• Volume 51,Issue 6,2024 Table of Contents
    Select All
    Display Type: |
    • >Highlights
    • Regulation of Mesenchymal Stem Cell FateCommitment

      2024, 51(6):1237-1238. DOI: 10.16476/j.pibb.2024.0183

      Abstract (168) HTML (67) PDF 326.91 K (269) Comment (0) Favorites

      Abstract:Regulation of Mesenchymal Stem Cell FateCommitment

    • >Reviews and Monographs
    • Technique and Application of Single-molecule Fluorescence in situ Hybridization

      2024, 51(6):1239-1255. DOI: 10.16476/j.pibb.2023.0275

      Abstract (1150) HTML (387) PDF 5.02 M (1734) Comment (0) Favorites

      Abstract:Single molecule fluorescence in situ hybridization (smFISH) is a method for imaging single mRNA molecule in fixed cell or tissue using oligonucleotide probes coupled with fluorophores. It can realize real-time study of interested transcripts by RNA localization and quantification. smFISH is widely suitable for many types of biological samples such as cell and tissue sections. It was invented in 1982 which opened up the application of visualizing single molecules. However, due to its shortcomings such as poor binding specificity, Raj et al. optimized this technique in 2008, using 48 independent probes that were separately coupled with fluorophores to locate transcripts. In contrast, methods using multiple labeled probes can distinguish false positive or false negative results due to a single probe misbinding or unbinding event. However, with the continuous application of the technique, it was found that the scheme still has many technical defects, such as low probe specificity, weak fluorescence intensity, low hybridization efficiency, and high background fluorescence. Since then, a series of derivative technologies have been developed. For example, HCR-FISH is a multi-fluorescence in situ hybridization method based on orthogonal amplification and hybridization chain reaction, which significantly improves the problem of weak signal. SeqFISH amplifies the signal and reduces nonspecific binding by continuously hybridizing the mRNA in the cell, imaging it, and stripping the probe in order to barcode RNA. MERFISH utilizes combination labeling, continuous imaging and other technologies to increase detection throughput, and uses binary barcodes to offset single-molecule labeling and detection errors, with more advanced built-in error correction functions to effectively improve the accuracy of results. ClampFISH uses biological orthogonal click chemistry to effectively lock the probe around the target and prevent the probe from disengaging in amplification microscopy. RNAscope amplifies its own signal while simultaneously suppressing the background by using novel probe design strategy and hybridization-based signal amplification system. Split-FISH uses splitting probes for signal enhancement to accurately detect single RNA molecule in complex tissue environments. AmpFISH achieves imaging of short RNA molecules by preparing long single-strand DNA concatemers through controlled rolling circle amplification. CircFISH uses two unique sets of probes (PC probes and PL probes) to distinguish between linear and circular RNAs. π-FISH rainbow enables simultaneous detection of DNA, RNA, and proteins at the single-molecule level with π-FISH target probes. HT-smFISH is more suitable for large or high throughput form of systematic experiments. With the development of technology, the subsequent data analysis process is particularly important. Different analysis software, such as dotdotdot and FISH-quant v2, also improve the process of smFISH. The excellent ability of smFISH to visualize single molecule of RNA makes that it is widely used in basic biological disciplines such as tumor biology, developmental biology, neurobiology, botany, virology. In this paper, we reviewed the basic principle of smFISH technology, its development process and improvement, limitations of smFISH technology and how to avoid them, its derivative technologies include HCR-FISH, SeqFISH, MERFISH, ClampFISH, RNAscope, Split-FISH, AmpFISH, CircFISH, π-FISH rainbow and HT-smFISH. The application progress of smFISH in different biological disciplines, such as developmental biology, tumor biology, neurobiology. Finally, the development prospect of smFISH technology is prospected.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
      • 8+1
      • 9+1
      • 10+1
      • 11+1
      • 12+1
    • The Functional Role of SUMOylation in The Tumor Microenvironment

      2024, 51(6):1256-1268. DOI: 10.16476/j.pibb.2023.0330

      Abstract (371) HTML (306) PDF 1.61 M (853) Comment (0) Favorites

      Abstract:Tumors continue to be a major challenge in human survival that we have yet to overcome. Despite the variety of treatment options available, we have not yet found an effective method. As more and more research is conducted, attention has been turned to a new field for tumor treatment—the tumor microenvironment (TME). This is a dynamic and complex environment consisting of various matrix cells surrounding cancer cells, including surrounding immune cells, blood vessels, extracellular matrix, fibroblasts, bone marrow-derived inflammatory cells, signaling molecules, and some specific cell types. Firstly, endothelial cells play a key role in tumor development and the immune system’s protection of tumor cells. Secondly, immune cells, such as macrophages, Treg cells, Th17 cells, are widely involved in various immune responses and activities in the human body, such as inflammation responses promoting survival carefully orchestrated by the tumor. Even though many studies have extensively researched the TME and found many research schemes, so far, no key effective method has been found to treat tumors by affecting the TME. The TME is a key interaction area between the host immune system and the tumor. Cells within the TME influence each other and interact with cancer cells to affect cancer cell invasion, tumor growth, and metastasis. This is a new direction for cancer treatment. In the complex environment of the TME, post-translational modifications (PTMs) of proteins have been proven to play an important role in the TME. PTMs are dynamic, strictly regulated changes to proteins that control their function by regulating their structure, spatial location, and interaction. Among PTMs, a reversible post-translational modification called SUMOylation is a common regulatory mechanism in cellular processes. It is a post-translational modification that targets lysine residues with a small ubiquitin-like modifier (SUMO) in a reversible post-translational modification manner. SUMOylation is widely involved in carcinogenesis, DNA damage response, cancer cell proliferation, metastasis, and apoptosis, playing a pivotal role in the TME, such as DNA damage repair, tumor metastasis, and also participates in immune cell differentiation, activation, and inhibition of immune cells. On the other hand, SUMO or sentrin-specific protease (SENP) inhibitors can interfere with the SUMOylation process, thereby affecting many biological processes, including immune response, carcinogenesis, cell cycle progression, and cell apoptosis, etc. In summary, this review aims to introduce the dynamic modification of protein SUMOylation on various immune cells and the application of various inhibitors, thereby exploring its role in the TME. This is a challenging but hopeful field, and we look forward to future research that can bring more breakthroughs. In conclusion, the TME is a complex and dynamic environment that plays a crucial role in the development and progression of tumors. Understanding the intricate interactions within the TME and the role of PTMs, particularly SUMOylation, could provide valuable insights into the mechanisms of tumor development and potentially lead to the development of novel therapeutic strategies. The study of SUMOylation and its effects on various immune cells in the TME is an exciting and promising area of research that could significantly advance our understanding of tumor biology and potentially lead to the development of more effective treatments for cancer. This is a challenging but hopeful field, and we look forward to future research that can bring more breakthroughs.

      • 0+1
      • 1+1
      • 2+1
    • The Role of Ubiquitination in Regulating Ferroptosis

      2024, 51(6):1269-1283. DOI: 10.16476/j.pibb.2023.0400

      Abstract (563) HTML (96) PDF 2.76 M (899) Comment (0) Favorites

      Abstract:Ferroptosis is a novel type of iron-dependent cell death driven by lipid peroxidation. More and more evidence shows that ferroptosis is related to various pathological conditions, such as neurodegenerative diseases, diabetic nephropathy, and cancer. Ferroptosis driven by lipid peroxidation may promote or inhibit the occurrence and development of these diseases. The intracellular antioxidant system plays an important role in resisting ferroptosis by inhibiting lipid peroxidation. The key pathways of ferroptosis include the amino acid metabolism pathway with SLC7A11-GPX4 as the key molecule, the iron metabolism pathway with ferritin or transferrin as the main component, and the lipid metabolism pathway. The occurrence of ferroptosis is regulated by intracellular proteins, which undergo various post-translational modifications, including ubiquitination. The ubiquitin-proteasome system (UPS) is one of the main degradation systems in cells. It catalyzes the ubiquitin molecule to label the protein and then the proteasome recognizes and degrades the target protein. UPS promotes ferroptosis by promoting the degradation of key ferroptosis molecules (such as SLC7A11, GPX4, and GSH) and antioxidant systems (such as NRF2). UPS can also inhibit ferroptosis by promoting the degradation of related molecules in the lipid metabolism pathway (such as ACLS4 and ALOX15). In this review, we summarize the latest research progress of ubiquitination modification in the regulation of ferroptosis, generalize the published studies on the regulation of ferroptosis by E3 ubiquitin ligase and deubiquitination, and sum up the targets of ubiquitin ligase and deubiquitination regulating ferroptosis, which is helpful to identify new prognostic indicators in human diseases and provide potential therapeutic strategies for these diseases.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
    • Targeting Ferroptosis to Enhance Radiosensitivity of Glioblastoma

      2024, 51(6):1284-1291. DOI: 10.16476/j.pibb.2023.0342

      Abstract (286) HTML (106) PDF 1.86 M (634) Comment (0) Favorites

      Abstract:Glioblastoma (GBM), one of the most common malignant tumors in the central nervous system (CNS), is characterized by diffuse and invasive growth as well as resistance to various combination therapies. GBM is the most prevalent type with the highest degree of malignancy and the worst prognosis. While current clinical treatments include surgical resection, radiotherapy, temozolomide chemotherapy, novel molecular targeted therapy, and immunotherapy, the median survival time of GBM patients is only about one year. Radiotherapy is one of the important treatment modalities for GBM, which relies on ionizing radiation to eradicate tumor cells. Approximately 60% to 70% of patients need to receive radiotherapy as postoperative radiotherapy or neoadjuvant radiotherapy during the treatment process. However, during radiotherapy, the radioresistant effect caused by DNA repair activation and cell apoptosis inhibition impedes the therapeutic effect of malignant glioblastoma.Ferroptosis was first proposed by Dr. Brent R. Stockwell in 2012. It is an iron-dependent mode of cell death induced by excessive lipid peroxidation. Although the application of ferroptosis in tumor therapy is still in the exploratory stage, it provides a completely new idea for tumor therapy as a novel form of cell death. Ferroptosis has played a significant role in the treatment of GBM. Specifically, research has revealed the key processes of ferroptosis occurrence, including intracellular iron accumulation, reactive oxygen species (ROS) generation, lipid peroxidation, and a decrease in the activity of the antioxidant system. Among them, glutathione peroxidase 4(GPX4) in the cytoplasm and mitochondria, ferroptosis suppressor protein 1 (FSP1) on the plasma membrane, and dihydroorotate dehydrogenase (DHODH) in the mitochondria constitute an antioxidant protection system against ferroptosis. In iron metabolism, nuclear receptor coactivator 4 (NCOA4) can mediate ferritin autophagy to regulate intracellular iron balance based on intracellular iron content. Heme oxygenase1 (HMOX1) catalyzes heme degradation to release iron and regulate ferroptosis. Radiation can trigger ferroptosis by generating ROS, inhibiting the signaling axis of the antioxidant system, depleting glutathione, upregulating acyl-CoA synthase long chain family member 4 (ACSL4), and inducing autophagy. Interestingly, some articles has documented that exposure to low doses of radiation (6 Gy for 24 h or 8 Gy for 4-12 h) can induce the expression of SLC7A11 and GPX4 in breast cancer and lung cancer cells, leading to radiation resistance, while radiation-induced ferroptosis occurs after 48 h. In contrast, high doses of ionizing radiation (20 Gy and 50 Gy) increase lipid peroxidation after 24 h. This suggests that radiation-induced oxidative stress is a double-edged sword that can regulate ferroptosis in both directions, and the ultimate fate of cells after radiation exposure——developing resistance and achieving homeostasis or undergoing ferroptosis——depends on the degree and duration of membrane lipid damage caused by the radiation dose. In addition, during the process of radiotherapy, methods such as inducing iron overload, damaging the antioxidant system, and disrupting mitochondrial function are used to target ferroptosis, thereby enhancing the radiosensitivity of glioblastoma. By promoting the occurrence of ferroptosis in tumor cells as a strategy to improve radiotherapy sensitivity, we can enhance the killing effect of ionizing radiation on tumor cells, thus providing more treatment options for patients with glioblastoma. In this paper, we reviewed ferroptosis and its mechanism, analyzed the molecular mechanism of radiation-induced ferroptosis, and discussed the effective strategies to regulate ferroptosis in enhancing the sensitivity of radiotherapy, with a view to providing an important reference value for improving the current status of glioblastoma treatment.

      • 0+1
      • 1+1
      • 2+1
    • Factors Influencing The Language Development of Preterm Infants and Their Intervention Strategies

      2024, 51(6):1292-1304. DOI: 10.16476/j.pibb.2023.0343

      Abstract (203) HTML (140) PDF 1.68 M (494) Comment (0) Favorites

      Abstract:Preterm infants, born before 37 weeks of gestation, represent a significant portion of newborns globally, many of whom experiencing long-term neurodevelopmental disorders. Language development anomalies are common among preterm infants, often leading to deficits in vocabulary, grammar, phonetics, and semantics, which can persist into adolescence and adulthood. Given these complexities, these developmental challenges necessitate a deeper understanding of the influencing factors and the importance of early intervention. Biological factors such as the degree of prematurity, birth weight, and gender significantly impact language development. Specifically, shorter gestational age and lower birth weight are associated with language difficulties, manifesting in restricted vocabulary, syntax, and grammatical complexity. In addition, the severity of neonatal illnesses, including intracranial hemorrhage, hypoxic-ischemic encephalopathy, and bronchopulmonary dysplasia, critically impact cognitive and language development. Equally important, sensory systems, particularly vision and hearing, are also crucial for language acquisition, for example, retinopathy of prematurity (ROP) may increase the risk of language disorders. Environmental factors also play a vital role in language development of preterm infants. The environment within neonatal intensive care units (NICU), while important for the survival of preterm infants, can inadvertently impose sensory challenges, thereby influencing neurodevelopmental outcomes, including language skills. Beyond the NICU environment, the domestic setting and familial interactions emerge as crucial determinants. Variables such as the parental educational background and socioeconomic status substantially influence the extent and quality of language exposure, thus shaping the linguistic development of preterm infants. Addressing these challenges requires comprehensive early intervention strategies. This includes deploying a range of early evaluation tools, encompassing standardized language development scales and observational techniques, to promptly identify infants at risk of language delays. Recent advances in non-invasive brain imaging techniques, such as event-related potentials and functional magnetic resonance imaging (MRI), have opened new horizons in early detection and intervention planning, providing critical insights into the neurodevelopmental status of these infants. Intervention strategies are diverse and integrate physiological and neurological approaches, environmental modifications, and family-centric practices. Physiologically, addressing sensory impairments and nutritional needs is fundamental to fostering robust language development. This involves interventions like sensory stimulation therapies and nutritional supplements rich in essential brain-development nutrients. Additionally, environmental optimization, particularly in NICU settings, to replicate the protective conditions of womb is crucial for enhancing language learning. Strategies include controlled auditory and visual stimulation and implementing developmental care models. Furthermore, family involvement is equally important. Encouraging active parental engagement and fostering language-enriched interactions are crucial. Notably, innovative approaches such as music therapy have shown promise in enhancing auditory processing and language skills. These interventions wtilize the infant brain’s neuroplasticity, combining auditory stimulation with social interaction, thereby enriching the developmental environment for preterm infants. In summary, the language development in preterm infants is shaped by an intricate interplay of biological and environmental factors, requiring a multifaceted and early intervention approach. As our understanding evolves, the integration of medical, educational, and social services will be critical in providing holistic support for the healthy development of these infants. Future research efforts should aim to elucidate the underlying mechanisms of language development in preterm infants and to refine intervention strategies to ensure more effective long-term outcomes.

      • 0+1
      • 1+1
    • The Influence of Developmental Dyslexia-associated Gene KIAA0319 on Brain Development ——From Animals to Humans

      2024, 51(6):1305-1315. DOI: 10.16476/j.pibb.2023.0225

      Abstract (175) HTML (78) PDF 1.43 M (396) Comment (0) Favorites

      Abstract:Developmental dyslexia (DD) is a prevalent learning disorder, and the KIAA0319 gene is a DD-associated gene, potentially affecting reading ability by influencing brain development. This review provides an overview of the impact of KIAA0319 gene on brain development in fish, non-primate mammals, primate mammals, and humans. In studies involving fish, the kiaa0319 gene was found to be expressed in the brain, eyes and ears of zebrafish. In mammalian studies, abnormal Kiaa0319 gene expression affected neuronal migration direction and final position, as well as dendritic morphology during embryonic development in rats, leading to abnormal white and gray matter development. Knocking down the Kiaa0319 gene impaired the primary auditory cortex in rats, resulting in phoneme processing impairment similar to DD. In mice, Kiaa0319 overexpression affected the neuronal migration process, causing delayed radial migration of neurons to the cortical plate. Knockout of the Kiaa0319 gene led to abnormal development of the gray matter in mice, resulting in reduced volume of the medial geniculate nucleus and then impacting auditory processing. In primate studies, research on marmosets found that KIAA0319 gene is expressed in the visual, auditory, and motor pathways, while studies on chimpanzees revealed that KIAA0319 gene abnormalities primarily affected the gray matter volume and microstructure of the posterior superior temporal gyrus, morphology of the superior temporal sulcus and gray matter volume of the inferior frontal gyrus. The impact of KIAA0319 gene on human brain development is mainly concentrated in the left temporal lobe, where abnormal KIAA0319 gene expression caused reduced gray matter in the left inferior temporal gyrus, middle temporal gyrus and fusiform gyrus, as well as reduced white matter volume in the left temporoparietal cortex. Abnormalities in KIAA0319 gene also led to decreased hemispheric asymmetry in the superior temporal sulcus. The above-mentioned brain regions are crucial for language and reading processing. It is analyzed that the abnormalities in the DD-associated KIAA0319 gene affect neuronal migration and morphology during brain development, resulting in abnormal development of subcortical structures (such as the medial geniculate nucleus and lateral geniculate nucleus) and cortical structures (including the left temporal cortex, temporoparietal cortex and fusiform gyrus) which are involved in human visual and auditory processing as well as language processing. Impairment of the medial geniculate nucleus affects the information transmission to the auditory cortex, leading to impaired phoneme processing. Abnormalities in the magnocellular layers within the lateral geniculate nucleus hinder the normal transmission of visual information to the visual cortex, affecting the dorsal visual pathway. The left temporal lobe is closely related to language and reading, and abnormalities in its gray matter and connections with other brain areas can affect the language and word processing. In summary, abnormalities in the KIAA0319 gene can partly explain current research findings on the cognitive and neural mechanisms of DD, providing a genetic basis for theoretical models related to DD (such as general sensorimotor theory and the magnocellular theory). However, the mechanism of developmental dyslexia is complex, and there are mutual influences between different DD-associated genes and between genes and the environment, which require further exploration.

      • 0+1
      • 1+1
    • The Mechanism of miR-124 in Depression

      2024, 51(6):1316-1326. DOI: 10.16476/j.pibb.2023.0334

      Abstract (240) HTML (89) PDF 3.11 M (457) Comment (0) Favorites

      Abstract:Depression is a prevalent mental illness worldwide, its multifaceted pathogenesis is still in the exploratory stage. MicroRNA (miRNA), as a crucial epigenetic regulator, plays an important role in depression. miR-124 is one of the most abundant miRNAs in the central nervous system including neurons and microglia, and involved in various biological events like neuron development and differentiation, synaptic and axonal growth, neural plasticity, inflammation and autophagy. Recent studies have reported abnormal expression of miR-124 in both depression patients and animal models. Most of the studies showed that miR-124 is upregulated in the hippocampus or prefrontal cortex in stress-induced rodent depression animal models such as CUMS, CSDS, CORT, CRS and LH but some evidence for divergence. Upregulation of miR-124 expression may be involved in depression-like behavior via CREB/BDNF/TrkB pathway, GR pathway, SIRT1 pathway, apoptosis and autophagy pathways by directly targeting these genes including Creb, Bdnf, Sirt1, Nr3c1, Ezh2 and Stat3. The downregulation of miR-124 expression in neurons is mainly involved in the neurogenesis and neuroplasticity impairments in depression by targeting the Notch signaling pathway and DDIT4/TSC1/2/mTORC1 pathway. The downregulation of miR-124 expression also was found in the activated microglia in the stress-induced models, and resulted in neuroinflammation. In summary, the abnormal expression of miR-124 in the brain of depression-related models and its related mechanisms are complex and even contradictory, and still need further research. This review provides a summary of the research progress of miR-124 in depression.

      • 0+1
      • 1+1
      • 2+1
    • The Emerged Perspective on Obesity Etiology: Metaflammation Induces Food Reward Dysfunction

      2024, 51(6):1327-1340. DOI: 10.16476/j.pibb.2023.0383

      Abstract (178) HTML (44) PDF 2.28 M (348) Comment (0) Favorites

      Abstract:In recent years, obesity has emerged as a significant risk factor jeopardizing human health and stands out as an urgent issue demanding attention from the global public health sector. The factors influencing obesity are intricate, making it challenging to comprehensively elucidate its causes. Recent studies indicate that food reward significantly contributes to the genesis and progression of obesity. Food reward comprises three integral components: hedonic value (liking), eating motivation (wanting), and learning and memory. Each facet is governed by the corresponding neural pathway. The mesocorticolimbic system (MS) plays a pivotal role in regulating food reward, wherein the MS encompasses dopamine (DA) neurons originating from the ventral tegmental area (VTA) projecting into various brain regions or nuclei such as the nucleus accumbens (NAc), prefrontal cortex (PFC), amygdala, and hippocampus. On one hand, prolonged consumption of palatable foods induces adaptive alterations and synaptic remodeling in neural circuits regulating food reward. This includes the attenuation of neuronal connections and signal transmission among the PFC, visual cortex, hypothalamus, midbrain, and brain stem, resulting in aberrant food reward and compelling the body to compensate for satisfaction deficiency by increasing food consumption. Studies involving humans and animals reveal that compulsive eating bears resemblance to the behavior observed in individuals with substance addictions, encompassing aspects such as food cravings, loss of eating control, and dieting failures. Propelled by food reward, individuals often opt for their preferred palatable foods during meals, potentially leading to excessive energy intake. Coupled with a sedentary lifestyle, this surplus energy is stored in the body, transforming into fat and culminating in obesity. While evidence supports the notion that prolonged exposure to a high-energy-density diet contributes to abnormal food reward, the internal mechanisms remain somewhat unclear. In previous research on depression, substance abuse, and alcohol dependence, it has been confirmed that there is a close connection between inflammation and reward. For example, obese people show a higher tendency toward depression, and white blood cell count is an important mediating variable between intake and depressive symptoms. In addition, it has been found in individuals with alcohol dependence and drug abuse that long-term opioid overdose or alcohol abuse will activate glial cells to release pro-inflammatory cytokines that affect neuronal function, and disrupt synaptic transmission of neurotransmitters to promote addictive behaviors. Comprehensive analysis suggests that inflammation may play an important role in the reward regulation process. Recent studies indicate that metaflammation within the central or peripheral system, triggered by excess nutrients and energy, can disrupt the normal transmission of reward signals. This disruption affects various elements, such as DA signaling (synthesis, release, reuptake, receptor function, and expression), mu opioid receptor function, glutamate excitatory synaptic transmission, Toll-like receptor 4 (TLR4) signal activation, and central insulin/leptin receptor signal transduction. Consequently, this disruption induces food reward dysfunction, thereby fostering the onset and progression of obesity. Building upon these findings, we hypothesized that obesity may be linked to abnormal food reward induced by metaflammation. This review aims to delve deeply into the intricate relationship between obesity, food reward, and metaflammation. Additionally, it seeks to summarize the potential mechanisms through which metaflammation induces food reward dysfunction, offering novel insights and a theoretical foundation for preventing and treating obesity.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
    • FGF1-based Drugs for The Treatment of Obesity-related Complications

      2024, 51(6):1341-1356. DOI: 10.16476/j.pibb.2023.0437

      Abstract (198) HTML (88) PDF 3.16 M (371) Comment (0) Favorites

      Abstract:At present, the incidence of overweight and obesity has reached epidemic levels worldwide, which call a challenge to the prevention and control of chronic metabolic diseases. Because obesity is a major risk factor for a range of metabolic diseases, including type 2 diabetes (T2DM), non-alcoholic fatty liver disease (NAFLD), cardiovascular and neurodegenerative diseases, sleep apnea, and some types of cancer. However, the drugs remain limited. Therefore, there is an urgent need to develop effective long-term treatments to address obesity-related complications. Fibroblast growth factor 1 (FGF1) is an important regulator of systemic energy homeostasis, glycolipid metabolism and insulin sensitivity. FGF1 is a non-glycosylated polypeptide consisting of 155 amino acids, consisting of 12 inverted parallel β chains with amino and carboxyl terminus, and N-terminus extending freely without the typical secretory signaling sequence, closely related to its own biological activity. Thus, FGF1 mutants or derivatives with different activities can be designed by substitution or splicing modification at the N-terminal. FGF1 plays an irreplaceable role in the development, deposition and function of fat. High-fat diet can regulate available FGF1 through two independent mechanisms of nutritional perception and mechanical perception, and influence the function of fat cells. FGF1 controls blood glucose through peripheral and central effects, enhances insulin sensitivity, improves insulin resistance, and plays a role in diabetic complications, which is expected to become a new target for the treatment of T2DM in the future. FGF1 may be involved in the regulation of NAFLD from mild steatosis to severe non-alcoholic steatohepatitis. FGF1 is closely related to the occurrence and development of a variety of cancers, improve the efficacy of anti-cancer drugs, and play a direct and indirect anti-cancer role. In addition, FGF1 plays an important role in the occurrence and development of the cardiovascular system and the improvement of cardiovascular diseases such as ischemia/reperfusion injury, myocardial infarction, pathological cardiac remodeling, cardiotoxicity. Therefore, FGF1 shows a number of therapeutic benefits in the treatment of obesity and obesity-related complications. But because FGF1 has strong mitotic activity and long-term use has been associated with an increased risk of tumorigenesis, its use in vivo has been limited and enthusiasm for developing it to treat obesity-related complications has been dampened. However, FGF1 was found to induce cell proliferation primarily through FGFR3 and FGFR4, but its metabolic activity was mainly mediated by FGFR1. That is, FGF1 activity that promotes mitosis and anti-obesity-related complications appears to be separable. Currently, many engineered FGF1 variants have been developed, such as FGF1ΔHBS, MT-FGF1ΔHBS, FGF1?NT, ?nFGF1, FGF1R50E. Although the effect of FGF1 or its analogues on obesity-related complications has been demonstrated in many rodent studies, there are no relevant clinical results. This may be due to the unknown safety and therapeutic efficacy of FGF1 in large animals and humans, as well as concerns about tumorigenesis that hinder its development into a lifelong therapeutic agent. This review summarizes recent advances in the development of FGF1-based biologic drugs for the treatment of obesity-related complications, highlights major challenges in clinical implementation, and discusses possible strategies to overcome these obstacles.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
    • Role and Possible Mechanism of Clock Gene Rev-erbα in Exercise-induced Mitochondrial Biogenesis

      2024, 51(6):1357-1370. DOI: 10.16476/j.pibb.2023.0371

      Abstract (259) HTML (38) PDF 2.05 M (402) Comment (0) Favorites

      Abstract:The clock gene Rev-erbα, also known as nuclear receptor subfamily 1 group D member 1 (Nr1d1), is a crucial regulatory factor in organisms. It exhibits circadian rhythmic expression in metabolically active tissues such as skeletal muscles, heart, liver, and adipose tissue, responding to various environmental stimuli. Rev-erbα plays a significant role in regulating circadian rhythms, metabolic homeostasis, and other physiological processes, earning its designation as an “integrator” of the circadian system and metabolism. Rev-erbα establishes complex connections with other clock genes through the transcriptional-translational feedback loop (TTFL), which is important for the rhythmic output of biological clock system and for the relative stability of phases and cycles. Mitochondrial biogenesis is a physiological process initiated by cells to maintain energy homeostasis by using existing mitochondria as a template for self-growth and division. As the “energy factory” of organism, disruptions in mitochondrial biogenesis are closely associated with the development of various diseases. Studies have shown that not only the factors involved in mitochondrial biogenesis have circadian oscillations, but also the morphology, dynamics and energy metabolism of mitochondria themselves have cyclic fluctuations throughout the day, suggesting that mitochondrial biogenesis is regulated by the biological clock system, in which the clock gene Rev-erbα plays a key role, it drives mitochondrial biogenesis and synergistically regulates autophagy to normalize a number of physiological processes in the body. Rev-erbα is sensitive to both internal and external environmental changes, and disruptions in circadian rhythms, metabolic diseases, and aging are significant inducers of changes in Rev-erbα expression, and its concomitant inflammation and oxidative stress may be an intrinsic mechanism for inhibiting mitochondrial biogenesis. Therefore, the enhancement of mitochondrial biogenesis by regulating the Rev-erbα activity status may be an important way to improve the pathology and promote the health of organism. Exercise, as a commonly accepted non-pharmacological tool, plays an important role in enhancing mitochondrial biogenesis and promoting health. It has been found that there is a close relationship between exercise and Rev-erbα. On the one hand, exercise stimulation directly affects the expression of Rev-erbα, especially high-intensity and long-term regular exercise; on the other hand, Rev-erbα achieves indirect regulation of exercise capacity by mediating processes such as skeletal muscle mitochondrial biogenesis and autophagy, muscle mass maintenance, energy metabolism and skeletal muscle regeneration. Based on the above findings, it is hypothesized that Rev-erbα may serve as a key bridge between exercise and mitochondrial biogenesis. Exercise enhances the transcriptional response of Rev-erbα in the nucleus, upregulates the expression of Rev-erbα protein in cytoplasm, activates the AMP-activated proteinkinase (AMPK)/ silent information regulator 1 (SIRT1)/peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) pathway, regulates Ca2+ flux and downstream signaling molecules; meanwhile, exercise can upregulate antioxidant gene expression and alleviate oxidative stress through Rev-erbα, which ultimately enhances the function of mitochondria, and promotes mitochondrial biogenesis. In conclusion, the clock gene Rev-erbα emerges as a crucial target for exercise-induced enhancement of mitochondrial biogenesis. In this paper, the biological characteristics of Rev-erbα, the role of Rev-erbα in regulating mitochondrial biogenesis and the factors that may influence it, the interaction between exercise and Rev-erbα, and the potential mechanism of exercise-induced mitochondrial biogenesis via Rev-erbα are sorted out and discussed, which can provide theoretical references to the mechanism of exercise-promoted mitochondrial biogenesis.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
    • The Plant ATG8-binding Proteins

      2024, 51(6):1371-1381. DOI: 10.16476/j.pibb.2023.0318

      Abstract (273) HTML (98) PDF 1.77 M (561) Comment (0) Favorites

      Abstract:ATG8-binding proteins play a key role in autophagy, selective autophagy or non-autophagy process by interacting between ATG8 and the ATG8-interacting motif (AIM) or the ubiquitin-interacting motif (UIM). There is great progress of ATG8-binding proteins in yeast and mammalian studies. However, the plant domain is still lagging behind. Therefore, the structure characteristics of plant ATG8 binding protein were firstly outlined. Unlike the single copy of ATG8 gene in yeast, many homologous genes have been identified in plant. The LIR/ AIM-docking site (LDS) of ATG8 protein contains W and L pockets and is responsible for binding to AIM. The ATG8 protein binds to UIM-containing proteins via UIM-docking site (UDS) instead of LDS. UDS is in the opposite position to LDS, so the ATG8 can bind both AIM and UIM proteins. Secondly, the structure and function of ATG8-binding proteins, especially the selective autophagy receptors, were systematically described. The protein NBR1 and Joka2, as proteaphagy receptors, guide ubiquitination protein aggregates to autophagosome for degradation by binding to AIM and ATG8 in Arabidopsis and tobacco, respectively. AtNBR1 also promotes plant immunity by binding the capsid protein of cauliflower mosaic virus and silencing suppressor HCpro of turnip mosaic virus, mediating pathogen autophagy. AtNBR1 still degrades chloroplast by microautophagy under photoinjure or chlorophagy during ibiotic stress. And the protein ORM mediates the degradation of plant immune receptor flagellin sensing 2 (FLS2) through AIM binding to ATG8. Interestingly, ATI1 and ATI2 participate in both chlorophagy and ERphagy. Otherwise, ER membrane protein AtSec62, soluble protein AtC53, and ubiquitin-fold modifier1-specific ligase 1 (UFL1) can be directly bound to ATG8 as ER autophagy receptors. As pexophagy receptor, AtPEX6 and AtPEX10 bind to ATG8 via AIM and participate in pexophagy. RPN10, as a 26S proteasome subunit, whose C-terminal UIM1 and UIM2 bind ubiquitin and ATG8, respectively, mediates the selective autophagy degradation of 26S proteasome inactivation when fully ubiquitinated. Plant-specific mitochondrial localization proteins FCS-like zinc finger (FLZ) and friendly (FMT) may also be mitophagy receptors. CLC2 binds to ATG8 via the AIM-LDS docking site and is recruited to autophagy degradation on the Golgi membrane. The tryptophan-rich sensory protein (TSPO) in Arabidopsis was involved in clearing free heme, porphyrin and plasma membrane intrinsic protein 2;7 (PIP2;7) through the combination of AIM and ATG8. The conformation of GSNOR1 changes during anoxia, exposing the interaction between AIM and ATG8, leading to selective degradation of GSNOR1. At last, the ATG8 binding proteins involved in autophagosome closure, transport and synthetic synthesis was summarized. For example, plant-specific FYVE domain protein required for endosomal sorting 1 (FREE1) is involved in the closure of autophagosomes during nutrient deficiency. Therefore, according to the recent research advances, the structure and function of plant ATG8-binding proteins were systematically summarized in this paper, in order to provide new ideas for the study of plant selective autophagy and autophagy.

      • 0+1
      • 1+1
    • Low-dose Radiation Therapy for Osteoarthritis

      2024, 51(6):1382-1392. DOI: 10.16476/j.pibb.2023.0432

      Abstract (156) HTML (35) PDF 1.99 M (256) Comment (0) Favorites

      Abstract:Osteoarthritis (OA) is a chronic degenerative joint disease and the most common type of arthritis. It involves almost any joint and can lead to chronic pain and disability. In the late 19th century, Roentgen discovered X-rays, and then began to use radiotherapy to treat tumors. In the 1980s, Luckey thought that low-level radiation (LDRT) might be beneficial to biology, and it was gradually applied to the treatment of some diseases. This paper introduces the epidemiology, risk factors, clinical manifestations and treatment methods of OA, points out that the cartilage injury and the important effect of synovial inflammation in the pathogenesis of OA, namely when the homeostasis of articular cartilage are destroyed, synthetic metabolism and catabolism imbalances, cartilage cells damaged their breakdown products consumed by synovial cells. Synovial cells and synovial macrophages secrete proinflammatory cytokines, metalloproteinases and proteolytic enzymes, leading to cartilage matrix degradation and chondrocyte damage, which aggravates synovial inflammation and cartilage damage, forming a vicious cycle. The possible mechanism and clinical research progress of LDRT in alleviating OA are discussed. LDRT can regulate inflammatory response, inhibit the production of pro-inflammatory cytokines, and promote the production of anti-inflammatory cytokines, thereby achieving anti-inflammatory effect. Studies have shown that after irradiation, the expression of inducible nitric oxide synthase (iNOS) was decreased, the release of reactive oxygen species (ROS) and the production of superoxide were inhibited, the anti-inflammatory phenotype of macrophages was differentiated from M1 to M2, the inflammatory CD8+ T cells were transformed into CD4+ T cells, and the number of dendritic cells (DC) was significantly reduced. LDRT inhibit the production of proinflammatory factors in leukocytes, reduce their recruitment and adhesion, and down-regulate the expression levels of cell adhesion molecules such as selectin, intercellular adhesion molecule (ICAM) and vascular endothelial cell adhesion molecule (VCAM). LDRT can regulate endothelial cells, stimulate endothelial cells to produce a large amount of TGF-β1, reduce the adhesion of endothelial cells to peripheral blood mononuclear cells (PBMC), and contribute to the anti-inflammatory effect of LDRT. It also exerted anti-inflammatory effects by regulating mitochondrial growth differentiation factor 15 (GDF15). After low-level radiation, the MMP-13 (matrix metalloproteinases-13) and the ADAMTS5 (recombinant a disintegrin and metalloproteinase with thrombospondin-5) decreased, the Col2a1 (collagen type 2) increased in chondrocytes. In the existing clinical studies, most patients can achieve relief of joint pain and recovery of joint mobility after irradiation, and the patients have good feedback on the efficacy. The adverse reactions (acute reactions and carcinogenic risks) caused by LDRT in the treatment of OA are also discussed. During the treatment of OA, a few patients have symptoms such as redness, dryness or itching at the joint skin, and the symptoms are mild and do not require further treatment. Patients are thus able to tolerate more frequent and longer doses of radiotherapy. In general, LDRT itself has the advantages of non-invasive, less adverse reactions, and shows the effect of pain relief and movement improvement in the treatment of OA. Therefore, LDRT has a broad application prospect in the treatment of OA.

      • 0+1
      • 1+1
      • 2+1
    • Application of Histone Deacetylase Inhibitor in Acute Myeloid Leukemia

      2024, 51(6):1393-1405. DOI: 10.16476/j.pibb.2023.0324

      Abstract (258) HTML (179) PDF 2.30 M (269) Comment (0) Favorites

      Abstract:Acute myeloid leukemia (AML) is a malignant clonal disease of hematopoietic stem cells, characterized by the proliferation of abnormal primordial cells of myeloid origin in bone marrow, blood and other tissues. At present, the standard induction therapy for AML mainly includes “3+7” standard treatment(anthracycline combined with cytarabine), allogeneic hematopoietic stem cell transplantation (Allo-HSCT) and targeted drug therapy. However, AML cells usually express high levels of P-glycoprotein, which mediates the efflux of chemotherapeutic drugs, which makes AML cells resistant to chemotherapy, resulting in many patients who are not sensitive to chemotherapy or relapse after complete remission. And some patients can not tolerate intensive therapy or lack of donors and can not use Allo-HSCT therapy. Therefore, it is of great clinical significance to find new drugs to improve the efficacy of AML patients. Epigenetic disorders play a key role in the pathogenesis of many diseases, especially cancer. Studies have shown that most AML patients have epigenetic regulatory gene mutations, such as DNMT3A, IDH and TET2, and these mutations are potentially reversible, which has become one of the therapeutic targets of AML. Histone deacetylase inhibitors (HDACi) can regulate the balance between histone acetylation and deacetylation, change the expression of proto-oncogenes or tumor suppressor genes that control cancer progression from epigenetics, and play an important role in many kinds of tumor therapy. At present, HDACi has shown the ability to induce differentiation, cell cycle arrest and apoptosis of AML cells. The mechanism may be mainly related to HDACi inducing chromatin conformation opening of tumor suppressor gene by inhibiting HDAC activity, promoting oncogene damage and preventing oncogene fusion protein from recruiting HDAC. Although the preclinical outcome of HDACi is promising, it is not as effective as the conventional therapy of AML. However, the combination strategy with various anticancer drugs is in clinical trials, showing significant anti-AML activity, improving efficacy through key targeting pathways in a typical synergistic or additive way, increasing AML sensitivity to chemotherapy, reducing tumor growth and metastasis potential, inhibiting cell mitotic activity, inducing cell apoptosis, regulating bone marrow microenvironment, which provides a good choice for the treatment of AML. Especially for those AML patients who are not suitable for intensive therapy and drug resistance to chemotherapy. This review introduces the relationship between HDAC and cancer; the classification of HDAC and its function in AML; the correlation between HDAC and AML; the clinical application of five types of HDACi; preclinical research results and clinical application progress of six kinds of HDACi in AML, such as Vrinota, Belinostat, Panobinostat, Valproic acid, Entinostat, and Chidamide, the mechanism of HDACi combined with other anticancer drugs in AML indicates that the current HDACi is mainly aimed at various subtypes of pan-HDAC inhibitors, with obvious side effects, such as fatigue, thrombocytopenia, nausea, vomiting, diarrhea. In recent years, the next generation of HDACi is mainly focused on the selectivity of analogues or isomers. Finding the best combination of HDACi and other drugs and the best timing of administration to balance the efficacy and adverse reactions is a major challenge in the treatment of AML, and the continued development of selective HDACi with less side effects and more accurate location is the key point for the development of this drug in the future. It is expected to provide reference for clinical treatment of AML.

      • 0+1
      • 1+1
      • 2+1
    • >Short Communications
    • PRMT7 Regulates Adipogenic Differentiation of hBMSCs by Modulating IGF-1 Signaling

      2024, 51(6):1406-1417. DOI: 10.16476/j.pibb.2024.0099

      Abstract (94) HTML (38) PDF 5.35 M (300) Comment (0) Favorites

      Abstract:Objective Protein arginine methyltransferases (PRMTs) play pivotal roles in numerous cellular biological processes. However, the precise regulatory effects of PRMTs on the fate determination of mesenchymal stromal/stem cells (MSCs) remain elusive. Our previous studies have shed light on the regulatory role and molecular mechanism of PRMT5 in MSC osteogenic differentiation. This study aims to clarify the role and corresponding regulatory mechanism of PRMT7 during the adipogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs).Methods (1) Human bone marrow-derived mesenchymal stem cells (hBMSCs) were cultured in a medium that induces adipogenesis. We used qRT-PCR and Western blot to monitor changes in PRMT7 expression during adipogenic differentiation. (2) We created a cell line with PRMT7 knocked down and assessed changes in PRMT7 expression and adipogenic capacity using Oil Red O staining, qRT-PCR and Western blot. (3) We implanted hBMSCs cell lines mixed with a collagen membrane subcutaneously into nude mice and performed Oil Red O staining to observe ectopic lipogenesis in vivo. (4) A cell line overexpressing PRMT7 was generated, and we examined changes in PRMT7 expression using qRT-PCR and Western blot. We also performed Oil Red O staining and quantitative analysis after inducing the cells in lipogenic medium. Additionally, we assessed changes in PPARγ expression. (5) We investigated changes in insulin-like growth factor 1 (IGF-1) expression in both PRMT7 knockdown and overexpressing cell lines using qRT-PCR and Western blot, to understand PRMT7’s regulatory effect on IGF-1 expression. siIGF-1 was transfected into the PRMT7 knockdown cell line to inhibit IGF-1 expression, and knockdown efficiency was confirmed. Then, we induced cells from the control and knockdown groups transfected with siIGF-1 in lipogenic medium and performed Oil Red O staining and quantitative analysis. Finally, we assessed PPARγ expression to explore IGF-1’s involvement in PRMT7’s regulation of adipogenic differentiation in hBMSCs.Results (1) During the adipogenesis process of hBMSCs, the expression level of PRMT7 was significantly reduced (P<0.01). (2) The adipogenic differentiation ability of PRMT7 knockdown group was significantly stronger than that of control group (P<0.001). (3) The ectopic adipogenic differentiation ability of PRMT7 knockdown group was significantly stronger than that of control group. (4) The adipogenic differentiation ability of the PRMT7 overexpression group was significantly weaker than that of the control group (P<0.01). (5) The expression level of IGF-1 increased after PRMT7 knockdown (P<0.000 1). The expression level of IGF-1 decreased after PRMT7 overexpression (P<0.000 1), indicating that PRMT7 regulates the expression of IGF-1. After siIGF-1 transfection, the expression level of IGF-1 in all cell lines decreased significantly (P<0.001). The ability of adipogenic differentiation of knockdown group transfected with siIGF-1 was significantly reduced (P<0.01), indicating that IGF-1 affects the regulation of PRMT7 on adipogenic differentiation of hBMSCs.Conclusion In this investigation, our findings elucidate the inhibitory role of PRMT7 in the adipogenic differentiation of hBMSCs, as demonstrated through both in vitro cell-level experiments and in vivo subcutaneous transplantation experiments conducted in nude mice. Mechanistic exploration revealed that PRMT7’s regulatory effect on the adipogenic differentiation of hBMSCs operates via modulation of IGF-1 signaling pathway. These collective findings underscore PRMT7 as a potential therapeutic target for fatty metabolic disorders, thereby offering a novel avenue for leveraging PRMT7 and hBMSCs in the therapeutic landscape of relevant diseases.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
    • >Research Papers
    • Ku70 Functions as an RNA Helicase to Regulate miR-124 Maturation and Neuronal Cell Differentiation

      2024, 51(6):1418-1433. DOI: 10.16476/j.pibb.2023.0456

      Abstract (159) HTML (35) PDF 3.31 M (310) Comment (0) Favorites

      Abstract:Objective Human Ku70 protein mainly involves the non-homologous end joining (NHEJ) repair of double-stranded DNA breaks (DSB) through its DNA-binding properties, and it is recently reported having an RNA-binding ability. This paper is to explore whether Ku70 has RNA helicase activity and affects miRNA maturation.Methods RNAs bound to Ku protein were analyzed by RNA immunoprecipitation sequencing (RIP-seq) and bioinfomatic anaylsis. The expression relationship between Ku protein and miRNAs was verified by Western blot (WB) and quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) assays. Binding ability of Ku protein to the RNAs was tested by biolayer interferometry (BLI) assay. RNA helicase activity of Ku protein was identified with EMSA assay. The effect of Ku70 regulated miR-124 on neuronal differentiation was performed by morphology analysis, WB and immunofluorescence assays with or without Zika virus (ZIKV) infection.Results We revealed that the Ku70 protein had RNA helicase activity and affected miRNA maturation. Deficiency of Ku70 led to the up-regulation of a large number of mature miRNAs, especially neuronal specific miRNAs like miR-124. The knockdown of Ku70 promoted neuronal differentiation in human neural progenitor cells (hNPCs) and SH-SY5Y cells by boosting miR-124 maturation. Importantly, ZIKV infection reduced the expression of Ku70 whereas increased expression of miR-124 in hNPCs, and led to morphologically neuronal differentiation.Conclusion Our study revealed a novel function of Ku70 as an RNA helicase and regulating miRNA maturation. The reduced expression of Ku70 with ZIKV infection increased the expression of miR-124 and led to the premature differentiation of embryonic neural progenitor cells, which might be one of the causes of microcephaly.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
      • 6+1
      • 7+1
    • A Study on Brain Functional Connectivity in Patients Disorders of Consciousness Based on Auditory Stimulation

      2024, 51(6):1434-1444. DOI: 10.16476/j.pibb.2023.0372

      Abstract (175) HTML (46) PDF 3.07 M (276) Comment (0) Favorites

      Abstract:Objective At present, the grading evaluation of patients with disorders of consciousness (DOC) is still a focus and difficulty in related fields. Electroencephalogram (EEG) can directly read and continuously reflect scalp electrical activity generated by brain tissue structure, with high temporal resolution. Auditory stimulation is easy to operate and has broad application prospects in clinical detection of DOC. The causal network can intuitively reflect the direction of information transmission through the causal relationship between time series, helping us better understand the information interaction between different regions of the brain of patients. This paper combines EEG and causal networks to explore the differences in brain functional connectivity between patients with unresponsive arousal syndrome (VS) and those with minimum state of consciousness (MCS) under auditory stimulation.Methods A total of 23 DOC patients were included, including 11 MCS patients and 12 VS patients. Based on the Oddball paradigm, auditory naming stimulation was performed on DOC patients and EEG signals of DOC patients were synchronously collected. The brain functional networks were constructed using multivariate Granger causality method, and the differences in node degree, clustering coefficient, global efficiency, and causal flow of the brain networks between MCS patients and VS patients were calculated. The differences in network characteristics of patients with different levels of consciousness under auditory stimulation were compared from the perspective of cooperation between brain regions.Results The causal connectivity between most brain regions in MCS patients was stronger than that in VS patients, and MCS patients had more brain network connectivity edges than VS patients. The average degree (P<0.05), average clustering coefficient, and global efficiency (P<0.05) of MCS patients under naming stimulation were higher than those of VS patients. The difference in out-degree between each node of VS patients was larger, and the difference in in-degree between each node of MCS patients was smaller. The difference in in-degree of MCS patients was more significant than that of VS patients, and the inflow and outflow of information in the brain functional network of MCS patients were stronger than those of VS patients. MCS and VS patients had differences of causal flow in the frontal and temporal lobes, the direction of information transmission in the parietal lobe and central region was not the same, and MCS patients had more electrodes as causal sources than VS patients.Conclusion The information transmission ability of MCS patients is stronger than that of VS patients under auditory naming stimulation. Compared with VS patients, MCS patients have an increase in the number of electrode channels as the causal source, an increase in information output to other brain regions, and also an increase in the information output within brain regions, which may indicate a better state of consciousness in patients. MCS patients have more electrode channels for information output in the frontal lobe than VS patients, and the number of electrode channels for changing the direction of information transmission in the frontal lobe is the highest. The frontal lobe is closely related to the level of consciousness in patients with consciousness disorders. This study can provide a theoretical basis for the grading evaluation of consciousness levels in DOC patients.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
    • Dihydrotanshinone Enhances The Anticancer Effects of Sorafenib on Hepatocellular Carcinoma by Inhibiting Akt Signaling Pathway Activation

      2024, 51(6):1445-1457. DOI: 10.16476/j.pibb.2023.0369

      Abstract (199) HTML (35) PDF 4.99 M (261) Comment (0) Favorites

      Abstract:Objective Sorafenib is a first-line only drug approved for the treatment of advanced hepatocellular carcinoma (HCC). Resistance to sorafenib means that treatment outcomes are often unsatisfactory. Although the mechanism underlying sorafenib resistance remains unclear, resistance may occur through Akt signaling pathway activation in HCC. Dihydrotanshinone (DHT), a lipophilic component of traditional Chinese medicine Salvia miltiorrhiza Bunge, has multiple anti-tumor activities and inhibits Akt activation. The effect and mechanism of DHT combined with sorafenib on HCC have not been investigated. In this study, we investigate whether DHT potentiates the anti-cancer activities of sorafenib against HCC.Methods In this study, the effects of sorafenib and DHT on the viability, apoptosis and drug sensitivity of Huh7 and HepG2 cells were verified by Cell Counting Kit-8 (CCK-8) and flow cytometry. Akt, P-Akt, Caspase3, GSK-3β, P-GSK-3β, ribosomal protein S6 kinase (S6K), P-S6K, Cyclin D1, Bcl-xl, Bcl-2, and Bax expression levels were analyzed via Western blot. All data were statistically compared using one-way analysis of variance (ANOVA) and Dunnett test. Statistical analysis using SPSS 20.0 statistical software.Results DHT inhibit proliferation and promote apoptosis in HCC cells by reducing Akt activation. DHT inhibits the expression and activation of Akt downstream factors, including GSK-3β and S6K, which regulate the apoptotic response and are activated and upregulated by sorafenib treatment. Both sorafenib and DHT downregulate cyclin D1 expression and DHT upregulates Bax expression and downregulates Bcl-2 and Bcl-xl expression. However, sorafenib had little influence on Bcl-2 family protein expression.Conclusion DHT may enhance the proliferation inhibition and apoptosis induction of sorafenib in HCC cells by inhibiting the activation of Akt signaling pathway, thus enhancing the anticancer effect of sorafenib.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
    • Raman Spectroscopy Analysis of The Temporal Heterogeneity in Lung Cell Carcinogenesis Induced by Benzo(a)pyrene

      2024, 51(6):1458-1470. DOI: 10.16476/j.pibb.2023.0447

      Abstract (159) HTML (28) PDF 3.10 M (291) Comment (0) Favorites

      Abstract:Objective Temporal heterogeneity in lung cancer presents as fluctuations in the biological characteristics, genomic mutations, proliferation rates, and chemotherapeutic responses of tumor cells over time, posing a significant barrier to effective treatment. The complexity of this temporal variance, coupled with the spatial diversity of lung cancer, presents formidable challenges for research. This article will pave the way for new avenues in lung cancer research, aiding in a deeper understanding of the temporal heterogeneity of lung cancer, thereby enhancing the cure rate for lung cancer.Methods Raman spectroscopy emerges as a powerful tool for real-time surveillance of biomolecular composition changes in lung cancer at the cellular scale, thus shedding light on the disease’s temporal heterogeneity. In our investigation, we harnessed Raman spectroscopic microscopy alongside multivariate statistical analysis to scrutinize the biomolecular alterations in human lung epithelial cells across various timeframes after benzo(a)pyrene exposure.Results Our findings indicated a temporal reduction in nucleic acids, lipids, proteins, and carotenoids, coinciding with a rise in glucose concentration. These patterns suggest that benzo(a)pyrene induces structural damage to the genetic material, accelerates lipid peroxidation, disrupts protein metabolism, curtails carotenoid production, and alters glucose metabolic pathways. Employing Raman spectroscopy enabled us to monitor the biomolecular dynamics within lung cancer cells in a real-time, non-invasive, and non-destructive manner, facilitating the elucidation of pivotal molecular features.Conclusion This research enhances the comprehension of lung cancer progression and supports the development of personalized therapeutic approaches, which may improve the clinical outcomes for patients.

      • 0+1
      • 1+1
      • 2+1
      • 3+1
      • 4+1
      • 5+1
    • >Techniques and Methods
    • Reduced Field of View APT Imaging of Rectum (RAPTOR) at 3T MRI Scanner

      2024, 51(6):1471-1478. DOI: 10.16476/j.pibb.2023.0461

      Abstract (203) HTML (30) PDF 2.05 M (87) Comment (0) Favorites

      Abstract:Objective The chemical exchange saturation transfer (CEST) technique has become a valuable tool in diagnosing metabolic changes associated with cerebral and systemic diseases, leveraging the calculation of compounds with exchangeable protons in proximity to water molecules. Specifically, the amide proton transfer (APT) CEST technique has shown promise in diagnosing cerebral strokes and tumors by comparing altered endogenous proteins or peptides with normal tissues. Reduced field of view (rFOV) imaging technology has been widely used in the diagnosis of small organ lesions in the body. In this study, we aim to apply the rFOV imaging to identify CEST signals in the rectum, investigating the potential utility of rFOV technique in clinical diagnosis of rectal diseases and providing metabolic insights for chemoradiotherapy.Methods MRI images of eleven healthy volunteers were acquired using transverse Full_FOV and rFOV CEST imaging on a 3T scanner. The resolution was set at 2.5×2.5× 6 mm3 and 1.5×1.5×6 mm3 for Full_FOV or the rFOV method. Saturation powers of 0.7 μT and 2 μT were applied. For the 2 μT saturation, MTRasym at ±3.5 ppm was employed, while for 0.7 μT saturation, Lorentzian difference was used for CEST quantification of the contrast maps and curves.Results The rFOV method has the advantage of halving the scan time while maintaining the same contrast as the Full_FOV method. When compared to Full_FOV methods, rFOV methods exhibited nearly identical Z_spec and very similar MTRasym curves. Additionally, rFOV with a 1.5 mm×1.5 mm in-plane resolution could be achieved in approximately 3 min. rFOV method displayed better structural details for the entire rectum, including CEST contrast maps and quantitative curves.Conclusion CEST MRI proves valuable in diagnosing rectal diseases, and employing the rFOV technique could provide higher spatial and temporal resolution. CEST MRI should be the preferred choice for offering improved diagnostic capabilities with its potential for rectal disease diagnosis.

      • 0+1
      • 1+1
      • 2+1

Current Issue

Volume , No.

Table of Contents

Archive

Volume

Issue

Most Read

Most Cited

Most Downloaded