的FPN1,协助铁外[31]. 因此,tau的缺乏可能通过影响APP而影响细胞铁释放,导致胞内铁增多,进一步加剧细胞损伤.

  • 2.2.3 铁沉积与细胞死亡——凋亡和铁死亡

    大量研究已表明,铁沉积造成的蛋白质和脂类氧化损伤可导致突触失活和神经细胞死[23]. 研究发现,AD患者脑内的神经元和胶质细胞内出现了比同龄正常人脑内多出30到50倍的DNA断裂片[32],这提示细胞凋亡为AD脑内细胞死亡的主要形式之一. 有研究发现,AD患者的DNA修复系统功能下降,导致双链DNA断裂增[33]. 此外,作为典型凋亡信号的DNA断裂片段仅出现在AD脑内的老年斑和神经缠结处,而不是正在发生退行性病变的细胞[34],这也说明凋亡通路在AD细胞死亡中的重要作用.

    除凋亡外,脂质过氧化和谷胱甘肽(glutathione,GSH)减少造成的程序性坏死中也会出现染色体DNA断裂,尤其是由铁依赖的死亡途径——铁死亡(ferroptosis)[35]. Ferroptosis是一种最新发现的细胞程序性死亡形式,主要由铁依赖的氧化损伤所引起,GSH减少、细胞质和脂质活性氧增多、线粒体变小及线粒体膜密度较[35]. 这一过程受到细胞内信号通路的严密调节,这些信号通路包括铁稳态的调节通路、RAS通路及胱氨酸转运通[35,36]. 已有研究表明,铁死亡通路与许多疾病的病理学过程有关,包括中枢系统的神经退行性疾[37]. 帕金森症的细胞死亡中存在铁死亡,与PKC通路激活及RAS通路启动密切相[38]. 铁死亡在AD中的具体作用及机理还未见详细报道. 但是,研究发现在小鼠脑中条件性敲除前脑神经元中铁死亡的关键调节酶GPX4,可加速小鼠认知下降和神经退行性病[39]. 并且,AD中发现的铁增多、ROS水平增高、胞外谷氨酸增多、脂氧化酶(lipoxygenase,LOX) 12/15活性增加、多不饱和脂肪酸耗竭、RAS激活等均为铁死亡的重要特[40]. 因此,铁死亡可能是AD病理中神经细胞发生退行性病变的重要途径之一.

  • 3 AD脑内铁代谢相关分子的表达变化及与AD症状的关系

    在AD患者脑内,除脑铁浓度和分布发生明显变化外,负责运输、储存铁和调控铁稳态的几种关键分子,包括Tf、TfR1、DMT1、ferritin、FPN1、IRPs、hepcidin等,在AD发病过程中的表达均发生了变化(表1). 这些分子的表达变化可能与AD发病密切相关. 靶向这些分子的药物研发,有望为AD的治疗提供新手段.

    表1 AD脑中铁代谢相关蛋白质的改变

    Table 1 Alterations of iron metabolism-related proteins in AD brains

    名称作用AD中的变化

    转铁蛋白

    (Tf)

    运输铁的蛋白质,可结合Fe3+,通过识别细胞膜上的TfR1,将铁运入细胞.

    Tf在老年斑周围表达增高,星形胶质细胞中表达,胞外形式增[16];Tf C2亚型增[42];Tf抑制 Aβ单体积聚成多聚[43];3月龄APP/PS1小鼠脑内Tf表达显著增[45].

    转铁蛋白受体1 (TfR1)铁摄入蛋白,与携带Fe3+的Tf结合,将铁转入细胞内.TfR1在3月龄APP/PS1小鼠脑皮层和海马区表达升[45];Tf-TfR通过调控铁水平,诱导APH1和PS1表[45].

    二价金属离子

    转运体1

    (DMT1)

    细胞膜上的离子通道蛋白,控制Fe2+的摄取和吸收.

    AD患者和APP/PS1小鼠脑皮层区和海马区Aβ斑附近的DMT1升[49];降低细胞DMT1的表达量时,APP表达减少、Aβ降[51];DMT1的泛素化酶Ndfip1在APP/PS1小鼠脑皮层和海马区的表达量降低;过表达Ndfip1时,DMT1表达降低,细胞铁摄入和Aβ生成减[52].

    铁蛋白

    (ferritin)

    细胞内的储铁蛋白、可调节自由铁池、维持细胞铁稳态.AD病人脑海马区老年斑及周围血管中ferritin增高,且主要出现在小胶质细胞和星形胶质细[16,56];H-ferritin和L-ferritin的表达水平和比例发生了变化,海马CA1和CA4区增[61];AD病人的CSF中 ferritin升[59].

    线粒体铁蛋白

    (FtMt)

    线粒体内储铁蛋白,结合线粒体内游离铁,调节胞质和线粒体之间铁分布.

    AD患者脑皮层区FtMt mRNA和蛋白水平显著升[62];FtMt过表达可改善Aβ诱导的铁代谢紊乱,通过激活p38-MAPK通路和Erk信号通路减少氧化损[65].

    膜铁转运蛋白(FPN1)跨膜铁输出蛋白,可将细胞内的铁释放出来.AD患者和动物模型的皮层区、海马区FPN1显著下[49,66]. APP可以稳定细胞膜上的FPN1[68]. sAPP通过稳定脑微血管内皮细胞基底面FPN1,帮助铁释放入脑.

    铜蓝蛋白

    (CP)

    将Fe2+氧化为Fe3+,促进铁从细胞中释放.AD患者脑海马CA1区域表达的CP显著增高,额叶皮层和顶叶皮层老年斑附近表达的CP有增高的趋势,但无统计学差[72];AD患者颞上回CP水平显著下[73].

    铁调节蛋白(IRP1/IRP2)

    与IRE结合,调节细胞内铁代谢相关蛋白质的表达.

    AD 患者Aβ斑块和tau纤维缠结处出现IRP2沉[75];AD脑中的IRP-IRE复合物更稳定,导致铁摄入增[76],加重Aβ沉积和AD神经元丢[82];IRPs可结合APP mRNA的5'-UTR[78],增强APP mRNA翻译和Aβ生[79].

    铁调素(Hepcidin)

    诱导FPN1内化降解,或抑制FPN1活性,控制细胞铁的释放量.AD病人和小鼠模型脑内hepcidin表达下[75];hepcidin能降低Aβ诱导的神经炎症和氧化损伤、减轻Aβ诱导的神经毒[80]. 严重炎症存在时,hepcidin可能会加重神经元的损[82]
  • 3.1 运输铁的分子表达变化

    脑微血管中的Tf在协助铁跨越血脑屏障中起主要作用,脑组织中Tf携带的铁也是神经元和各胶质细胞铁摄入的重要来源之[41]. 早在1992年,Connor [16]的研究已发现AD患者脑中Tf的水平和分布出现了明显异常. Tf在正常人脑内的表达以少突胶质细胞居多,但在AD患者脑中,Tf除了在少突胶质细胞外,也非常均衡地分布在老年斑周围,且主要以胞外分布形式存[16]. 此外,AD患者的皮层白质的星形胶质细胞中也出现较多的Tf[16]. 研究也发现AD患者中Tf C2亚型增[42]. 近年来的研究发现,Tf可以在一定程度上减轻Aβ单体积聚成多聚体,进而减缓AD的发展进[43]. 这一作用一方面可能是Tf螯合三价铁离子,降低氧化损伤,从而抑制Aβ聚积,另一方面Tf本身可以直接结合到Aβ寡聚体上,抑制Aβ单体继续结合到Aβ寡聚体上生长成更大的多聚[43,44]. 最新的研究发现,Tf在3月龄APP/PS1转基因小鼠脑内的表达已经显著地高于野生型小[45],这提示铁代谢的变化发生在AD早期病理进程中. Lehmann[46]的研究显示,Tf与HFE的作用随年龄增加而增强,并与ApoEε4之间存在协同关系,这提示Tf相关的铁代谢紊乱可能是AD的一个诱因.

  • 3.2 细胞铁摄入分子表达变化

  • 3.2.1 TfR1

    TfR1在铁跨越BBB进入脑组织的过程中,以及神经元和胶质细胞铁吸收过程中起到关键作用. 已有研究针对脑微血管内皮细胞上高表达TfR1这一特点,制备了具有双特异性的anti-TfR/BACE1抗体来抑制Aβ的产生,从而干预AD[47]. TfR1在脑皮层和脑干结构中的表达也非常高,这与该区域神经元进行线粒体呼吸所需大量铁相[48],同时这一区域也是神经元变性损伤的敏感区域之一,可能与铁诱导自由基生成相关. 最新的研究发现,TfR1在3月龄APP/PS1小鼠脑皮层和海马区域的表达已经出现了显著性升[45]. Tf-TfR通过调控铁离子水平诱导APH1(anterior pharynx-defective-1)和早老素1(presenilin 1,PS1)表达升高,加剧AD症[45].

  • 3.2.2 DMT1

    DMT1在脑中各类胶质细胞和神经元细胞膜上均有表达. 已有研究报道,在AD患者和APP/PS1小鼠脑皮层区和海马区的Aβ老年斑附近,两种形式的DMT1(mRNA中带IRE和不带IRE序列)均有升[49]. 增高的DMT1导致细胞铁吸收增高,可能是AD病变区铁沉积的一大重要原[50]. 研究还发现,在神经细胞过表达APP突变体时,DMT1(+IRE)和DMT1(-IRE)的表达都升高,而使用siRNA降低DMT1的表达量时,细胞内表达的APP减少,产生的Aβ降[51]. 这表明DMT1通过影响铁代谢来影响APP加工和Aβ生成. 该团队的最新研究发现,DMT1的泛素化酶Ndfip1在APP/PS1小鼠脑皮层和海马区的表达量降低,由此可能导致DMT1表达量增高. 而在过表达Ndfip1的细胞系中,DMT1表达降低,细胞铁摄入和Aβ生成均减[52].天冬氨酸受体(NMDARs)激活可能通过增强DMT1的表达,增加铁内流及刺激铁从溶酶体释放,促进铁积累和铁诱导的神经毒性,从而加重铁诱导的细胞损[53].

  • 3.3 细胞铁存储分子表达变化

  • 3.3.1 Ferritin

    Ferritin,包含H-ferritin和L-ferritin两个亚型. 脑内少突胶质细胞表达的ferritin最[54]. H-与L-ferritin在组织中的比例被精确调节,即使少量的改变足以诱导细胞功能障[55]. 早在1990年,Grundke-Iqbal[56]已发现,在AD病人脑海马区的老年斑中出现强烈的ferritin免疫阳性,并且沉积的ferritin主要出现在小胶质细胞内. Connor[16]也报道,AD患者脑中的ferritin不仅含量增加,其分布水平也出现了明显改变. AD患者各脑区的星形胶质细胞和小胶质细胞开始出现ferritin增多,并以老年斑和血管周围沉积最[16]. 深入的研究发现,AD患者脑中小胶质细胞ferritin增加及胞内铁沉积可通过增加细胞本身的氧化应激水平导致细胞趋于凋[57]. 此外,AD患者中H-ferritin和L-ferritin的表达水平和比例也发生了变[58]. L-ferritin在AD患者的海马CA1和CA4区增加显著,且与老年斑的形成、神经元死亡呈现正相[58],这提示神经退行性疾病的长期炎症过程促进了小胶质细胞中L-ferritin的表达增多. 研究还发现,在AD病人的脑脊液(cerebrospinal fluid,CSF)中, ferritin的含量也显著高于同龄正常人,这提示CSF中ferritin表达量的升高可能是AD特有的标志之[59],且CSF中ferritin的升高与AD病变的重要标志分子Apolipoprotein E(ApoE)ε4亚型的表达变化密切相[60].

  • 3.3.2 线粒体铁蛋白(mitochondrial ferritin, FtMt)

    FtMt是一种定位于线粒体内的铁储存蛋白. FtMt通过结合线粒体的游离铁,调节细胞质和线粒体之间的铁分布,降低胞质中的铁含量、减少ROS生[61]. FtMt在神经元中的水平高于胶质细[62],这可能与其保护线粒体免受铁依赖的氧化损伤相关. 我们实验室的研究发现,FtMt过表达可通过调节细胞内铁水平,对抗H2O2引起的细胞损伤、Erastin诱导的铁死亡以及Aβ的细胞毒性,保护神经细[63,64,65]. AD患者脑皮层区,FtMt mRNA水平和蛋白质水平均显著升[62]. 这提示FtMt在AD发病过程中可能通过调节铁代谢,从而起到对抗氧化应激的作用.

  • 3.4 细胞铁释放分子表达变化

  • 3.4.1 FPN1

    脑内的FPN1对于铁跨越血脑屏障和脑细胞内铁的输出具有重要作用. 研究发现,AD患者和动物模型的皮层区、海马区表达的FPN1显著下[49,66]. Hepcidin-FPN1神经元铁超载理论认为:AD患者脑中长期的炎症导致hepcidin表达升高,hepcidin作用于神经元上的FPN1使其内化降解,从而使神经元内铁过载,进而导致依赖铁的胞内氧化应激水平增高,神经元核酸损[67]. 此外,APP可以稳定细胞膜上的FPN1,从而协助铁离子外[68]. 在血脑屏障处,可溶性的sAPP可以通过作用于脑微血管内皮细胞基底面的FPN1,帮助铁离子从血管内皮细胞外排入脑[69],这可能是导致AD中脑铁增高的因素之一.

  • 3.4.2 CP

    CP是一种铁氧化酶,将Fe2+氧化为Fe3+,促进铁从细胞中释[70]. 在中枢神经系统中,CP主要在星形胶质细胞中表达,并以结合糖基磷脂酰肌醇(GPI)锚定形式存[70,71]. Loeffler[72]的研究显示,与正常人相比,AD患者脑海马CA1区域表达的CP显著增高,额叶皮层和顶叶皮层老年斑附近表达的CP有增高的趋势,但无统计学差异. 然而Connor[73]的研究显示AD患者颞上回CP水平显著下降. 我们实验[74]近年来的研究发现,降低脑内CP表达可导致DMT1介导的铁含量的增加,进而引起ROS水平增加,并通过Erk、p38和Bcl-2、Bax等凋亡通路加速AD病变. CP缺乏还可以增加BACE-1的表达,增加Aβ生成.

  • 3.5 脑铁平衡调节分子表达变化

  • 3.5.1 IRPs

    在AD模型中,细胞铁调节分子IRP2的分布出现了异常. IRP2与AD中的氧化还原活性铁共定位在Aβ斑块和tau形成的纤维缠结[75]. 此外,研究发现,AD脑中的IRPs与IRE结合形成的复合物较正常脑内的IRP-IRE复合物更稳定,这一复合物稳定性的提高导致其调控的TfR mRNA稳定性升高,即TfR表达上升、铁摄入增高,同时ferritin表达量下降,储存铁的能力降[76]. 这可能是铁在AD脑中积累的重要原因之一. 最近的研究表明,铁积累和IRP-IRE信号通路的干扰会诱导APP水平增加,加重Aβ沉积和AD神经元丢[77]. 并且,APP mRNA的5'-UTR中发现了新的功能性IRE,可以特异性结合IRPs[78],因此,高铁通过调控IRPs增强APP mRNA翻译和Aβ生[79].

  • 3.5.2 Hepcidin

    研究显示,hepcidin在AD病人脑内以及在AD模型小鼠脑内的表达量明显低于正常对照脑内的表达量,且其分布区域也显著减[66],这一研究首次提示hepcidin可能与AD的发病过程密切相关. 2017年,Urrutia[80]的研究显示,hepcidin能降低体外培养的星形胶质细胞和小胶质细胞中Aβ诱导的神经毒性和氧化损伤. 小鼠脑内注射hepcidin可以缓解Aβ注射引起的炎症反应,降低神经元损伤. Hepcidin过表达可调控血脑屏障铁摄入,从而降低脑[81],适量在脑内提高hepcidin的表达量可能对AD起到保护作用. 然而,研究也发现,在有严重炎症存在时,hepcidin可能会加重神经元的损[15,82]. 因此,hepcidin在AD发病过程中的具体作用,以及如何将其作用潜在的治疗药物,仍有待进一步研究.

  • 4 脑铁水平及代谢调节在AD治疗中的应用前景

    在过去几十年的研究中,科研人员不断尝试以预防或治疗AD为目的的药物研发,包括能抑制或清除Aβ积聚的药物、能抑制tau蛋白磷酸化以及能缓解脑内氧化损伤、线粒体损伤的药物,但其治疗潜力仍需在临床中进一步评估. 越来越多的研究证实了铁代谢异常在AD的发生和发展中的重要作用,使用铁螯合剂来螯合AD患者脑中过量的铁,或靶向铁代谢途径中发生显著变化的分子、及铁依赖的信号通路中的关键分子有望成为治疗AD的新策[83].

  • 4.1 铁螯合剂清除AD脑内增高的铁

    铁螯合剂可通过与铁离子的强结合作用将铁离子结合到其内部,从而有效提高铁的排泄、降低体内游离铁的含[83]. 利用铁螯合剂降低脑铁水平对AD症状起到缓解作用的研究早有报道. 1991年,McLachlan[84]已将铁螯合剂去铁胺(deferoxamine,DFO)应用于临床,结果发现持续给予DFO后能缓解AD诱导的认知障碍. 2012年,Kupershmidt[85]通过对APP/PS1小鼠进行饲喂铁螯合化合物M30,发现M30有效减少了脑铁积累、Aβ积累和tau磷酸化,并改善了小鼠的记忆缺陷. 这一改善作用可能是通过M30下调磷酸化细胞周期蛋白依赖性激酶5(CDK-5)的水平,并增加蛋白激酶B(PKB/AKT)和糖原合成酶激酶3β(GSK-3β)磷酸化来实现的. 2017年,Zhang[86]的研究发现DFO对APP/PS1小鼠的认知能力改善与DFO在海马区域诱导了M2型小胶质细胞激活、抑制了M1型激活相关.

    为减少DFO的副作用,提高其穿透BBB的效率,AD中新的给药形式也在研发. Guo[87,88]经鼻腔对APP/PS1小鼠给予DFO处理,明显降低铁诱导的tau蛋白磷酸化水平、降低APP表达及Aβ聚积,最终改善小鼠认知能力的下降. 这一结果可能是由于DFO通过CDK5和GSK-3β途径对铁诱导的tau蛋白磷酸化发挥抑制作[87],以及通过激活MAPK/P38途径,上调HIF-1α的表达水平,通过HIF-1α对铁代谢的调控,最终降低了海马CA3区域铁水[87]. 近期,我们团队研发的一种脑靶向肽修饰的纳米聚合物包载DFO,可通过受体介导的胞吞作用穿越BBB,极大增加了DFO进入脑的效率,延长DFO的半衰[89]. 这一纳米包载DFO药物将用于靶向降低AD脑内铁水平的研究.

  • 4.2 靶向细胞铁代谢关键蛋白质分子的治疗

    已有细胞实验表明,降低铁摄入蛋白DMT1的表达可以减少铁的内流,从而降低细胞分泌的Aβ[51]. 我们团队的研究显示,过表达FtMt可以恢复Aβ诱导的铁及铁代谢相关蛋白质的表达改变,对Aβ诱导的神经毒性具有神经保护作[65]. 特异提高脑内FtMt水平可能将成为潜在的预防或治疗AD的新方法. 此外,我们实验室的研究也发现,在小鼠脑内,通过侧脑室注射含CP基因的真核表达质粒,实现小鼠脑内过表达CP,可降低脑铁水平和海马区细胞凋亡、减弱Aβ诱导的小鼠记忆功能障[74],这为将来开发CP作为潜在有效的AD治疗方法提供了理论基础.

    研究者针对AD脑内的IRP-IRE复合物更稳定这一特点以及APP mRNA中存在IRE序列,已研究出IRE抑制剂,如Posiphen、APP 5'-UTR定向翻译阻断剂、新型IRE化学抑制剂等,可以有效减少Aβ生成、缓解AD小鼠模型中的认知下降,并已进入AD治疗的临床试验阶[90,91]. 另外,已有报道利用腺病毒过表达hepcidin或注射hepcidin多肽会显著抑制TfR1、DMT1和FPN1的表达,并减少脑微血管内皮细胞和神经元中铁的摄取和释放,使流入脑组织的血清铁降低,进而减少动物大脑中的[81,92]. 针对AD患者脑中hepcidin下降这一特点,以及hepcidin能降低Aβ诱导的神经炎症、氧化损伤、神经元损伤[79],调节脑内hepcidin水平来改善AD的脑铁代谢,可能为AD的治疗或预防研究提供新思路.

  • 4.3 靶向改善铁依赖的细胞氧化损伤及死亡通路的治疗

    通过阻断或抑制AD中发现的铁死亡的重要症状,包括铁增多、ROS水平增高、胞外谷氨酸增多、LOX增加、多不饱和脂肪酸的耗竭等现象,有望开发AD治疗的新药[40]. 已经报道铁死亡抑制剂Fer-1和PKC抑制剂可以缓解帕金森症中的神经元丢[38]. 亲脂性自由基捕获抗氧化剂维生素E,是铁死亡途径中重要的内源性调节因子,可直接抑制LOX[93],临床数据已显示,维生素E可减缓轻度到中度AD患者的认知功能下[94]. 在AD动物模型,维生素E供给可降低脑内氧化应激,从而改善AD[95]. α脂肪酸(LA)是一种天然存在的酶辅因子,具有抗氧化和铁螯合物的特[96]. LA被发现对AD具有神经保护作用. 在临床试验中偶然发现添加LA可以调节AD患者的认知功能及相关痴呆症[97]. 动物实验也发现,LA通过减少AD动物的氧化应激和炎症水平,降低细胞发生凋亡和铁死亡,从而减少Aβ沉积和Tau磷酸[98]. 这些研究均说明,靶向改善铁依赖的细胞氧化损伤及细胞死亡通路中的关键因子,均有望为AD治疗提供新手段.

    本综述通过总结铁代谢紊乱在AD病理中作用的大量文献,重点阐述了关键铁代谢相关蛋白分子在AD中的表达变化,并结合我们实验室在该方向的研究结果,展望了靶向脑铁水平及代谢调节作为治疗AD新手段的应用前景. 本综述希望对未来深入研究脑铁代谢失衡及铁相关蛋白质分子表达变化在AD等神经退行性疾病中的作用有参考意义,也为将调节脑铁水平及代谢作为预防或治疗AD的药物开发提供新思路.

    GAO Guo-Fen. Tel:15631123003, E-mail: guofen83@hotmail.com

    CHANG Yan-Zhong. Tel:86-311-80787502, E-mail: chang7676@163.com

  • 参 考 文 献

    • 1

      Selkoe D J. Amyloid beta-protein and the genetics of Alzheimer's disease. The Journal of Biological Chemistry, 1996, 271(31): 18295-18298

    • 2

      Jan A T, Azam M, Rahman S, et al. Perspective insights into disease progression, diagnostics, and therapeutic approaches in Alzheimer's disease: a judicious update. Frontiers in Aging Neuroscience, 2017, 9: 356

    • 3

      Lane D J R, Ayton S, Bush A I. Iron and Alzheimer's disease: an update on emerging mechanisms. Journal of Alzheimer's Disease : JAD, 2018, 64(s1): S379-S395

    • 4

      Thompson K J, Shoham S, Connor J R. Iron and neurodegenerative disorders. Brain Research Bulletin, 2001, 55(2): 155-164

    • 5

      Connor J R, Menzies S L. Relationship of iron to oligodendrocytes and myelination. Glia, 1996, 17(2): 83-93

    • 6

      Todorich B, Pasquini J M, Garcia C I, et al. Oligodendrocytes and myelination: the role of iron. Glia, 2009, 57(5): 467-478

    • 7

      Georgieff M K. Iron assessment to protect the developing brain. The American Journal Of Clinical Nutrition, 2017, 106(Suppl 6): 1588S-1593S

    • 8

      Ashraf A, Clark M, So P W. The aging of iron man. Frontiers in Aging Neuroscience, 2018, 10: 65.

    • 9

      Mills E, Dong X P, Wang F, et al. Mechanisms of brain iron transport: insight into neurodegeneration and CNS disorders. Future Medicinal Chemistry, 2010, 2(1): 51-64

    • 10

      Mccarthy R C, Kosman D J. Iron transport across the blood-brain barrier: development, neurovascular regulation and cerebral amyloid angiopathy. Cellular and Molecular Life Sciences : CMLS, 2015, 72(4): 709-727

    • 11

      Rouault T A. Post-transcriptional regulation of human iron metabolism by iron regulatory proteins. Blood Cells, Molecules & Diseases, 2002, 29(3): 309-314

    • 12

      Mccarthy R C, Kosman D J. Mechanisms and regulation of iron trafficking across the capillary endothelial cells of the blood-brain barrier. Frontiers in Molecular Neuroscience, 2015, 8:31

    • 13

      Nemeth E, Tuttle M S, Powelson J, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science, 2004, 306(5704): 2090-2093

    • 14

      Wang S M, Fu L J, Duan X L, et al. Role of hepcidin in murine brain iron metabolism. Cellular and Molecular Life Sciences : CMLS, 2010, 67(1): 123-133

    • 15

      You L H, Yan C Z, Zheng B J, et al. Astrocyte hepcidin is a key factor in LPS-induced neuronal apoptosis. Cell Death & Disease, 2017, 8(3): e2676

    • 16

      Connor J R, Menzies S L, St Martin S M, et al. A histochemical study of iron, transferrin, and ferritin in Alzheimer's diseased brains. Journal of Neuroscience Research, 1992, 31(1): 75-83

    • 17

      Antharam V, Collingwood J F, Bullivant J P, et al. High field magnetic resonance microscopy of the human hippocampus in Alzheimer's disease: quantitative imaging and correlation with iron. NeuroImage, 2012, 59(2): 1249-1260

    • 18

      Meadowcroft M D, Connor J R, Smith M B, et al. MRI and histological analysis of beta-amyloid plaques in both human Alzheimer's disease and APP/PS1 transgenic mice. Journal of Magnetic Resonance Imaging : JMRI, 2009, 29(5): 997-1007

    • 19

      Ayton S, Lei P, Bush A I. Biometals and their therapeutic implications in Alzheimer's disease. Neurotherapeutics : the Journal of the American Society for Experimental NeuroTherapeutics, 2015, 12(1): 109-120

    • 20

      Lillig C H, Berndt C, Holmgren A. Glutaredoxin systems. Biochimica et Biophysica Acta, 2008, 1780(11): 1304-1317

    • 21

      Mackenzie E L, Iwasaki K, Tsuji Y. Intracellular iron transport and storage: from molecular mechanisms to health implications. Antioxidants & Redox Signaling, 2008, 10(6): 997-1030

    • 22

      Bush A I. Metals and neuroscience. Current Opinion in Chemical Biology, 2000, 4(2): 184-191

    • 23

      Salvador G A, Uranga R M, Giusto N M. Iron and mechanisms of neurotoxicity. International Journal of Alzheimer's Disease, 2010, 2011: 720658

    • 24

      Guillemot J, Canuel M, Essalmani R, et al. Implication of the proprotein convertases in iron homeostasis: proprotein convertase 7 sheds human transferrin receptor 1 and furin activates hepcidin. Hepatology, 2013, 57(6): 2514-2524

    • 25

      Silvestri L, Camaschella C. A potential pathogenetic role of iron in Alzheimer's disease. Journal of Cellular and Molecular Medicine, 2008, 12(5A): 1548-1550

    • 26

      Li X, Liu Y, Zheng Q, et al. Ferritin light chain interacts with PEN-2 and affects gamma-secretase activity. Neuroscience Letters, 2013, 548:90-94

    • 27

      Rogers J T, Randall J D, Cahill C M, et al. An iron-responsive element type II in the 5'-untranslated region of the Alzheimer's amyloid precursor protein transcript. The Journal of Biological Chemistry, 2002, 277(47): 45518-45528

    • 28

      Gamblin T C, King M E, Kuret J, et al. Oxidative regulation of fatty acid-induced tau polymerization. Biochemistry, 2000, 39(46): 14203-14210

    • 29

      Jin Jung K, Hyun Kim D, Kyeong Lee E, et al. Oxidative stress induces inactivation of protein phosphatase 2A, promoting proinflammatory NF-kappaB in aged rat kidney. Free Radical Biology & Medicine, 2013, 61: 206-217

    • 30

      Multhaup G, Huber O, Buee L, et al. Amyloid precursor protein (APP) metabolites APP intracellular fragment (AICD), Abeta42, and Tau in nuclear roles. The Journal of Biological Chemistry, 2015, 290(39): 23515-23522

    • 31

      Duce J A, Tsatsanis A, Cater M A, et al. Iron-export ferroxidase activity of beta-amyloid precursor protein is inhibited by zinc in Alzheimer's disease. Cell, 2010, 142(6): 857-867

    • 32

      Radi E, Formichi P, Battisti C, et al. Apoptosis and oxidative stress in neurodegenerative diseases. Journal of Alzheimer's Disease : JAD, 2014, 42(Suppl 3): S125-152

    • 33

      Davydov V, Hansen L A, Shackelford D A. Is DNA repair compromised in Alzheimer's disease?. Neurobiology of Aging, 2003, 24(7): 953-968

    • 34

      Lassmann H, Bancher C, Breitschopf H, et al. Cell death in Alzheimer's disease evaluated by DNA fragmentation in situ. Acta Neuropathologica, 1995, 89(1): 35-41

    • 35

      Dixon S J, Lemberg K M, Lamprecht M R, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell, 2012, 149(5): 1060-1072

    • 36

      Cao J Y, Dixon S J. Mechanisms of ferroptosis. Cellular and Molecular Life Sciences : CMLS, 2016, 73(11-12): 2195-2209

    • 37

      Wu J R, Tuo Q Z, Lei P. Ferroptosis, a recent defined form of critical cell death in neurological disorders. Journal of Molecular Neuroscience : MN, 2018, 66(2): 197-206

    • 38

      Guiney S J, Adlard P A, Bush A I, et al. Ferroptosis and cell death mechanisms in Parkinson's disease. Neurochemistry International, 2017, 104: 34-48

    • 39

      Hambright W S, Fonseca R S, Chen L, et al. Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration. Redox Biology, 2017, 12:8-17

    • 40

      Stockwell B R, Friedmann Angeli J P, Bayir H, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell, 2017, 171(2): 273-285

    • 41

      Fischer P, Gotz M E, Danielczyk W, et al. Blood transferrin and ferritin in Alzheimer's disease. Life Sciences, 1997, 60(25): 2273-2278

    • 42

      Van Rensburg S J, Carstens M E, Potocnik F C, et al. Increased frequency of the transferrin C2 subtype in Alzheimer's disease. Neuroreport, 1993, 4(11): 1269-1271

    • 43

      Giunta S, Galeazzi R, Valli M B, et al. Transferrin neutralization of amyloid beta 25-35 cytotoxicity. Clinica Chimica Acta; International Journal of Clinical Chemistry, 2004, 350(1-2): 129-136

    • 44

      Raditsis A V, Milojevic J, Melacini G. Abeta association inhibition by transferrin. Biophysical Journal, 2013, 105(2): 473-480

    • 45

      Lu C D, Ma J K, Luo Z Y, et al. Transferrin is responsible for mediating the effects of iron ions on the regulation of anterior pharynx-derective-1 alpha/beta and Presenilin 1 expression via PGE(2) and PGD(2) at the early stage of Alzheimer's disease. Aging-Us, 2018, 10(11): 3117-3135

    • 46

      Lehmann D J, Schuur M, Warden D R, et al. Transferrin and HFE genes interact in Alzheimer's disease risk: the Epistasis Project. Neurobiology of aging, 2012, 33(1): 202.e1-13

    • 47

      Kanodia J S, Gadkar K, Bumbaca D, et al. Prospective Design of anti-transferrin receptor bispecific antibodies for optimal delivery into the human brain. CPT: Pharmacometrics & Systems Pharmacology, 2016, 5(5): 283-291

    • 48

      Morris C M, Candy J M, Keith A B, et al. Brain iron homeostasis. Journal of Inorganic Biochemistry, 1992, 47(3-4): 257-265

    • 49

      Xian-Hui D, Wei-Juan G, Tie-Mei S, et al. Age-related changes of brain iron load changes in the frontal cortex in APPswe/PS1DeltaE9 transgenic mouse model of Alzheimer's disease. Journal of Trace Elements in Medicine and Biology, 2015, 30: 118-123

    • 50

      Lu L N, Qian Z M, Wu K C, et al. Expression of iron transporters and pathological hallmarks of Parkinson's and Alzheimer's diseases in the brain of young, adult, and aged rats. Molecular neurobiology, 2017, 54(7): 5213-5224

    • 51

      Zheng W, Xin N, Chi Z H, et al. Divalent metal transporter 1 is involved in amyloid precursor protein processing and Abeta generation. FASEB J, 2009, 23(12): 4207-4217

    • 52

      Tian J, Zheng W, Li X L, et al. Lower expression of Ndfip1 is associated with Alzheimer disease pathogenesis through decreasing DMT1 degradation and increasing iron influx. Frontiers in Aging Neuroscience, 2018, 10: 165

    • 53

      Xu H M, Jiang H, Xie J X. New insights into the crosstalk between NMDARs and iron: implications for understanding pathology of neurological diseases. Frontiers in Molecular Neuroscience, 2017, 10: 71

    • 54

      Connor J R, Menzies S L, St Martin S M, et al. Cellular distribution of transferrin, ferritin, and iron in normal and aged human brains. Journal of Neuroscience Research, 1990, 27(4): 595-611

    • 55

      Li W, Garringer H J, Goodwin C B, et al. Systemic and cerebral iron homeostasis in ferritin knock-out mice. PloS One, 2015, 10(1): e0117435

    • 56

      Grundke-Iqbal I, Fleming J, Tung Y C, et al. Ferritin is a component of the neuritic (senile) plaque in Alzheimer dementia. Acta Neuropathologica, 1990, 81(2): 105-110

    • 57

      Lopes K O, Sparks D L, Streit W J. Microglial dystrophy in the aged and Alzheimer's disease brain is associated with ferritin immunoreactivity. Glia, 2008, 56(10): 1048-1060

    • 58

      Kwiatek-Majkusiak J, Dickson D W, Tacik P, et al. Relationships between typical histopathological hallmarks and the ferritin in the hippocampus from patients with Alzheimer's disease. Acta Neurobiologiae Experimentalis, 2015, 75(4): 391-398

    • 59

      Kuiper M A, Mulder C, Van Kamp G J, et al. Cerebrospinal fluid ferritin levels of patients with Parkinson's disease, Alzheimer's disease, and multiple system atrophy. Journal of Neural Transmission Parkinson's Disease and Dementia Section, 1994, 7(2): 109-114

    • 60

      Ayton S, Faux N G, Bush A I, et al. Ferritin levels in the cerebrospinal fluid predict Alzheimer's disease outcomes and are regulated by APOE. Nature Communications, 2015, 6: 6760

    • 61

      Nie G, Sheftel A D, Kim S F, et al. Overexpression of mitochondrial ferritin causes cytosolic iron depletion and changes cellular iron homeostasis. Blood, 2005, 105(5): 2161-2167

    • 62

      Wang L, Yang H, Zhao S, et al. Expression and localization of mitochondrial ferritin mRNA in Alzheimer's disease cerebral cortex. PloS One, 2011, 6(7): e22325

    • 63

      Gao G, Zhang N, Wang Y Q, et al. Mitochondrial ferritin protects hydrogen peroxide-induced neuronal cell damage. Aging and Disease, 2017, 8(4): 458-470

    • 64

      Wang Y Q, Chang S Y, Wu Q, et al. The protective role of mitochondrial ferritin on erastin-induced ferroptosis. Frontiers in Aging Neuroscience, 2016, 8: 308

    • 65

      Wu W S, Zhao Y S, Shi Z H, et al. Mitochondrial ferritin attenuates beta-amyloid-induced neurotoxicity: reduction in oxidative damage through the Erk/P38 mitogen-activated protein kinase pathways. Antioxidants & Redox Signaling, 2013, 18(2): 158-169

    • 66

      Raha A A, Vaishnav R A, Friedland R P, et al. The systemic iron-regulatory proteins hepcidin and ferroportin are reduced in the brain in Alzheimer's disease. Acta Neuropathologica Communications, 2013, 1: 55

    • 67

      Hofer T, Perry G. Nucleic acid oxidative damage in Alzheimer's disease-explained by the hepcidin-ferroportin neuronal iron overload hypothesis?. Journal of Trace Elements in Medicine and Biology, 2016, 38: 1-9

    • 68

      Wong B X, Tsatsanis A, Lim L Q, et al. beta-Amyloid precursor protein does not possess ferroxidase activity but does stabilize the cell surface ferrous iron exporter ferroportin. PloS One, 2014, 9(12): e114174

    • 69

      Mccarthy R C, Park Y H, Kosman D J. sAPP modulates iron efflux from brain microvascular endothelial cells by stabilizing the ferrous iron exporter ferroportin. EMBO Reports, 2014, 15(7): 809-815

    • 70

      Roeser H P, Lee G R, Nacht S, et al. The role of ceruloplasmin in iron metabolism. The Journal of Clinical Investigation, 1970, 49(12): 2408-2417

    • 71

      Patel B N, David S. A novel glycosylphosphatidylinositol-anchored form of ceruloplasmin is expressed by mammalian astrocytes. The Journal of Biological Chemistry, 1997, 272(32): 20185-20190

    • 72

      Loeffler D A, Sima A A, Lewitt P A. Ceruloplasmin immunoreactivity in neurodegenerative disorders. Free Radical Research, 2001, 35(2): 111-118

    • 73

      Connor J R, Tucker P, Johnson M, et al. Ceruloplasmin levels in the human superior temporal gyrus in aging and Alzheimer's disease. Neuroscience Letters, 1993, 159(1-2): 88-90

    • 74

      Zhao Y S, Zhang L H, Yu P P, et al. Ceruloplasmin, a potential therapeutic agent for Alzheimer's disease. Antioxidants & Redox Signaling, 2018, 28(14): 1323-1337

    • 75

      Smith M A, Wehr K, Harris P L, et al. Abnormal localization of iron regulatory protein in Alzheimer's disease. Brain Research, 1998, 788(1-2): 232-236

    • 76

      Pinero D J, Hu J, Connor J R. Alterations in the interaction between iron regulatory proteins and their iron responsive element in normal and Alzheimer's diseased brains. Cellular and Molecular Biology, 2000, 46(4): 761-776

    • 77

      Rogers J T, Bush A I, Cho H H, et al. Iron and the translation of the amyloid precursor protein (APP) and ferritin mRNAs: riboregulation against neural oxidative damage in Alzheimer's disease. Biochemical Society Transactions, 2008, 36(Pt 6): 1282-1287

    • 78

      Bandyopadhyay S, Huang X, Cho H, et al. Metal specificity of an iron-responsive element in Alzheimer's APP mRNA 5'untranslated region, tolerance of SH-SY5Y and H4 neural cells to desferrioxamine, clioquinol, VK-28, and a piperazine chelator. Journal of Neural Transmission Supplementum, 2006(71): 237-247

    • 79

      Cho H H, Cahill C M, Vanderburg C R, et al. Selective translational control of the Alzheimer amyloid precursor protein transcript by iron regulatory protein-1. The Journal of Biological Chemistry, 2010, 285(41): 31217-31232

    • 80

      Urrutia P J, Hirsch E C, Gonzalez-Billault C, et al. Hepcidin attenuates amyloid beta-induced inflammatory and pro-oxidant responses in astrocytes and microglia. Journal of Neurochemistry, 2017, 142(1): 140-152

    • 81

      Du F, Qian Z M, Luo Q, et al. Hepcidin suppresses brain iron accumulation by downregulating iron transport proteins in iron-overloaded rats. Molecular Neurobiology, 2015, 52(1): 101-114

    • 82

      Vela D. The Dual Role of Hepcidin in brain iron load and inflammation. Frontiers in Neuroscience, 2018, 12: 740

    • 83

      Adlard P A, Bush A I. Metals and Alzheimer's disease: how far have we come in the clinic?. Journal of Alzheimer's Disease : JAD, 2018, 62(3): 1369-1379

    • 84

      Crapper Mclachlan D R, Dalton A J, Kruck T P, et al. Intramuscular desferrioxamine in patients with Alzheimer's disease. Lancet, 1991, 337(8753): 1304-1308

    • 85

      Kupershmidt L, Amit T, Bar-Am O, et al. The novel multi-target iron chelating-radical scavenging compound M30 possesses beneficial effects on major hallmarks of Alzheimer's disease. Antioxidants & Redox Signaling, 2012, 17(6): 860-877

    • 86

      Zhang Y, He M L. Deferoxamine enhances alternative activation of microglia and inhibits amyloid beta deposits in APP/PS1 mice. Brain Research, 2017, 1677: 86-92

    • 87

      Guo C, Wang P, Zhong M L, et al. Deferoxamine inhibits iron induced hippocampal tau phosphorylation in the Alzheimer transgenic mouse brain. Neurochemistry International, 2013, 62(2): 165-172

    • 88

      Guo C, Zhang Y X, Wang T, et al. Intranasal deferoxamine attenuates synapse loss via up-regulating the P38/HIF-1alpha pathway on the brain of APP/PS1 transgenic mice. Frontiers in Aging Neuroscience, 2015, 7: 104

    • 89

      You L, Wang J, Liu T, et al. Targeted brain delivery of rabies virus glycoprotein 29-modified deferoxamine-loaded nanoparticles reverses functional deficits in Parkinsonian mice. ACS Nano, 2018, 12(5): 4123-4139

    • 90

      Tucker S, Ahl M, Cho H H, et al. RNA therapeutics directed to the non coding regions of APP mRNA, in vivo anti-amyloid efficacy of paroxetine, erythromycin, and N-acetyl cysteine. Current Alzheimer Research, 2006, 3(3): 221-227

    • 91

      Maccecchini M L, Chang M Y, Pan C, et al. Posiphen as a candidate drug to lower CSF amyloid precursor protein, amyloid-beta peptide and tau levels: target engagement, tolerability and pharmacokinetics in humans. Journal of Neurology, Neurosurgery, and Psychiatry, 2012, 83(9): 894-902

    • 92

      Zhou Y F, Zhang C, Yang G, et al. Hepcidin protects neuron from hemin-mediated injury by reducing iron. Frontiers in Physiology, 2017, 8: 332

    • 93

      Kagan V E, Mao G, Qu F, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nature Chemical Biology, 2017, 13(1): 81-90

    • 94

      Epperly T, Dunay M A, Boice J L. Alzheimer disease: pharmacologic and nonpharmacologic therapies for cognitive and functional symptoms. Am Fam Physician, 2017, 95(12): 771-778

    • 95

      Gugliandolo A, Bramanti P, Mazzon E. Role of vitamin E in the treatment of Alzheimer's disease: evidence from animal models. International Journal of Molecular Sciences, 2017, 18(12): 2504

    • 96

      Persson H L, Yu Z, Tirosh O, et al. Prevention of oxidant-induced cell death by lysosomotropic iron chelators. Free Radical Biology & Medicine, 2003, 34(10): 1295-1305

    • 97

      Hager K, Kenklies M, Mcafoose J, et al. alpha-Lipoic acid as a new treatment option for Alzheimer's disease - a 48 months follow-up analysis. J Neural Transm-Supp, 2007(72): 189-193

    • 98

      Zhang Y H, Wang D W, Xu S F, et al. alpha-Lipoic acid improves abnormal behavior by mitigation of oxidative stress, inflammation, ferroptosis, and tauopathy in P301S Tau transgenic mice. Redox Biology, 2018, 14: 535-548

徐永

机 构:河北师范大学生命科学学院,石家庄 050024

Affiliation:College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China

张雅婷

机 构:河北师范大学生命科学学院,石家庄 050024

Affiliation:College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China

李洁

机 构:河北师范大学生命科学学院,石家庄 050024

Affiliation:College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China

洪钏

机 构:河北省计量监督检测研究院,石家庄 050051

Affiliation:Institute of Metrology of Hebei Province, Shijiazhuang 050051, China

张欣韦

机 构:河北师范大学生命科学学院,石家庄 050024

Affiliation:College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China

高国粉

机 构:河北师范大学生命科学学院,石家庄 050024

Affiliation:College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China

角 色:通讯作者

Role:Corresponding author

电 话:15631123003

邮 箱:guofen83@hotmail.com

作者简介:高国粉. Tel:15631123003, E-mail: guofen83@hotmail.com

常彦忠

机 构:河北师范大学生命科学学院,石家庄 050024

Affiliation:College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China

角 色:通讯作者

Role:Corresponding author

名称作用AD中的变化

转铁蛋白

(Tf)

运输铁的蛋白质,可结合Fe3+,通过识别细胞膜上的TfR1,将铁运入细胞.

Tf在老年斑周围表达增高,星形胶质细胞中表达,胞外形式增[16];Tf C2亚型增[42];Tf抑制 Aβ单体积聚成多聚[43];3月龄APP/PS1小鼠脑内Tf表达显著增[45].

转铁蛋白受体1 (TfR1)铁摄入蛋白,与携带Fe3+的Tf结合,将铁转入细胞内.TfR1在3月龄APP/PS1小鼠脑皮层和海马区表达升[45];Tf-TfR通过调控铁水平,诱导APH1和PS1表[45].

二价金属离子

转运体1

(DMT1)

细胞膜上的离子通道蛋白,控制Fe2+的摄取和吸收.

AD患者和APP/PS1小鼠脑皮层区和海马区Aβ斑附近的DMT1升[49];降低细胞DMT1的表达量时,APP表达减少、Aβ降[51];DMT1的泛素化酶Ndfip1在APP/PS1小鼠脑皮层和海马区的表达量降低;过表达Ndfip1时,DMT1表达降低,细胞铁摄入和Aβ生成减[52].

铁蛋白

(ferritin)

细胞内的储铁蛋白、可调节自由铁池、维持细胞铁稳态.AD病人脑海马区老年斑及周围血管中ferritin增高,且主要出现在小胶质细胞和星形胶质细[16,56];H-ferritin和L-ferritin的表达水平和比例发生了变化,海马CA1和CA4区增[61];AD病人的CSF中 ferritin升[59].

线粒体铁蛋白

(FtMt)

线粒体内储铁蛋白,结合线粒体内游离铁,调节胞质和线粒体之间铁分布.

AD患者脑皮层区FtMt mRNA和蛋白水平显著升[62];FtMt过表达可改善Aβ诱导的铁代谢紊乱,通过激活p38-MAPK通路和Erk信号通路减少氧化损[65].

膜铁转运蛋白(FPN1)跨膜铁输出蛋白,可将细胞内的铁释放出来.AD患者和动物模型的皮层区、海马区FPN1显著下[49,66]. APP可以稳定细胞膜上的FPN1[68]. sAPP通过稳定脑微血管内皮细胞基底面FPN1,帮助铁释放入脑.

铜蓝蛋白

(CP)

将Fe2+氧化为Fe3+,促进铁从细胞中释放.AD患者脑海马CA1区域表达的CP显著增高,额叶皮层和顶叶皮层老年斑附近表达的CP有增高的趋势,但无统计学差[72];AD患者颞上回CP水平显著下[73].

铁调节蛋白(IRP1/IRP2)

与IRE结合,调节细胞内铁代谢相关蛋白质的表达.

AD 患者Aβ斑块和tau纤维缠结处出现IRP2沉[75];AD脑中的IRP-IRE复合物更稳定,导致铁摄入增[76],加重Aβ沉积和AD神经元丢[82];IRPs可结合APP mRNA的5'-UTR[78],增强APP mRNA翻译和Aβ生[79].

铁调素(Hepcidin)

诱导FPN1内化降解,或抑制FPN1活性,控制细胞铁的释放量.AD病人和小鼠模型脑内hepcidin表达下[75];hepcidin能降低Aβ诱导的神经炎症和氧化损伤、减轻Aβ诱导的神经毒[80]. 严重炎症存在时,hepcidin可能会加重神经元的损[82]

表1 AD脑中铁代谢相关蛋白质的改变

Table 1 Alterations of iron metabolism-related proteins in AD brains

image /

无注解

  • 参 考 文 献

    • 1

      Selkoe D J. Amyloid beta-protein and the genetics of Alzheimer's disease. The Journal of Biological Chemistry, 1996, 271(31): 18295-18298

    • 2

      Jan A T, Azam M, Rahman S, et al. Perspective insights into disease progression, diagnostics, and therapeutic approaches in Alzheimer's disease: a judicious update. Frontiers in Aging Neuroscience, 2017, 9: 356

    • 3

      Lane D J R, Ayton S, Bush A I. Iron and Alzheimer's disease: an update on emerging mechanisms. Journal of Alzheimer's Disease : JAD, 2018, 64(s1): S379-S395

    • 4

      Thompson K J, Shoham S, Connor J R. Iron and neurodegenerative disorders. Brain Research Bulletin, 2001, 55(2): 155-164

    • 5

      Connor J R, Menzies S L. Relationship of iron to oligodendrocytes and myelination. Glia, 1996, 17(2): 83-93

    • 6

      Todorich B, Pasquini J M, Garcia C I, et al. Oligodendrocytes and myelination: the role of iron. Glia, 2009, 57(5): 467-478

    • 7

      Georgieff M K. Iron assessment to protect the developing brain. The American Journal Of Clinical Nutrition, 2017, 106(Suppl 6): 1588S-1593S

    • 8

      Ashraf A, Clark M, So P W. The aging of iron man. Frontiers in Aging Neuroscience, 2018, 10: 65.

    • 9

      Mills E, Dong X P, Wang F, et al. Mechanisms of brain iron transport: insight into neurodegeneration and CNS disorders. Future Medicinal Chemistry, 2010, 2(1): 51-64

    • 10

      Mccarthy R C, Kosman D J. Iron transport across the blood-brain barrier: development, neurovascular regulation and cerebral amyloid angiopathy. Cellular and Molecular Life Sciences : CMLS, 2015, 72(4): 709-727

    • 11

      Rouault T A. Post-transcriptional regulation of human iron metabolism by iron regulatory proteins. Blood Cells, Molecules & Diseases, 2002, 29(3): 309-314

    • 12

      Mccarthy R C, Kosman D J. Mechanisms and regulation of iron trafficking across the capillary endothelial cells of the blood-brain barrier. Frontiers in Molecular Neuroscience, 2015, 8:31

    • 13

      Nemeth E, Tuttle M S, Powelson J, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science, 2004, 306(5704): 2090-2093

    • 14

      Wang S M, Fu L J, Duan X L, et al. Role of hepcidin in murine brain iron metabolism. Cellular and Molecular Life Sciences : CMLS, 2010, 67(1): 123-133

    • 15

      You L H, Yan C Z, Zheng B J, et al. Astrocyte hepcidin is a key factor in LPS-induced neuronal apoptosis. Cell Death & Disease, 2017, 8(3): e2676

    • 16

      Connor J R, Menzies S L, St Martin S M, et al. A histochemical study of iron, transferrin, and ferritin in Alzheimer's diseased brains. Journal of Neuroscience Research, 1992, 31(1): 75-83

    • 17

      Antharam V, Collingwood J F, Bullivant J P, et al. High field magnetic resonance microscopy of the human hippocampus in Alzheimer's disease: quantitative imaging and correlation with iron. NeuroImage, 2012, 59(2): 1249-1260

    • 18

      Meadowcroft M D, Connor J R, Smith M B, et al. MRI and histological analysis of beta-amyloid plaques in both human Alzheimer's disease and APP/PS1 transgenic mice. Journal of Magnetic Resonance Imaging : JMRI, 2009, 29(5): 997-1007

    • 19

      Ayton S, Lei P, Bush A I. Biometals and their therapeutic implications in Alzheimer's disease. Neurotherapeutics : the Journal of the American Society for Experimental NeuroTherapeutics, 2015, 12(1): 109-120

    • 20

      Lillig C H, Berndt C, Holmgren A. Glutaredoxin systems. Biochimica et Biophysica Acta, 2008, 1780(11): 1304-1317

    • 21

      Mackenzie E L, Iwasaki K, Tsuji Y. Intracellular iron transport and storage: from molecular mechanisms to health implications. Antioxidants & Redox Signaling, 2008, 10(6): 997-1030

    • 22

      Bush A I. Metals and neuroscience. Current Opinion in Chemical Biology, 2000, 4(2): 184-191

    • 23

      Salvador G A, Uranga R M, Giusto N M. Iron and mechanisms of neurotoxicity. International Journal of Alzheimer's Disease, 2010, 2011: 720658

    • 24

      Guillemot J, Canuel M, Essalmani R, et al. Implication of the proprotein convertases in iron homeostasis: proprotein convertase 7 sheds human transferrin receptor 1 and furin activates hepcidin. Hepatology, 2013, 57(6): 2514-2524

    • 25

      Silvestri L, Camaschella C. A potential pathogenetic role of iron in Alzheimer's disease. Journal of Cellular and Molecular Medicine, 2008, 12(5A): 1548-1550

    • 26

      Li X, Liu Y, Zheng Q, et al. Ferritin light chain interacts with PEN-2 and affects gamma-secretase activity. Neuroscience Letters, 2013, 548:90-94

    • 27

      Rogers J T, Randall J D, Cahill C M, et al. An iron-responsive element type II in the 5'-untranslated region of the Alzheimer's amyloid precursor protein transcript. The Journal of Biological Chemistry, 2002, 277(47): 45518-45528

    • 28

      Gamblin T C, King M E, Kuret J, et al. Oxidative regulation of fatty acid-induced tau polymerization. Biochemistry, 2000, 39(46): 14203-14210

    • 29

      Jin Jung K, Hyun Kim D, Kyeong Lee E, et al. Oxidative stress induces inactivation of protein phosphatase 2A, promoting proinflammatory NF-kappaB in aged rat kidney. Free Radical Biology & Medicine, 2013, 61: 206-217

    • 30

      Multhaup G, Huber O, Buee L, et al. Amyloid precursor protein (APP) metabolites APP intracellular fragment (AICD), Abeta42, and Tau in nuclear roles. The Journal of Biological Chemistry, 2015, 290(39): 23515-23522

    • 31

      Duce J A, Tsatsanis A, Cater M A, et al. Iron-export ferroxidase activity of beta-amyloid precursor protein is inhibited by zinc in Alzheimer's disease. Cell, 2010, 142(6): 857-867

    • 32

      Radi E, Formichi P, Battisti C, et al. Apoptosis and oxidative stress in neurodegenerative diseases. Journal of Alzheimer's Disease : JAD, 2014, 42(Suppl 3): S125-152

    • 33

      Davydov V, Hansen L A, Shackelford D A. Is DNA repair compromised in Alzheimer's disease?. Neurobiology of Aging, 2003, 24(7): 953-968

    • 34

      Lassmann H, Bancher C, Breitschopf H, et al. Cell death in Alzheimer's disease evaluated by DNA fragmentation in situ. Acta Neuropathologica, 1995, 89(1): 35-41

    • 35

      Dixon S J, Lemberg K M, Lamprecht M R, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell, 2012, 149(5): 1060-1072

    • 36

      Cao J Y, Dixon S J. Mechanisms of ferroptosis. Cellular and Molecular Life Sciences : CMLS, 2016, 73(11-12): 2195-2209

    • 37

      Wu J R, Tuo Q Z, Lei P. Ferroptosis, a recent defined form of critical cell death in neurological disorders. Journal of Molecular Neuroscience : MN, 2018, 66(2): 197-206

    • 38

      Guiney S J, Adlard P A, Bush A I, et al. Ferroptosis and cell death mechanisms in Parkinson's disease. Neurochemistry International, 2017, 104: 34-48

    • 39

      Hambright W S, Fonseca R S, Chen L, et al. Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration. Redox Biology, 2017, 12:8-17

    • 40

      Stockwell B R, Friedmann Angeli J P, Bayir H, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell, 2017, 171(2): 273-285

    • 41

      Fischer P, Gotz M E, Danielczyk W, et al. Blood transferrin and ferritin in Alzheimer's disease. Life Sciences, 1997, 60(25): 2273-2278

    • 42

      Van Rensburg S J, Carstens M E, Potocnik F C, et al. Increased frequency of the transferrin C2 subtype in Alzheimer's disease. Neuroreport, 1993, 4(11): 1269-1271

    • 43

      Giunta S, Galeazzi R, Valli M B, et al. Transferrin neutralization of amyloid beta 25-35 cytotoxicity. Clinica Chimica Acta; International Journal of Clinical Chemistry, 2004, 350(1-2): 129-136

    • 44

      Raditsis A V, Milojevic J, Melacini G. Abeta association inhibition by transferrin. Biophysical Journal, 2013, 105(2): 473-480

    • 45

      Lu C D, Ma J K, Luo Z Y, et al. Transferrin is responsible for mediating the effects of iron ions on the regulation of anterior pharynx-derective-1 alpha/beta and Presenilin 1 expression via PGE(2) and PGD(2) at the early stage of Alzheimer's disease. Aging-Us, 2018, 10(11): 3117-3135

    • 46

      Lehmann D J, Schuur M, Warden D R, et al. Transferrin and HFE genes interact in Alzheimer's disease risk: the Epistasis Project. Neurobiology of aging, 2012, 33(1): 202.e1-13

    • 47

      Kanodia J S, Gadkar K, Bumbaca D, et al. Prospective Design of anti-transferrin receptor bispecific antibodies for optimal delivery into the human brain. CPT: Pharmacometrics & Systems Pharmacology, 2016, 5(5): 283-291

    • 48

      Morris C M, Candy J M, Keith A B, et al. Brain iron homeostasis. Journal of Inorganic Biochemistry, 1992, 47(3-4): 257-265

    • 49

      Xian-Hui D, Wei-Juan G, Tie-Mei S, et al. Age-related changes of brain iron load changes in the frontal cortex in APPswe/PS1DeltaE9 transgenic mouse model of Alzheimer's disease. Journal of Trace Elements in Medicine and Biology, 2015, 30: 118-123

    • 50

      Lu L N, Qian Z M, Wu K C, et al. Expression of iron transporters and pathological hallmarks of Parkinson's and Alzheimer's diseases in the brain of young, adult, and aged rats. Molecular neurobiology, 2017, 54(7): 5213-5224

    • 51

      Zheng W, Xin N, Chi Z H, et al. Divalent metal transporter 1 is involved in amyloid precursor protein processing and Abeta generation. FASEB J, 2009, 23(12): 4207-4217

    • 52

      Tian J, Zheng W, Li X L, et al. Lower expression of Ndfip1 is associated with Alzheimer disease pathogenesis through decreasing DMT1 degradation and increasing iron influx. Frontiers in Aging Neuroscience, 2018, 10: 165

    • 53

      Xu H M, Jiang H, Xie J X. New insights into the crosstalk between NMDARs and iron: implications for understanding pathology of neurological diseases. Frontiers in Molecular Neuroscience, 2017, 10: 71

    • 54

      Connor J R, Menzies S L, St Martin S M, et al. Cellular distribution of transferrin, ferritin, and iron in normal and aged human brains. Journal of Neuroscience Research, 1990, 27(4): 595-611

    • 55

      Li W, Garringer H J, Goodwin C B, et al. Systemic and cerebral iron homeostasis in ferritin knock-out mice. PloS One, 2015, 10(1): e0117435

    • 56

      Grundke-Iqbal I, Fleming J, Tung Y C, et al. Ferritin is a component of the neuritic (senile) plaque in Alzheimer dementia. Acta Neuropathologica, 1990, 81(2): 105-110

    • 57

      Lopes K O, Sparks D L, Streit W J. Microglial dystrophy in the aged and Alzheimer's disease brain is associated with ferritin immunoreactivity. Glia, 2008, 56(10): 1048-1060

    • 58

      Kwiatek-Majkusiak J, Dickson D W, Tacik P, et al. Relationships between typical histopathological hallmarks and the ferritin in the hippocampus from patients with Alzheimer's disease. Acta Neurobiologiae Experimentalis, 2015, 75(4): 391-398

    • 59

      Kuiper M A, Mulder C, Van Kamp G J, et al. Cerebrospinal fluid ferritin levels of patients with Parkinson's disease, Alzheimer's disease, and multiple system atrophy. Journal of Neural Transmission Parkinson's Disease and Dementia Section, 1994, 7(2): 109-114

    • 60

      Ayton S, Faux N G, Bush A I, et al. Ferritin levels in the cerebrospinal fluid predict Alzheimer's disease outcomes and are regulated by APOE. Nature Communications, 2015, 6: 6760

    • 61

      Nie G, Sheftel A D, Kim S F, et al. Overexpression of mitochondrial ferritin causes cytosolic iron depletion and changes cellular iron homeostasis. Blood, 2005, 105(5): 2161-2167

    • 62

      Wang L, Yang H, Zhao S, et al. Expression and localization of mitochondrial ferritin mRNA in Alzheimer's disease cerebral cortex. PloS One, 2011, 6(7): e22325

    • 63

      Gao G, Zhang N, Wang Y Q, et al. Mitochondrial ferritin protects hydrogen peroxide-induced neuronal cell damage. Aging and Disease, 2017, 8(4): 458-470

    • 64

      Wang Y Q, Chang S Y, Wu Q, et al. The protective role of mitochondrial ferritin on erastin-induced ferroptosis. Frontiers in Aging Neuroscience, 2016, 8: 308

    • 65

      Wu W S, Zhao Y S, Shi Z H, et al. Mitochondrial ferritin attenuates beta-amyloid-induced neurotoxicity: reduction in oxidative damage through the Erk/P38 mitogen-activated protein kinase pathways. Antioxidants & Redox Signaling, 2013, 18(2): 158-169

    • 66

      Raha A A, Vaishnav R A, Friedland R P, et al. The systemic iron-regulatory proteins hepcidin and ferroportin are reduced in the brain in Alzheimer's disease. Acta Neuropathologica Communications, 2013, 1: 55

    • 67

      Hofer T, Perry G. Nucleic acid oxidative damage in Alzheimer's disease-explained by the hepcidin-ferroportin neuronal iron overload hypothesis?. Journal of Trace Elements in Medicine and Biology, 2016, 38: 1-9

    • 68

      Wong B X, Tsatsanis A, Lim L Q, et al. beta-Amyloid precursor protein does not possess ferroxidase activity but does stabilize the cell surface ferrous iron exporter ferroportin. PloS One, 2014, 9(12): e114174

    • 69

      Mccarthy R C, Park Y H, Kosman D J. sAPP modulates iron efflux from brain microvascular endothelial cells by stabilizing the ferrous iron exporter ferroportin. EMBO Reports, 2014, 15(7): 809-815

    • 70

      Roeser H P, Lee G R, Nacht S, et al. The role of ceruloplasmin in iron metabolism. The Journal of Clinical Investigation, 1970, 49(12): 2408-2417

    • 71

      Patel B N, David S. A novel glycosylphosphatidylinositol-anchored form of ceruloplasmin is expressed by mammalian astrocytes. The Journal of Biological Chemistry, 1997, 272(32): 20185-20190

    • 72

      Loeffler D A, Sima A A, Lewitt P A. Ceruloplasmin immunoreactivity in neurodegenerative disorders. Free Radical Research, 2001, 35(2): 111-118

    • 73

      Connor J R, Tucker P, Johnson M, et al. Ceruloplasmin levels in the human superior temporal gyrus in aging and Alzheimer's disease. Neuroscience Letters, 1993, 159(1-2): 88-90

    • 74

      Zhao Y S, Zhang L H, Yu P P, et al. Ceruloplasmin, a potential therapeutic agent for Alzheimer's disease. Antioxidants & Redox Signaling, 2018, 28(14): 1323-1337

    • 75

      Smith M A, Wehr K, Harris P L, et al. Abnormal localization of iron regulatory protein in Alzheimer's disease. Brain Research, 1998, 788(1-2): 232-236

    • 76

      Pinero D J, Hu J, Connor J R. Alterations in the interaction between iron regulatory proteins and their iron responsive element in normal and Alzheimer's diseased brains. Cellular and Molecular Biology, 2000, 46(4): 761-776

    • 77

      Rogers J T, Bush A I, Cho H H, et al. Iron and the translation of the amyloid precursor protein (APP) and ferritin mRNAs: riboregulation against neural oxidative damage in Alzheimer's disease. Biochemical Society Transactions, 2008, 36(Pt 6): 1282-1287

    • 78

      Bandyopadhyay S, Huang X, Cho H, et al. Metal specificity of an iron-responsive element in Alzheimer's APP mRNA 5'untranslated region, tolerance of SH-SY5Y and H4 neural cells to desferrioxamine, clioquinol, VK-28, and a piperazine chelator. Journal of Neural Transmission Supplementum, 2006(71): 237-247

    • 79

      Cho H H, Cahill C M, Vanderburg C R, et al. Selective translational control of the Alzheimer amyloid precursor protein transcript by iron regulatory protein-1. The Journal of Biological Chemistry, 2010, 285(41): 31217-31232

    • 80

      Urrutia P J, Hirsch E C, Gonzalez-Billault C, et al. Hepcidin attenuates amyloid beta-induced inflammatory and pro-oxidant responses in astrocytes and microglia. Journal of Neurochemistry, 2017, 142(1): 140-152

    • 81

      Du F, Qian Z M, Luo Q, et al. Hepcidin suppresses brain iron accumulation by downregulating iron transport proteins in iron-overloaded rats. Molecular Neurobiology, 2015, 52(1): 101-114

    • 82

      Vela D. The Dual Role of Hepcidin in brain iron load and inflammation. Frontiers in Neuroscience, 2018, 12: 740

    • 83

      Adlard P A, Bush A I. Metals and Alzheimer's disease: how far have we come in the clinic?. Journal of Alzheimer's Disease : JAD, 2018, 62(3): 1369-1379

    • 84

      Crapper Mclachlan D R, Dalton A J, Kruck T P, et al. Intramuscular desferrioxamine in patients with Alzheimer's disease. Lancet, 1991, 337(8753): 1304-1308

    • 85

      Kupershmidt L, Amit T, Bar-Am O, et al. The novel multi-target iron chelating-radical scavenging compound M30 possesses beneficial effects on major hallmarks of Alzheimer's disease. Antioxidants & Redox Signaling, 2012, 17(6): 860-877

    • 86

      Zhang Y, He M L. Deferoxamine enhances alternative activation of microglia and inhibits amyloid beta deposits in APP/PS1 mice. Brain Research, 2017, 1677: 86-92

    • 87

      Guo C, Wang P, Zhong M L, et al. Deferoxamine inhibits iron induced hippocampal tau phosphorylation in the Alzheimer transgenic mouse brain. Neurochemistry International, 2013, 62(2): 165-172

    • 88

      Guo C, Zhang Y X, Wang T, et al. Intranasal deferoxamine attenuates synapse loss via up-regulating the P38/HIF-1alpha pathway on the brain of APP/PS1 transgenic mice. Frontiers in Aging Neuroscience, 2015, 7: 104

    • 89

      You L, Wang J, Liu T, et al. Targeted brain delivery of rabies virus glycoprotein 29-modified deferoxamine-loaded nanoparticles reverses functional deficits in Parkinsonian mice. ACS Nano, 2018, 12(5): 4123-4139

    • 90

      Tucker S, Ahl M, Cho H H, et al. RNA therapeutics directed to the non coding regions of APP mRNA, in vivo anti-amyloid efficacy of paroxetine, erythromycin, and N-acetyl cysteine. Current Alzheimer Research, 2006, 3(3): 221-227

    • 91

      Maccecchini M L, Chang M Y, Pan C, et al. Posiphen as a candidate drug to lower CSF amyloid precursor protein, amyloid-beta peptide and tau levels: target engagement, tolerability and pharmacokinetics in humans. Journal of Neurology, Neurosurgery, and Psychiatry, 2012, 83(9): 894-902

    • 92

      Zhou Y F, Zhang C, Yang G, et al. Hepcidin protects neuron from hemin-mediated injury by reducing iron. Frontiers in Physiology, 2017, 8: 332

    • 93

      Kagan V E, Mao G, Qu F, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nature Chemical Biology, 2017, 13(1): 81-90

    • 94

      Epperly T, Dunay M A, Boice J L. Alzheimer disease: pharmacologic and nonpharmacologic therapies for cognitive and functional symptoms. Am Fam Physician, 2017, 95(12): 771-778

    • 95

      Gugliandolo A, Bramanti P, Mazzon E. Role of vitamin E in the treatment of Alzheimer's disease: evidence from animal models. International Journal of Molecular Sciences, 2017, 18(12): 2504

    • 96

      Persson H L, Yu Z, Tirosh O, et al. Prevention of oxidant-induced cell death by lysosomotropic iron chelators. Free Radical Biology & Medicine, 2003, 34(10): 1295-1305

    • 97

      Hager K, Kenklies M, Mcafoose J, et al. alpha-Lipoic acid as a new treatment option for Alzheimer's disease - a 48 months follow-up analysis. J Neural Transm-Supp, 2007(72): 189-193

    • 98

      Zhang Y H, Wang D W, Xu S F, et al. alpha-Lipoic acid improves abnormal behavior by mitigation of oxidative stress, inflammation, ferroptosis, and tauopathy in P301S Tau transgenic mice. Redox Biology, 2018, 14: 535-548