• Volume 51,Issue 5,2024 Table of Contents
    Select All
    Display Type: |
    • >Reviews and Monographs
    • Endo-beta-N-acetylglucosaminidase: Possible Functions and Mechanisms

      2024, 51(5):985-999. DOI: 10.16476/j.pibb.2023.0268 CSTR: 32369.14.pibb.20230268

      Abstract (1646) HTML (319) PDF 2.35 M (877) Comment (0) Favorites

      Abstract:Endo-beta-N-acetylglucosaminidase (ENGase) is widely distributed in various organisms. The first reported ENGase activity was detected in Diplococcus pneumoniae in 1971. The protein (Endo D) was purified and its peptide sequence was determined in 1974. Three ENGases (Endo F1-F3) were discovered in Flavobacterium meningosepticum from 1982 to 1993. After that, the activity was detected from different species of bacteria, yeast, fungal, plant, mice, human, etc. Multiple ENGases were detected in some species, such as Arabidopsis thaliana and Trichoderma atroviride. The first preliminary crystallographic analysis of ENGase was conducted in 1994. But to date, only a few ENGases structures have been obtained, and the structure of human ENGase is still missing. The currently identified ENGases were distributed in the GH18 or GH85 families in Carbohydrate-Active enZyme (CAZy) database. GH18 ENGase only has hydrolytic activity, but GH85 ENGase has both hydrolytic and transglycosylation activity. Although ENGases of the two families have similar (β/α)8-TIM barrel structures, the active sites are slightly different. ENGase is an effective tool for glycan detection and glycan editing. Biochemically, ENGase can specifically hydrolyze β-1,4 glycosidic bond between the two N-acetylglucosamines (GlcNAc) on core pentasaccharide presented on glycopeptides and/or glycoproteins. Different ENGases may have different substrate specificity. The hydrolysis products are oligosaccharide chains and a GlcNAc or glycopeptides or glycoproteins with a GlcNAc. Conditionally, it can use the two products to produce a new glycopeptides or glycoprotein. Although ENGase is a common presentation in cell, its biological function remains unclear. Accumulated evidences demonstrated that ENGase is a none essential gene for living and a key regulator for differentiation. No ENGase gene was detected in the genomes of Saccharomyces cerevisiae and three other yeast species. Its expression was extremely low in lung. As glycoproteins are not produced by prokaryotic cells, a role for nutrition and/or microbial-host interaction was predicted for bacterium produced enzymes. In the embryonic lethality phenotype of the Ngly1-deficient mice can be partially rescued by Engase knockout, suggesting down regulation of Engase might be a solution for stress induced adaptation. Potential impacts of ENGase regulation on health and disease were presented. Rabeprazole, a drug used for stomach pain as a proton inhibitor, was identified as an inhibitor for ENGase. ENGases have been applied in vitro to produce antibodies with a designated glycan. The two step reactions were achieved by a pair of ENGase dominated for hydrolysis of substrate glycoprotein and synthesis of new glycoprotein with a free glycan of designed structure, respectively. In addition, ENGase was also been used in cell surface glycan editing. New application scenarios and new detection methods for glycobiological engineering are quickly opened up by the two functions of ENGase, especially in antibody remodeling and antibody drug conjugates. The discovery, distribution, structure property, enzymatic characteristics and recent researches in topical model organisms of ENGase were reviewed in this paper. Possible biological functions and mechanisms of ENGase, including differentiation, digestion of glycoproteins for nutrition and stress responding were hypothesised. In addition, the role of ENGase in glycan editing and synthetic biology was discussed. We hope this paper may provide insights for ENGase research and lay a solid foundation for applied and translational glycomics.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
    • Plasticity of Cultured Neural Networks In Vitro

      2024, 51(5):1000-1009. DOI: 10.16476/j.pibb.2023.0216 CSTR: 32369.14.pibb.20230216

      Abstract (893) HTML (311) PDF 3.57 M (893) Comment (0) Favorites

      Abstract:Neuronal network is the structural basis for the execution of higher cognitive functions in the brain. Research has shown that learning, memory, and neurodegenerative diseases are closely related to neuronal network plasticity. Therefore, uncovering the mechanisms that regulate and modify neuronal network plasticity is of great significance for understanding information processing in the nervous system and for the treatment of diseases. Currently, neuronal networks cultured on microelectrode array (MEA) provide an ideal model for investigating learning and memory mechanisms in vitro. Additionally, studying such models offers a unique perspective for the prevention and treatment of neurodegenerative diseases. In this review, we summarize relevant research on functional network construction based on recording the electrical signals of neuronal networks cultivated on MEA. We focus on two aspects: 2D neuronal networks and 3D brain organoid development, as well as the effects of open-loop and closed-loop electrical stimulation on neuronal network plasticity. Lastly, we provide an outlook on the future applications of studying neuronal network plasticity using in vitro cultured networks.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
    • Regulation and Mechanism of Macrophage Function by Mechanical Force

      2024, 51(5):1010-1022. DOI: 10.16476/j.pibb.2023.0260 CSTR: 32369.14.pibb.20230260

      Abstract (991) HTML (1225) PDF 1.47 M (1979) Comment (0) Favorites

      Abstract:As the vanguard of the innate immune system to recognize external environmental stimuli, macrophages can respond to subtle changes in the environment and achieve adaptive regulation of their own functions, playing a crucial role in maintaining homeostasis and resisting infection. Various mechanical stress stimuli including endogenous stress mediated by mechanical characteristics of extracellular matrix, and exogenous stress such as solid/liquid pressure, tension and fluid shear stress, exist in the physiological or pathological tissue microenvironment, which have important effects on the immune function of macrophages. The understanding of macrophage mechanobiology will contribute to the development of new immunotherapies targeting macrophages. This review focuses on the functional regulation of macrophages by mechanical stress, summarizes the research progress from the perspective of influencing cell adhesion, migration, phagocytosis and polarization, and summarizes the molecular mechanisms of macrophage mechanical sensing and transduction from the outside to the inside in three levels: cell membrane mechanical sensors, force signal transduction of cytoskeleton system, and YAP/TAZ-mediated gene expression regulation response to mechanical stress. In addition, the application prospects and future vision of macrophage mechanobiology research in tissue engineering, regenerative medicine, and tumor immunotherapy are discussed, providing strong support for a deeper understanding of the plasticity of macrophage function.

      • 0+1
    • Allergy Associated With N-glycans on Glycoprotein Allergens

      2024, 51(5):1023-1033. DOI: 10.16476/j.pibb.2023.0292 CSTR: 32369.14.pibb.20230292

      Abstract (558) HTML (315) PDF 1.42 M (791) Comment (0) Favorites

      Abstract:Protein as the allergens could lead to allergy. In addition, a widespread class of allergens were known as glycans of N-glycoprotein. N-glycoprotein contained oligosaccharide linked by covalent bonds with protein. Recently,studies implicated that allergy was associated with glycans of heterologous N-glycoprotein found in food, inhalants, insect toxins, etc. The N-glycan structure of N-glycoprotein allergen has exerted an influence on the binding between allergens and IgE, while the recognition and presentation of allergens by antigen-presenting cells (APCs) were also affected. Some researches showed that N-glycan structure of allergen was remodeled by N-glycosidase, such as cFase I, gpcXylase, as binding of allergen and IgE partly decreased. Thus, allergic problems caused by N-glycoproteins could potentially be solved by modifying or altering the structure of N-glycoprotein allergens, addressing the root of the issue. Mechanism of N-glycans associated allergy could also be elaborated through glycosylation enzymes, alterations of host glycosylation. This article hopes to provide a separate insight for glycoimmunology perspective, and an alternative strategy for clinical prevention or therapy of allergic diseases.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
    • Pathological Mechanism of Neuronal Autophagy Flow Disturbance Caused by NSF ATPase Inactivation After Cerebral Ischemia

      2024, 51(5):1034-1042. DOI: 10.16476/j.pibb.2023.0180 CSTR: 32369.14.pibb.20230180

      Abstract (512) HTML (89) PDF 1.50 M (625) Comment (0) Favorites

      Abstract:Cerebral ischemic stroke is an acute cerebrovascular disease caused by cerebral vascular occlusion, and it is associated with high incidence, disability, and mortality rates. Studies have found that excessive or insufficient autophagy can lead to cellular damage. Autophagy consists of autophagosome formation and maturation, autophagosome-lysosome fusion, degradation and clearance of autophagic substrates within autolysosomes, and these processes collectively constitute autophagic flux. Research has revealed that cerebral ischemia can induce impaired fusion between autophagosomes and lysosomes, resulting in autophagic flux impairment. Intracellular membrane fusion is mediated by three core components: N-ethylmaleimide sensitive factor (NSF) ATPase, soluble NSF attachment protein (SNAP), and soluble NSF attachment protein receptors (SNAREs). SNAREs, after mediating fusion between autophagosomes and lysosomes, remain in an inactive complex state on the autolysosomal membrane, requiring NSF reactivation into monomers to perform subsequent rounds of membrane fusion-mediated functions. NSF is the sole ATPase capable of reactivating SNAREs. Recent studies have shown that cerebral ischemia significantly inhibits NSF ATPase activity, reducing its reactivation of SNAREs. This may be a pathological mechanism for impaired fusion between autophagosomes and lysosomes, leading to neuronal autophagic flux impairment. This article discusses the pathological mechanisms of NSF ATPase inactivation, including SNAREs dysregulation, impaired fusion between autophagosomes and lysosomes, and insufficient transport of proteolytic enzymes to lysosomes, and explores approaches to improve neuronal autophagic flux through NSF ATPase reactivation. It provides references for stroke treatment improvement and points out directions for further research.

      • 0+1
      • 1+1
    • Application of CDO1 Gene Promoter Methylation in Tumors

      2024, 51(5):1043-1053. DOI: 10.16476/j.pibb.2023.0277 CSTR: 32369.14.pibb.20230277

      Abstract (629) HTML (279) PDF 1.73 M (744) Comment (0) Favorites

      Abstract:Cysteine dioxygenase 1 (CDO1) gene is a non-heme structured, iron-containing metalloenzyme involved in the conversion of cysteine to cysteine sulfinic acid to regulate cysteine accumulation in vivo. Elevated levels of cysteine have been shown to be cytotoxic and neurotoxic, and this is the first important step in the breakdown of cysteine metabolism in mammalian tissues. The human CDO1 gene is located on chromosome 5q23.2. Studies have shown that deletion or epigenetic silencing of this chromosomal region contributes to tumorigenesis. It is highly expressed in the liver and placenta, and weakly in the heart, brain and pancreas. CDO1 is a tumor suppressor gene (TSG) with a wide range of functions, which can be involved in various biological processes such as tumor cell proliferation, differentiation, apoptosis and iron death, thus affecting the tumor development. CDO1 is epigenetically regulated in human cancers, compared to normal tissues. The CDO1’s mRNA or protein expression levels were significantly down-regulated in tumor tissues, whereas promoter DNA methylation of the CDO1 gene usually accumulates with the progression of human cancers. Aberrant hypermethylation on the CDO1 promoter is a common event in tumor cells, which leads to transcriptional inactivation and silencing of the CDO1 gene. High frequency of methylation of CDO1 gene promoter methylation region in a variety of tumors including breast, oesophageal, lung, bladder, gastric and colorectal cancers. CDO1 gene promoter methylation levels reflect cancer progression and malignant tumorigenesis, which is a common molecular indicator explaining poor prognosis in human cancers. Treatment with 5-aza-2′-deoxycytidine (a drug that promotes demethylation) reactivated the CDO1 expression in most cancer cell lines, indicating that the transcriptional expression of CDO1 is closely correlated with its promoter methylation level, CDO1 gene promoter methylation and tumor progression have also received increasing attention from researchers. It was found that CDO1 gene promoter hypermethylation can be used as an early tumor marker for clinical aid diagnosis and helps to differentiate cancerous from benign diseases. It was also found that CDO1 promoter DNA methylation showed reliable tumor monitoring potential in human body fluids, and furthermore, the degree of CDO1 promoter methylation was strongly correlated with resistance to chemotherapy with tumor drugs, which would be helpful in evaluating the efficacy of chemotherapeutic drugs. Thus, CDO1, a common promoter methylation gene in human cancers, is closely associated with the development of a wide range of tumors and is one of the most promising candidate genes for assessing tumor-specific epigenetic changes. This article reviews the biological functions of CDO1 and its promoter DNA methylation in tumors, focusing on the mechanism of CDO1 DNA promoter methylation in tumors, with a view to providing theoretical guidance for the clinical diagnosis and treatment of tumors with CDO1 as a potential therapeutic target.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
    • The Roles of Small Extracellular Vesicles and Small Extracellular Vesicles-derived Non-coding RNA in Non-alcoholic Fatty Liver Disease

      2024, 51(5):1054-1066. DOI: 10.16476/j.pibb.2023.0287 CSTR: 32369.14.pibb.20230287

      Abstract (365) HTML (99) PDF 2.40 M (613) Comment (0) Favorites

      Abstract:Extracellular vesicles (EVs) are a kind of exsomes secreted by cells, which all cells release them as part of their normal physiology and during acquired abnormalities. EVs can be broadly divided into two categories by their sizes, small EVs (sEVs) and medium/large EVs (m/l EVs). As a kind of extracellular vesicle, sEVs are mostly discoid vesicles with diameters ranging from 40 nm to 200 nm. The medium/large EVs are elliptical with a diameter more than 200 nm. sEVs play a crucial role in intercellular communication and have emerged as important mediators in the development and progression of liver diseases. In this review, we discussed the current understanding of the role of sEVs, particularly sEV derived non-coding RNA in non-alcoholic fatty liver disease (NAFLD) and their potential as diagnostic and therapeutic targets. sEVs are small membrane-bound particles secreted by cells, which fuse with plasma membrane and release to extracellular matrix. Depending on the cell of origin, sEVs could contain many cell constituents, including various DNA, RNA, lipids, metabolites, and cytosolic and cell-surface proteins, biomolecules. In addition, many RNA and DNA molecules contained by sEVs, such as mRNA, microRNA (miRNA), long noncoding RNA (lncRNA) and mitochondrial DNA (mtDNA), can be transferred to recipient cells to effectively promote their biological response, physiological and pathological functions. Such sEVs-mediated responses can be disease promoting or restraining. The intrinsic properties of sEVs in regulating complex intracellular pathways has advanced their potential utility in the therapeutic control of many diseases. Recent studies reviewed here also indicate a functional, targeted, mechanism-driven accumulation of specific cellular components in sEVs, suggesting that they have a role in regulating intercellular communication. Many studies have also shown the involvement of sEVs’ noncoding RNAs (ncRNAs) in controlling cell activities and their crucial functions in regulating lipid metabolism. sEVs ncRNAs, including miRNAs, lncRNAs, and circular RNAs (circRNAs) regulate physiological functions and maintain lipid metabolism homeostasis. miRNA are small non-coding RNA molecules that regulate posttranscriptional gene expression by repressing messenger RNA-targets. These circulating miRNAs are easily accessible, disease-specific and sensitive to small changes, which makes them ideal biomarkers for diagnostic, prognostic, predictive or monitoring purposes. Specific miRNA signatures can be reflective of disease status and development or indicators of poor treatment response in liver diseases. And lncRNAs have been shown to regulate gene expression by interacting with transcription factors or chromatin-modifying enzymes, which regulate gene expression by binding to target mRNAs. Then circRNAs contributed to NAFLD progression by acting as miRNA sponges, functional protein sponges, or novel templates for protein translation. Finally, sEVs could be engineered to deliver diverse therapeutic payloads, including short interfering RNAs, antisense oligonucleotides and so on, with an ability to direct their delivery to a desired target. The potential of targeting sEVs with lncRNAs and microRNAs not only could be potential diagnostic biomarkers for NAFLD, but also have potential therapeutic effects on NAFLD, which might provide new ideas for the NAFLD treatment. In conclusion, this review provides an overview of the current understanding of the roles of sEVs ncRNAs in NAFLD, so we suggest that further research into sEVs could lead to new diagnostic tools and therapeutic strategies for NAFLD.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
    • Role of Lipid Metabolism Disorders in Renal Ageing and Renal Fibrosis

      2024, 51(5):1067-1078. DOI: 10.16476/j.pibb.2023.0305 CSTR: 32369.14.pibb.20230305

      Abstract (569) HTML (413) PDF 1.68 M (657) Comment (0) Favorites

      Abstract:Chronic kidney disease (CKD) has become a significant global public health problem. It is defined as chronic renal structural and functional dysfunction caused by various reasons. The prevalence of obesity and diabetes has increased dramatically in developing countries, which substantially affected the patterns of CKD observed in these regions. It’s inevitable that the disease spectrum of CKD is converting to metabolic diseases. CKD is also considered an independent risk factor for renal aging and cardiovascular disease in the elderly, which usually progresses to end-stage renal disease (ESRD). Renal interstitial fibrosis is the pathological basis of ESRD and is a microscopic manifestation of renal aging. Conversely, renal aging is a risk factor for interstitial fibrosis. Although the healthy kidney has a relatively low lipid level, CKD-associated dyslipidemia has been extensively studied. Nevertheless, less is known about the contribution of lipid disorders to the development of renal senescence and interstitial fibrosis. Recent studies have demonstrated that lipid metabolism disorders occur in the progress of renal aging and interstitial fibrosis. Renal lipids accumulate once lipid uptake and synthesis exceed the balance with lipolysis, which is mainly characterized by increased levels of triglyceride (TG) and oxidized low-density lipoprotein, and decreased levels of high-density lipoprotein. Excessive lipid accumulation in the kidney not only induces lipotoxicity and endoplasmic reticulum stress but also increases intracellular and mitochondrial reactive oxygen species, which induce stress injury and senescence in renal tubular epithelial cells. Pro-inflammatory and pro-fibrotic cytokines in a senescence-associated secretory phenotype secreted by senescent renal tubular epithelial cells further accelerate their senescence as well as the occurrence of inflammation and pericyte loss, promoting secretion of extracellular matrix (ECM) and subsequent fibrosis in the tubulointerstitial compartment. In addition, podocyte hypertrophy also leads to glomerulosclerosis. Currently, most of the studies on inhibiting or even reversing renal interstitial fibrosis are still in the experimental stage. What’s more, effective drugs to slow down renal aging have not been reported. Many inflammatory and fibrotic factors are both components of the senescence-associated secretory phenotype (SASP), nevertheless, they are not sufficient to recognize cellular senescence. Given that indicators of senescence may vary from disease to disease and organ to organ, there is a need for more sensitive and specific senescence assays. Crucial enzymes and regulatory proteins of lipid metabolic pathways are expected to be potential targets for ameliorating renal aging and interstitial fibrosis. Lipid-lowering approach might represent another therapeutic in the management of kidney injury associated with metabolic dysfunction. Thus, clarifying the molecular regulatory mechanisms of lipid metabolism in kidney is extremely important for the delay of renal aging and the treatment of interstitial fibrosis. This review outlines the effects of lipid metabolism disorders on renal aging and renal fibrosis, analyses the role of lipid metabolism disorders in the development of renal diseases, and summarizes the potential targets and strategies for the prevention of renal aging and renal fibrosis based on lipid metabolism regulation, which will provide a reference for the discovery of new targets for the treatment of renal fibrosis.

      • 0+1
      • 1+1
    • The Role of Nrf2 in Exercise Improving of NAFLD

      2024, 51(5):1079-1089. DOI: 10.16476/j.pibb.2023.0274 CSTR: 32369.14.pibb.20230274

      Abstract (385) HTML (254) PDF 2.21 M (625) Comment (0) Favorites

      Abstract:In cardiovascular disorders, neurological diseases, and chronic metabolic diseases, the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway is essential for maintaining cell homeostasis. According to studies, boosting Nrf2 expression can be used to cure or prevent chronic diseases that are characterized by oxidative stress, inflammation, and mitochondrial dysfunction. Nonalcoholic fatty liver disease (NAFLD) is a chronic metabolic liver disease characterized by hepatic steatosis brought on by a number of causes other than alcohol. In recent years, its incidence has gradually risen across the globe. According to relevant studies, NAFLD and the Nrf2 signaling pathway are tightly connected. Inhibiting lipid production and metabolism-related enzymes, repairing impaired liver metabolism, and lowering hepatic lipid storage are all possible with Nrf2 activation. Exercise is a powerful tool for treating and preventing NAFLD. However, exercise type, exercise intensity, environment, and exhaustion all have an impact on the Nrf2 signaling pathway. By activating Nrf2, exercise can lessen liver inflammation, oxidative stress, endoplasmic reticulum stress, and insulin resistance, and ameliorate liver damage to improve NAFLD. The activation of Nrf2 signaling pathway, its associated mechanism of controlling antioxidation, and the impact of exercise on the Nrf2 signaling pathway are all explained in this work. Based on the pathogenesis of NAFLD, this article examines the connection between exercise, Nrf2, and NAFLD, and the current state of knowledge regarding Nrf2’s role in the amelioration of NAFLD through exercise. It offers a theoretical frame of reference for future research into how Nrf2 might be used to improve NAFLD.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
    • Role of Mitochondria in Exercise Protecting Myocardium From Ischemia-reperfusion Injury

      2024, 51(5):1090-1104. DOI: 10.16476/j.pibb.2023.0192 CSTR: 32369.14.pibb.20230192

      Abstract (567) HTML (140) PDF 2.07 M (1016) Comment (0) Favorites

      Abstract:Acute myocardial infarction (AMI) has become the leading cause of death in cardiovascular diseases. Myocardial ischemia and reperfusion (MI/R) occurs when myocardial blood circulation is reconstructed after blood supply is limited or lack, often after myocardial infarction, and is the main cause of acute myocardial injury. According to the length of ischemia time, arrhythmia, myocardial inhibition, and myocardial infarction may occur in sequence in MI/R. Mitochondria are the key organelles involved in MI/R injury. Mitochondrial ROS eruption, Ca2+ imbalance, mPTP opening, mitochondrial swelling, and release of pro-apoptotic proteins all lead to mitochondrial dysfunction and myocardial function impairment. Exercise is an effective intervention to prevent myocardial ischemia-reperfusion injury, and its protective effect is closely related to the intensity of exercise, the length of exercise time, the type of exercise and the internal exercise ability. The mitochondrial mechanism of exercise protection against myocardial ischemia-reperfusion injury is determined by many factors. During reperfusion, the heart after trained is better able to maintain energy homeostasis, maintain ΔΨm and limit mPTP activation, maintain ATP synthesis. Activation of the sarcoKATP and/or mitoKATP channels by exercise induces cellular and/or myocardial hyperpolarization, protecting the mitochondria and myocardium during MI/R. Exercise-trained hearts can regulate calcium homeostasis during MI/R and limit mitochondrial Ca2+ overload. Exercise training can improve the activity of mitochondrial antioxidant enzymes to clear ROS and regulate mitochondrial Ca2+ concentration during MI/R. Exercise can increase the bioavailability of NO near mitochondria and indirectly achieve exercise-induced myocardial protection through protein S-nitrosylation and the eNOS-NO pathway is related to mitochondrial biogenesis after exercise training. Exercise training can also affect mitochondrial dynamics during MI/R by preventing mitochondrial division and promoting mitochondrial fusion. Exercise training can promote autophagy of damaged mitochondria and reduces apoptosis through mitochondria too, thus helping to maintain the function of mitochondrial bank. Besides these, exercise training leads to the production of motor factors (mainly from the muscles, but also from the brain, red blood cells, and other tissues) that contribute to remote regulation of the heart. This paper reviews the mitochondrial mechanism of MI/R, the protective effect of exercise on MI/R and the role of mitochondria in it, in order to provide more theoretical basis and new therapeutic targets for the diagnosis and treatment of heart disease, and provide new targets for drug research and development. In future clinical treatment, it is expected that sports pills targeted mitochondria can treat MI/R injury for bedridden people who cannot exercise or people who do not want to exercise through new technological means such as nanoparticle packaging.

      • 0+1
      • 1+1
      • 2+1
    • Mechanism of Osteosarcopenia and Its Control by Exercise

      2024, 51(5):1105-1118. DOI: 10.16476/j.pibb.2023.0327 CSTR: 32369.14.pibb.20230327

      Abstract (419) HTML (416) PDF 2.46 M (684) Comment (0) Favorites

      Abstract:Osteosarcopenia (OS) is a multifactorial, multiaetiologic degenerative metabolic syndrome in which sarcopenia coexists with osteoporosis, and its influences are related to aging-induced mechanics, genetics, inflammatory factors, endocrine disorders, and irregular lifestyles. With the accelerated aging process in our country, osteosarcopenia has become a public health problem that cannot be ignored, with a higher risk of falls, fractures, impaired mobility and death. In recent years, scholars at home and abroad have conducted a lot of research on osteosarcopenia, but their pathogenesis is still unclear. Understanding the signaling pathways associated with osteosarcopenia is of great significance for further research on the pathogenesis of these disorders and for finding new targets for treatment. Studies have shown that activation of the PI3K/Akt signaling pathway promotes osteoblast differentiation as well as skeletal muscle regeneration, indicating that inhibition of the PI3K/Akt signaling pathway is closely related to the development of osteosarcopenia. Muscle factor-mechanical stress interactions can maintain osteoblast viability by activating the Wnt/β-catenin signaling pathway, suggesting that Wnt signaling is important in muscle and bone crosstalk. The Notch signaling pathway also plays an important role in improving bone and muscle mass and function, but different researchers hold different views, which need to be further validated and refined in subsequent studies. Exercise, as an existing non-pharmacological treatment with strong and sustained effects on physical function and muscle strength, also significantly increases bone density in osteoporosis patients, which may be mainly due to the fact that exercise induces changes in the form and function of bones, in the form of muscular pulling and indirectly improves the bone mass, and changes in the bone strength can also change the number, shape as well as the function of the muscles. At the same time, the mechanism of different exercise modalities focuses on different aspects, and there are differences in exercise time, exercise intensity, and therapeutic effects in the implementation of interventions. Aerobic exercise can improve the quality of skeletal muscle and increase the expression of osteogenesis-related genes by stimulating mitochondrial biosynthesis, as well as improve the quality and strength of bones and muscles through the Wnt/β- catenin and PI3K/Akt signaling pathways, effectively preventing and controlling the occurrence of musculoskeletal disorders. High-intensity resistance exercise has a significant effect on improving the quality of muscles and bone mineral density, but older people with osteosarcopenia suffer from a decline in muscle quality and strength, and a decline in bone mineral density, which makes them very susceptible to fracture, so they should select the intensity of the training in a gradual and orderly manner, from small to large. What kind of exercise intensity and exercise modalities are most effective in improving the occurrence and development of osteosarcopenia needs to be further investigated. Therefore, this paper mainly reviews the epidemiology of osteosarcopenia, diagnostic criteria, the related signaling pathways (PI3K/Akt pathway, Wnt/β-catenin pathway, Notch pathway, NF-κB pathway) that jointly regulate the metabolic process of myocytes and skeletal cells, as well as the interventional effects of different exercise modes on osteosarcopenia, with the aim of providing theoretical bases for the clinical treatment of osteosarcopenia, as well as enhancing the preventive capacity of the disease in old age.

      • 0+1
      • 1+1
      • 2+1
    • Recent Progress and Future Directions of Transcranial Electrical Stimulation for Analgesia

      2024, 51(5):1119-1133. DOI: 10.16476/j.pibb.2023.0367 CSTR: 32369.14.pibb.20230367

      Abstract (624) HTML (663) PDF 3.78 M (1320) Comment (0) Favorites

      Abstract:Transcranial electrical stimulation (tES) is a non-invasive neural modulation technique known for its high safety, patient compliance, and portability. It holds promise as a potential non-pharmacological method for analgesia. However, challenges persist in utilizing tES for pain management, including inconsistent research findings and limited understanding of its analgesic mechanisms. Therefore, by summarizing the advances in the analgesic researches employing the 3 primary tES techniques, transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS), and transcranial random noise stimulation (tRNS), we reviewed the analgesic effects on both acute and chronic pain, as well as the neural mechanisms underlying the analgesic effect of each technique. Accumulating evidence suggests that the analgesic effects of tDCS are significant, but studies on analgesic effects of tACS and tRNS remain limited. And the exact mechanisms of pain relief through tES turned out to be not yet well established. Furthermore, we systematically discussed the limitations of analgesia-related studies employing tES techniques across various aspects, involving research design, stimulation protocol formulation, neural response observation, analgesic effect assessment, and safety considerations. To address these limitations and advance clinical translation, we emphasized utilizing promising stimulation techniques and offered practical suggestions for future research endeavors. Specifically, employing numerical simulation of electric field guided by magnetic resonance imaging (MRI) would reduce variability of outcomes due to individual differences in head anatomy. For this purpose, it is advisable to establish standardized head models based on MRI data from the Chinese populations and validate simulated electric field results in tES research to diminish confounding factors concerning anatomy. Meanwhile, novel techniques like multi-site brain stimulation and interferential stimulation (IFS) could broaden the range of stimulation sites in both scope and depth. Multi-site brain stimulation facilitates modulation of entire neural networks, enabling more sophisticated investigations into the complexity of pain. IFS can reach deep brain tissues without invasive surgical procedures, achieving more comprehensive modulation. Regarding neural response observations, establishing a tES-neuroimaging synchronized platform would enable revealing its mechanisms and personalizing protocols based on inter-subject neural response variability detected through recordings. By integrating tES with various neuroimaging techniques, such as functional MRI, electroencephalography (EEG) and magnetoencephalography, into one unified platform, researchers could examine brain activities in baseline before stimulation, dynamic changes in brain activities during stimulation, and sustained brain responses after stimulation. Additionally, collecting finer-grained data on participant characteristics and pain intensity would enhance the sensitivity of future studies. In designing clinical trials to evaluate chronic pain treatments and reporting the results, adopting the six core outcome domain measures recommended by the Initiative on Methods, Measurement, and Pain Assessment in Clinical Trials (IMMPACT) could prove beneficial. Lastly, safety considerations can never be overemphasized in future tES studies especially when combining tES with MRI and EEG techniques. These efforts may help to broaden the research scope, reconcile inconsistencies in findings and elucidate the analgesic mechanisms of tES, thus facilitating the development of pragmatic pain management strategies such as combination therapies and home therapies. Ultimately, these suggestions will maximize the clinical application value of tES in pain treatment to achieve pain relief for patients.

      • 0+1
      • 1+1
      • 2+1
    • Application of Acoustoelectric Imaging in Biological Current Detection

      2024, 51(5):1134-1146. DOI: 10.16476/j.pibb.2023.0325 CSTR: 32369.14.pibb.20230325

      Abstract (503) HTML (149) PDF 3.62 M (1079) Comment (0) Favorites

      Abstract:The conventional noninvasive biological current detection such as electrocardiogram, electroencephalography and surface electromyography can provide electrical reference for diseases diagnosis. Because the bioelectrical signals are the mixed result of the common discharge of sell populations, the spatial resolution of the above bioelectrical detection is relatively limited. In recent years, the acoustoelectric imaging (AEI) has been introduced to spatially code biological current through noninvasive focused ultrasound. Then the electrical signal with precise focus position can be obtained. It can achieve noninvasive detection of biological electrical signals with millimeter-level spatial resolution and millisecond-level temporal resolution which is expected to develop into a new imaging technology for accurately detecting deep electrical activities of living organisms. We firstly describe AEI principle, including acoustoelectric effect and the derivation of acoustoelectric signal equation. Then we briefly introduce characteristics of acoustoelectric signal. It can be seen from the equation of acoustoelectric signal that the acoustoelectric signal depends on the current field and the ultrasonic field. Furtherly, the typical studies of AEI are introduced including acoustoelectric coupling mechanism, AEI methods, acoustoelectric brain imaging (ABI) and acoustoelectric cardiac imaging (ACI). In terms of the acoustoelectric coupling mechanism, the researchers found that the acoustoelectric effect of electrolyte solution is caused by the change of ion molar concentration, ion migration rate and ion viscosity with pressure and temperature, and the acoustoelectric effect coefficient of normal saline is accurate to (0.034±0.003)% MPa–1. In terms of AEI methods, researchers improved the detection sensitivity, spatial resolution, signal to noise ratio and other performance indicators by improving AEI methods and optimizing AEI systems. In terms of ABI, it can utilize the acoustoelectric coupling mechanism to endow the target area with spatial features of ultrasound, and achieve noninvasive high resolution EEG detection. We review the important research achievements and significance layer by layer from the perspectives of feasibility verification, method system optimization, and clinical application exploration in acoustoelectric imaging. In terms of ACI, it can be used to quantitatively evaluate the spatial distribution and dynamic changes of cardiac current field, providing a new idea for real-time monitoring of cardiac electrophysiological state before and after surgery. We summarize and review the important research achievements and significance of ACI at each stage: in phantom, in vitro and in vivo. Finally, we discuss the future research direction by focusing on the challenges faced by key technical links such as focused ultrasound targeting, ultrasonic spatial coding and decoding, acoustoelectric sensing detection, and imaging system integration, in order to provide basis and inspiration for AEI technology system and clinical transformation.

      • 0+1
      • 1+1
      • 2+1
    • Application of CRISPR/Cas System-integrated Paper-based Analytical Devices for Rapid Detection of Foodborne Pathogens

      2024, 51(5):1147-1160. DOI: 10.16476/j.pibb.2023.0365 CSTR: 32369.14.pibb.20230365

      Abstract (456) HTML (151) PDF 4.55 M (573) Comment (0) Favorites

      Abstract:Foods can be contaminated with foodborne pathogens through a variety of pathways, including water, air and soil. Food safety events caused by foodborne pathogens show a serious impact on human health. However, due to the diversity of foodborne pathogens and the complexity of food matrices, the rapid detection of foodborne pathogens was difficult. The conventional microbial culture and physiological and biochemical identification can hardly meet the need of rapid detection of foodborne pathogens in the field. It is necessary to develop rapid detection technologies for foodborne pathogens. Clustered regularly interspaced short palindromic repeats (CRISPR) and associated protein (Cas) are an adaptive immune systems of prokaryotes with specific recognition and cleavage of nucleic acid sequences, which shows good potential for development of nucleic acid detection and biosensing in the field. According to different forms of application, paper-based analytical devices can be categorized into test paper, lateral flow assay and microfluidic paper-based chips, etc. As a good simplicity and low-cost analytical testing tools, they show good prospects in the field of rapid testing. Therefore, the rapid and sensitive detection of foodborne pathogens can be realized by combining the efficient recognition ability of CRISPR/Cas system and the simplicity of paper-based analytical devices. In this paper, we briefly introduce an overview of the CRISPR/Cas system for nucleic acid detection, and this section focuses on an overview of the features and principles of the class 2 system, including types II, V and VI, which uses a single effector. The application of CRISPR/Cas system based test paper analysis, lateral flow assay and microfluidic paper-based chips for the detection of foodborne pathogens are highlighted in the paper, and finally the advantages, current challenges and future prospects of CRISPR/Cas system in combination with paper-based analytical devices to establish detection methods are discussed.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
    • >Research Papers
    • A Rapid Non-invasive Method for Skin Tumor Tissue Early Detection Based on Bioimpedance Spectroscopy

      2024, 51(5):1161-1173. DOI: 10.16476/j.pibb.2023.0269 CSTR: 32369.14.pibb.20230269

      Abstract (466) HTML (244) PDF 5.51 M (602) Comment (0) Favorites

      Abstract:Objective In recent years, with the intensification of environmental issues and the depletion of ozone layer, incidence of skin tumors has also significantly increased, becoming one of the major threats to people’s lives and health. However, due to factors such as high concealment in the early stage of skin tumors, unclear symptoms, and large human skin area, most cases are detected in the middle to late stage. Early detection plays a crucial role in postoperative survival of skin tumors, which can significantly improve the treatment and survival rates of patients. We proposed a rapid non-invasive electrical impedance detection method for early screening of skin tumors based on bioimpedance spectroscopy (BIS) technology.Methods Firstly, we have established a complete skin stratification model, including stratum corneum, epidermis, dermis, and subcutaneous tissue. And the numerical analysis method was used to investigate the effect of dehydrated and dry skin stratum corneum on contact impedance in BIS measurement. Secondly, differentiation effect of different diameter skin tumor tissues was studied using a skin model after removing the stratum corneum. Then, in order to demonstrate that BIS technology can be used for detecting the microinvasion stage of skin tumors, we conducted a simulation study on the differentiation effect of skin tumors under different infiltration depths. Finally, in order to verify that the designed BIS detection system can distinguish between tumor microinvasion periods, we conducted tumor invasion experiments using hydrogel treated pig skin tissue.Results The simulation results show that a dry and high impedance stratum corneum will bring about huge contact impedance, which will lead to larger measurement errors and affect the accuracy of measurement results. We extracted the core evaluation parameter of relaxed imaginary impedance (Zimag-relax) from the simulation results of the skin tumor model. When the tumor radius (Rtumor) and invasion depth (h)>1.5 mm, the designed BIS detection system can distinguish between tumor tissue and normal tissue. At the same time, in order to evaluate the degree of canceration in skin tissue, the degree of tissue lesion (εworse) is defined by the relaxed imaginary impedance (Zimag-relax) of normal and tumor tissue (εworse is the percentage change in virtual impedance of tumor tissue relative to that of normal tissue), and we fitted a Depth-Zimag-relax curve using relaxation imaginary impedance data at different infiltration depths, which can be applied to quickly determine the infiltration depth of skin tumors after being supplemented with a large amount of clinical data in the future. The experimental results proved that when εworse=0.492 0, BIS could identify microinvasive tumor tissue, and the fitting curve correction coefficient of determination was 0.946 8, with good fitting effect. The simulation using pig skin tissue correlated the results of real human skin simulation with the experimental results of pig skin tissue, proving the reliability of this study, and laying the foundation for further clinical research in the future.Conclusion Our proposed BIS method has the advantages of fast, real-time, and non-invasive detection, as well as high sensitivity to skin tumors, which can be identified during the stage of tumor microinvasion.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
    • Shakuyakukanzoto Relieves Ulcerative Colitis in Mice by Regulating The Expression of NDUFS1 and Inhibiting The Polarization of Macrophages to M1

      2024, 51(5):1174-1190. DOI: 10.16476/j.pibb.2023.0347 CSTR: 32369.14.pibb.20230347

      Abstract (654) HTML (103) PDF 24.56 M (709) Comment (0) Favorites

      Abstract:Objective This study aims to explore and elucidate the possible mechanism of action of Shakuyakukanzoto (SKT) in improving ulcerative colitis (UC) in mice through regulating energy metabolism and polarization of macrophages.Methods The mouse UC model was constructed by administering 3% dextran sulfate sodium salt (DSS), and the mice were treated with SKT intragastrically. In addition, single-cell sequencing and enrichment of metabolic pathways against two datasets, GSE21157 and GSE210415, were conducted first. Second, the extraction and metabolomics of peritoneal macrophages from UC mice were verified. Then, the pathway of differentially abundant metabolite enrichment and the correlation of UC risk were analyzed depending on univariate Mendelian randomization of two samples weighted by standard inverse variance. Finally, the results were verified by qRT-PCR, Western blot, and flow cytometry.Results According to the HE staining results, SKT can significantly alleviate colon damage caused by DSS. Macrophages, NK cells, T cells, and more than 10 different types of cells, based on single-cell sequencing analysis, are detected in the intestinal wall. In the disease group, we can conclude that the activity of 49 macrophage metabolic pathways, mainly involved in energy metabolism, is significantly upregulated through a comparison of the two datasets. In energy metabolomics, 10 and 18 types of metabolites accompanied by significantly upregulated and downregulated differential expression were identified in the treatment group and the model group, as well as the model group and the blank group, respectively. Meanwhile, these differentially expressed metabolites present an obvious correlation with glycolysis and oxidative phosphorylation. Moreover, it can be inferred that glycolysis and the oxidative phosphorylation-related gene NDUFS1 (OR: 0.56, 95% CI: 0.48-0.98, P=0.000 068) are associated with a reduced risk of UC based on the univariate Mendelian randomization of two samples weighted based on standard inverse variance. By analyzing the difference in transcription levels between the two datasets, the transcription level of NDUFS1 in UC was decreased compared with that in the normal group. The results of qRT-PCR, Western blot, and flow cytometry indicate that SKT can promote the expression of the oxidative phosphorylation protein NDUFS1 in macrophages and inhibit the M1-type polarization of macrophages. Furthermore, knockdown/overexpression of NDUFS1 can affect the effect of SKT on M1-type polarization of macrophages.Conclusion Based on the results of this study, SKT inhibits macrophage polarization toward the M1 phenotype by regulating the level of the oxidatively phosphorylated protein NDUFS1 in macrophages; hence, UC is also relieved in mice. These conclusions not only reveal the therapeutic mechanism of SKT for UC but also provide a new theoretical basis for clinical application.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
    • Transcutaneous Electrical Acupoint Stimulation Promotes PGC-1α Mediated Mitochondrial Biogenesis and Antioxidant Stress to Protect Cognitive Function in Vascular Dementia Rats

      2024, 51(5):1191-1202. DOI: 10.16476/j.pibb.20230331 CSTR: 32369.14.pibb.20230331

      Abstract (484) HTML (63) PDF 4.80 M (510) Comment (0) Favorites

      Abstract:Objective The purpose of this study was to investigate the effects of transcutaneous electrical acupoint stimulation (TEAS) on cognitive function of vascular dementia (VD) rats and its mechanism.Methods VD rat model was established by modified two-vessel occlusion (2-VO). After modeling, TEAS and electroacupuncture (EA) were used to stimulate Baihui and Zusanli points of rats respectively for 14 d. After treatment, novel object recognition test, Morris water maze test, and Y maze test were used to evaluate the spatial memory and learning ability of rats. Hematoxylin and eosin staining was used to observe the morphology of hippocampal neurons. Transmission electron microscopy was used to observe the ultrastructure of hippocampal mitochondria. Enzyme-linked immunosorbent assay kits were used to detected the levels of SOD, CAT, GSH-Px, MDA and ROS in serum of rats. Western blot was used to detect the expression of PGC-1α, TFAM, HO-1, NQO1 proteins in the hippocampus, Keap1 protein in the cytoplasm and Nrf2, NRF1 proteins in the nucleus.Results After treatment for 14 d, compared to the model group, the escape latency of VD rats decreased, while the discrimination index, the times of rats crossing the original platform area, the residence time in the original platform quadrant, and the percentage of alternation increased. TEAS can improve the structure of hippocampal neurons and mitochondria of VD rats, showing that neurons were arranged more regularly and distributed more evenly, nuclear membrane and nucleoli were clearer, and mitochondrial swelling were reduced, mitochondrial matrix density were increased, and mitochondrial cristae were more obvious. The levels of SOD, GSH-Px and CAT in serum increased significantly, while the concentration of MDA and ROS decreased. TEAS also up-regulated the expression levels of PGC-1α TFAM, NQO1 and HO-1 proteins in the hippocampus and Nrf2, NRF1 proteins in the nucleus, but down-regulated the Keap1 protein in the cytoplasm.Conclusion TEAS can improve cognition, hippocampal neurons and mitochondrial structure of VD rats, and the effect is better than EA. The mechanism may be the activation of PGC-1α mediated mitochondrial biogenesis and antioxidant stress, which also provides a potential therapeutic technology and experimental basis for the treatment of VD.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
    • miR-375 Attenuates The Migration and Invasion of Osteosarcoma Cells by Targeting MMP13

      2024, 51(5):1203-1214. DOI: 10.16476/j.pibb.2023.0391 CSTR: 32369.14.pibb.20230391

      Abstract (385) HTML (91) PDF 4.75 M (465) Comment (0) Favorites

      Abstract:Objective To explore whether miR-375 regulates the malignant characteristics of osteosarcoma (OS) by influencing the expression of MMP13.Methods Plasmid DNAs and miRNAs were transfected into OS cells and HEK293 cells using Lipofectamine 3000 reagent. Real-time quantitative polymerase chain reaction was performed to measure the expression of miR-375 and MMP13 in OS patients and OS cells. Western blot was performed to analyze the MMP13 protein in the patients with OS and OS cells. The targeting relationship between miR-375 and MMP13 was analyzed by luciferase assay. Migration and invasion were analysed by heal wound and transwell assays, respectively.Results miR-375 expression in OS tissues was lower than that in normal tissues. The expression of MMP13 was upregulated in OS tissues. MMP13 expression was negatively correlated with miR-375 expression in patients with OS. Migration and invasion were significantly inhibited in OS cells with the miR-375 mimic compared with OS cells with the miRNA control. MMP13 partially reversed the inhibition of migration and invasion induced by miR-375 in the OS cells.Conclusion miR-375 attenuates migration and invasion by downregulating the expression of MMP13 in OS cells.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
    • >Techniques and Methods
    • Cellular Temperature Imaging Technology Based on Single-molecule Quantum Coherent Modulation

      2024, 51(5):1215-1220. DOI: 10.16476/j.pibb.2023.0423 CSTR: 32369.14.pibb.20230423

      Abstract (299) HTML (78) PDF 2.31 M (591) Comment (0) Favorites

      Abstract:Objective Cellular temperature imaging can assist scientists in studying and comprehending the temperature distribution within cells, revealing critical information about cellular metabolism and biochemical processes. Currently, cell temperature imaging techniques based on fluorescent temperature probes suffer from limitations such as low temperature resolution and a limited measurement range. This paper aims to develop a single-cell temperature imaging and real-time monitoring technique by leveraging the temperature-dependent properties of single-molecule quantum coherence processes.Methods Using femtosecond pulse lasers, we prepare delayed and phase-adjustable pairs of femtosecond pulses. These modulated pulse pairs excite fluorescent single molecules labeled within cells through a microscopic system, followed by the collection and recording of the arrival time of each fluorescent photon. By defining the quantum coherence visibility (V) of single molecules in relation to the surrounding environmental temperature, a correspondence between V and environmental temperature is established. By modulating and demodulating the arrival times of fluorescent photons, we obtain the local temperature of single molecules. Combined with scanning imaging, we finally achieve temperature imaging and real-time detection of cells.Results This method achieves high precision (temperature resolution <0.1°C) and a wide temperature range (10-50°C) for temperature imaging and measurement, and it enables the observation of temperature changes related to individual cell metabolism.Conclusion This research contributes to a deeper understanding of cellular metabolism, protein function, and disease mechanisms, providing a valuable tool for biomedical research.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
    • Weight-dependent Fluorescence Lifetime Imaging for Viscosity Detection in Glycerol-water Mixtures

      2024, 51(5):1221-1230. DOI: 10.16476/j.pibb.2023.0407 CSTR: 32369.14.pibb.20230407

      Abstract (339) HTML (176) PDF 3.75 M (518) Comment (0) Favorites

      Abstract:Objective Based on fluorescence lifetime imaging technology, a novel method for viscosity detection is proposed and the capability of different weighting of fluorescence lifetimes in distinguishing the viscosity of glycerol-water mixtures is evaluated, aiming to enhance the accuracy and reliability of viscosity differentiation.Methods This approach incorporates the principles of electronic weighting, introducing both amplitude-weighted average fluorescence lifetime (τm) and intensity-weighted average fluorescence lifetime (τi). Viscosity changes in glycerol-water mixtures are detected through τm and τi. τm Reflects the relationship between fluorescence signal amplitude and time, while τi focuses on the time-varying characteristics of fluorescence signal intensity.Results The results of both τm and τi mutually corroborate each other, not only enhancing the reliability in detecting viscosity changes in glycerol-water mixtures but also revealing their unique roles in the detection process. Although τm plays a crucial role in capturing changes in fluorescence signal amplitude, τi exhibits higher accuracy in viscosity detection when considering the time-varying characteristics of fluorescence signal intensity. It is particularly noteworthy that, due to τi’s greater sensitivity, microenvironment viscosity detection can be directly analyzed using τi. This provides a more convenient approach for real-time, highly sensitive microfluidic viscosity monitoring. Therefore, through the comprehensive utilization of τm and τi, a more thorough and accurate understanding of the viscosity information in glycerol-water mixtures can be obtained, and specific parameters can be selected for in-depth analysis based on specific needs.Conclusion The combination of amplitude weighting and intensity weighting allows for a more sensitive identification of subtle changes in viscosity under different conditions. The innovation of this method lies in its simultaneous consideration of multiple parameters, enhancing sensitivity and distinguishability to variations in viscosity. Therefore, this weighted-dependent fluorescence lifetime imaging technique not only introduces a novel approach for viscosity detection in glycerol-water mixtures but also provides a powerful analytical tool for various fields, including microfluidics, rheology, and research on novel functional materials.

      • 0+1
      • 1+1
      • 2+1
      • 3+1

Current Issue

Volume , No.

Table of Contents

Archive

Volume

Issue

Most Read

Most Cited

Most Downloaded