LI Li-Li , LI Yong-Hui , SHEN Xun-Bing , DONG Xin-Wen
2024, 51(8):1733-1749. DOI: 10.16476/j.pibb.2023.0458 CSTR: 32369.14.pibb.20230458
Abstract:Working memory is a core component of human cognitive functions, responsible for the temporary storage and manipulation of information, and plays a vital role in the execution of daily tasks. Working memory includes information encoding, maintenance, manipulation, and retrieval, with the underlying mechanisms corresponding to neural oscillations. The frequency bands most related to each step of working memory are θ (4-8 Hz), α (8-13 Hz), and γ (>30 Hz) waves. θ waves mainly correspond to the temporal organization of memory items; γ waves are related to information maintenance; α waves indicate inhibition of irrelevant information. These neural oscillations can be regulated by external rhythmic stimulation, gradually synchronizing to the rhythm and phase of external stimulation. This phenomenon is called neural entrainment. Non-invasive brain stimulation (NIBS) can regulate working memory related neural oscillations through entrainment, and has the potential to become a method to enhance working memory performance. Another possible intervention approach to improve working memory is to enhance the excitability of key brain regions involved in working memory through NIBS. In this review, we reviewed more than 50 studies applying NIBS for working memory in healthy adults, including transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS), and other NIBS techniques. In terms of research paradigm, working memory NIBS studies with healthy adults usually adopt classic working memory behavioral paradigms, e.g., n-back tasks with numbers or space positions, Sternberg tasks, relatively few stimulating sessions, mainly focus on the simultaneous or short-term effects on behavioral performance. For stimulation sites, the prefrontal cortex (especially dorsolateral prefrontal cortex (DLPFC) is the most commonly choice for it’s a vital role in functions such as information maintenance and cognitive resource allocation. The parietal lobe (especially the intraparietal sulcus (IPS) also plays an important role in information maintenance and manipulation, and is the second common stimulation site after DLPFC. Studies targeting the temporal lobe, occipital lobe, and motor cortex are relatively limited. For stimulation methods, TMS studies mainly use repetitive TMS (rTMS) and θ burst stimulation (TBS) with stimulating frequency in θ or γ band, one-sided or bilateral prefrontal cortex as the stimulation site. The specific intervention effects may also depend on the phase of the neural oscillation that TMS targets. For tDCS studies, anodal stimulation of DLPFC or parietal lobe is widely utilized. The heterogeneous intervention effects such as relatively weak enhancement or impairment of working memory performance after intervention, may result from varied stimulation protocol or participants’ factors (e.g., small sample size, inconsistent baseline levels). For tACS studies, the most widely used stimulation frequencies are θ and γ bands, usually with in-phase manner, fixed or individualized frequencies. Enhancement of working memory performance has been reported for both settings, and the effects are also affected by stimulation parameters, task difficulty and baseline levels of participants. Transcranial random noise stimulation (tRNS), temporal interference stimulation (TIS), transcranial ultrasound stimulation (TUS) are emerging NIBS techniques, of which TIS and TUS can stimulate deep brain regions. Current studies modulating working memory based on these cutting-edge techniques are limited, but they have potential in mechanism exploration and clinical applications in working memory research.
QIAN Shuai-Wei , KOU Xian-Juan , LI Chun-Yan
2024, 51(8):1750-1770. DOI: 10.16476/j.pibb.2023.0395 CSTR: 32369.14.pibb.20230395
Abstract:Overtraining is a condition characterized by various functional disorders or pathological states caused by continuous fatigue, which occurs after a persisting imbalance between training-related load and physical function and recovery. Generally speaking, it’s a state of imbalance between training and recovery, exercise and exercise performance, and stress and stress tolerance. Overtraining can cause various phenotypic changes or pathological remodeling, such as decreased skeletal muscle strength and exhaustive exercise endurance, skeletal muscle fatigue damage and dysfunction, skeletal muscle atrophy and loss, skeletal muscle glycogen depletion, skeletal muscle soreness and stiffness, skeletal muscle glucose intolerance, inattention, memory decline, anxiety, depression, abnormal emotions and behaviors, sleep disorders, cognitive function impairment, poor appetite, weight loss, liver/heart fat deposition, compensatory increase of liver/heart insulin signaling and glycogen storage, cardiac pathological hypertrophy, exercise-induced arrhythmias, myocardial fibrosis, ectopic and visceral fat deposition, and increased risk of injury. Unfortunately, its underlying mechanism is largely unclear. Recently, the enrichment of molecular and cellular signal pathway theory offers us a new explanatory paradigm for revealing its internal mechanisms. Based on the traditional explanation mechanisms and molecular and cellular signal pathway theory, we thoroughly analyzed the key mechanisms of health damage caused by overtraining from the perspective of oxidative stress, mitochondrial quality control disorder, inflammatory response, endoplasmic reticulum stress, cell apoptosis, and so forth. Specifically, overtraining-induced excessive reactive oxygen species (ROS) leads to serious oxidative stress damage in organisms at least via depressing Kelch like ECH associated protein 1(Keap1)/nuclear factor erythroid-2-related factor (Nrf2)/antioxidant response element (ARE) antioxidant pathway and activating p38 mitogen-activated protein kinase (p38 MAPK) signaling pathway. Overtraining induces mitochondrial quality control disorder and mitochondrial dysfunction, and thus triggers health impairment through inhibiting mitochondrial biogenesis and fusion, stimulating mitochondrial fission, and over-activating autophagy/mitophagy. Overtraining can also produce muscle, skeletal and joint trauma, then circulating monocytes are abundantly activated by injury-related cytokines, and in turn generate large quantities of proinflammatory IL-1β, IL-6, TNF-α, causing systemic inflammation and inflammatory health injury. Overtraining induces excessive pathological endoplasmic reticulum stress (ERS) and severe health damage via PERK-eIF2α, IRE1α-XBP1 and ATF6 pathways which activated by proinflammatory signals. Overtraining also induces excessive apoptosis and harmful health consequences via Bax/Bcl2-Caspase 3-mediated mitoptosis which activated by oxidative stress and inflammation or even CHOP and Caspase 12-dependent ERS apoptosis. Nonetheless, it should be importantly emphasized that oxidative stress and inflammation are the central and pre-emptive mechanisms of overtraining and its health damage. Although the efficient strategies for preventing and controlling overtraining are scientifically and reasonably arranging and planning training intensity, training volume, and recovery period, as well as accurately assessing and monitoring physical function status in the early stage, yet various anti-inflammatory, anti-oxidant, anti-apoptotic, or anti-aging drugs such as curcumin, astaxanthin, oligomeric proanthocyanidins, silibinin, hibiscus sabdariffa, dasatinib, quercetin, hydroxytyrosol, complex probiotics, astragalus polysaccharides, semaglutide and fasudil also have an irreplaceable positive effect on preventing overtraining and its relevant health damage via depressing oxidative stress, mitochondrial quality control disorder, proinflammatory signals, endoplasmic reticulum stress, apoptosis and so on. We hope that this review can help us further grasp the features, mechanisms and regularity of overtraining, and provide an important reference for athletes and sports fan to conduct scientific training, improve training effectiveness, extend exercise lifespan, and promote physical and mental health.
LI Shuang , CHEN Zhi , HUANG Yun-Xia , ZHAO Guo-Jun , JIANG Ting
2024, 51(8):1771-1787. DOI: 10.16476/j.pibb.2023.0376 CSTR: 32369.14.pibb.20230376
Abstract:Tumors represent one of the primary threats to human life, with the dissemination of malignant tumors being a leading cause of mortality among cancer patients. Early diagnosis of tumors can reliably predict their progression, significantly reducing mortality rates. Tumor markers, including circulating tumor cells, exosomes, proteins, circulating tumor DNA, miRNAs and so on, generated during the tumor development process, have emerged as effective approach for early tumor diagnosis. Several methods are currently employed to detect tumor markers, such as polymerase chain reaction, Northern blotting, next-generation sequencing, flow cytometry, and enzyme-linked immunosorbent assay. However, these methods often suffer from time-consuming process, high costs, low sensitivity, and the requirement for specialized personnel. Therefore, a new rapid, sensitive, and specific tumor detection method is urgently needed.The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system, originating from the adaptive immune system of bacteria, has found extensive applications in gene editing and nucleic acid detection. Based on the structure and function of Cas proteins, the CRISPR/Cas system can be classified into two classes and six types. Class I systems consist of multiple Cas protein complexes, including types I, III, and IV, while Class II systems comprise single, multi-domain Cas proteins mediated by RNA, including types II (Cas9), V (Cas12), and VI (Cas13). Class II systems have been widely employed in the fields of biotechnology and nucleic acid diagnostics due to their efficient target binding and programmable RNA specificity. Currently, fluorescence method is the most common signal output technique in CRISPR/Cas-based biosensors. However, this method often requires the integration of signal amplification technologies to enhance sensitivity and involves expensive and complex fluorescence detectors. To enhance the detection performance of CRISPR/Cas-based biosensors, the integration of CRISPR/Cas with some alternative techniques can be considered. The CRISPR/Cas integrated electrochemical sensor (E-CRISPR) possesses advantages such as miniaturization, high sensitivity, high specificity, and fast response speed. E-CRISPR can convert the reactions between biomolecules and detecting components into electrical signals, rendering the detection signals more easily readable and reducing the impact of background values. Therefore, E-CRISPR enhances the accuracy of detection results. E-CRISPR has been applied in various fields, including medical and health, environmental monitoring, and food safety. Furthermore, E-CRISPR holds tremendous potential for advancing the detection levels of tumor markers.Among all types of Cas enzymes, the three most widely applied are Cas9, Cas12, and Cas13, along with their respective subtypes. In this work, we provided a brief overview of the principles and characteristics of Class II CRISPR/Cas single-effector proteins. This paper focused on the various detection technologies based on E-CRISPR technique, including electrochemical impedance spectroscopy, voltammetry, photoelectrochemistry, and electrochemiluminescence. We also emphasized the applications of E-CRISPR in the field of tumor diagnosis, which mainly encompasses the detection of three typical tumor markers (ctDNA, miRNA, and proteins). Finally, we discussed the advantages and limitations of E-CRISPR, current challenges, and future development prospects. In summary, although E-CRISPR platform has made significant strides in tumor detection, certain challenges still need to be overcome for their widespread clinical application. Continuous optimization of the E-CRISPR platform holds the promise of achieving more accurate tumor subtyping diagnoses in clinical settings, which would be of significant importance for early patient diagnosis and prognosis assessment.
CHEN Dong-Xue , LI Yun-Long , WEI Da-Qiao , HUANG Fen
2024, 51(8):1788-1796. DOI: 10.16476/j.pibb.2023.0417 CSTR: 32369.14.pibb.20230417
Abstract:Glucose-6-phosphate dehydrogenase (G6PD) is the first rate-limiting enzyme of the pentose phosphate pathway, which regulates the production of nicotinamide adenine dinucleotide phosphate (NADPH) in cells, and plays an important role in redox reactions. In addition, NADPH is necessary for biosynthesis reactions and is an essential hydrogen donor in the biosynthesis of cholesterol, fatty acids, and sex hormones. NADPH also plays an important role in maintaining intracellular redox homeostasis, converting intracellular oxidized glutathione into reduced glutathione (GSH), which is the main intracellular antioxidant. Therefore, G6PD plays an important role in maintaining intracellular redox homeostasis. Studies have shown that the decrease in G6PD activity can lead to a breakdown of the redox balance in the cells and tends to the oxidation state, which not only leads to dysregulation of cell growth and signaling, but also makes the host more susceptible to viruses. Previous studies have focused on the molecular characteristics of G6PD, anemia caused by G6PD deficiency, and the relationship between malignant tumors and G6PD. In recent years, more attentions have been paid to the importance of G6PD at the cellular level, development, and disease progression. To explore the effects of G6PD on viral life cycle, the relationship between G6PD and viral infections, including the clinical symptoms and virus-host interactions of hepatitis B virus (HBV), human papilloma virus (HPV), hepatitis E virus (HEV), influenza virus and dengue fever virus (DENV) will be reviewed, which will benefit the antiviral drugs development. Many studies had proved that patients with deficient G6PD are more susceptible to HBV infection. It has been reported that HBV infection activates the glycolytic pathway, promotes pentose phosphate pathway, and accelerates citric acid cycle to enhance nucleotide and fat biosynthesis, thereby promoting viral replication. During HPV infection, miR-206 up-regulates the expression of G6PD to facilitate viral replication. Thus, G6PD may be a new target for anti-cervical cancer therapy. It was reported that patients with G6PD deficiency are more susceptible to HEV infection, and more serious HEV infection-associated diseases are developed. However, the mechanism of why and how the deficiency of G6PD affect HEV infection is still unclear. The oxidative stress caused by G6PD deficiency provides a suitable environment for influenza virus replication. Furthermore, patients with G6PD deficiency are more susceptible to SARS-CoV-2 infection and lead to more severe clinical symptoms with a higher risk of thrombosis and hemolysis than general population. There is a correlation between DENV infection and G6PD deficiency, which increase the risk of hemolysis, however, the pathogenesis is still unknown. The deficiency of G6PD promotes HCoV 229E infection, possibly because the NF-κB signal pathway is suppressed when G6PD deficiency, which results in decreased innate antiviral immune, and increased susceptibility to HCoV 229E, finally leads to increased viral replication. Thus, the deficiency of G6PD play an important role during viruses’ infection, especially the susceptibility. More studies should be performed on the relicationship between G6PD deficiency and specific viral susceptibility, and more attentions shoud be paid to G6PD deficient patients, which will benefit the treatment of viral infection and the development of antiviral drugs.
HE Shu-Xin , YU Chang-Shun , JIA Xiao-Dong , CHEN Jian-Chun , YAN Ke-Qiang
2024, 51(8):1797-1808. DOI: 10.16476/j.pibb.2023.0389 CSTR: 32369.14.pibb.20230389
Abstract:Lower-cost genotyping technology has promoted the generation of large genetic datasets with the evolving next-generation sequencing technology. The emergence of genome-wide association studies (GWAS) has facilitated researchers’ understanding of common complex diseases. GWAS refers to finding the sequence variations present in the human genome and screening out disease-related single nucleotide polymorphisms (SNPs). These SNPs are considered as the basis for assessing the stability of complex diseases. However, a single variation is not sufficient to assess an individual’s risk of disease. Polygenic risk score (PRS) is an emerging genetic data analysis method for quantitatively estimating an individual’s genetic risk for complex diseases by comprehensively considering multiple genetic variation sites. A single-value estimate of an individual’s genetic risk for a certain phenotype can be calculated as the cumulative impact of multiple genetic variants by building a PRS model. The finally expected risk score is weighted by the strength and direction of association of each SNP with the phenotype based on the number of alleles carried by each SNP. With the continuous development of various PRS calculation methods and the constant accumulation of genomic data, PRS has received widespread attention in the field of genetics. So far, quite a few studies at home and abroad have shown that PRS is valuable in risk prediction of different types of human traits or complex diseases, and its effectiveness has been further verified in clinical applications. At present, many studies have established PRS models based on GWAS summary statistics to quantify the genetic risk of susceptibility loci and clinical characteristics on diseases such as lung cancer, breast cancer, coronary heart disease, diabetes and Alzheimer’s disease. The disease-susceptible populations can be recognized through comparing the relative risk and absolute risk of the disease in different risk groups according to the population risk stratification results. Additionally, individual-level genotype data and omics data can also be used as data sources for PRS analysis research, especially the latter can dynamically reflect the short-term or long-term effects of environmental factors on human gene expression, and has potential application value in building early warning models to assess health risks. Since the calculation of PRS involves a large amount of genomic data analysis, there are big differences in the methods for data selection, model building and validation. Different PRS construction methods and software have different performances in disease risk prediction, and even the performance of same algorithm varies across diseases. It is worth noting that the PRS model often needs to be re-evaluated and verified for different groups of people, because PRS is affected by race and region. This review combines currently published PRS-related research and algorithms to describe the basic principles of PRS, compares their construction and verification methods, and discusses their applications and prospects. As a powerful genetic risk assessment tool, PRS has great potential in analyzing the genetic code of complex diseases and achieving precise diagnosis and personalized treatment.
WANG Yin-Feng , CHEN Wen-Li , LUO Fu-Cheng
2024, 51(8):1809-1821. DOI: 10.16476/j.pibb.2023.0489 CSTR: 32369.14.pibb.20230489
Abstract:Oligodendrocyte precursor cells (OPCs) represent the fourth major cell type within the central nervous system (CNS), ubiquitous beyond neurons, astrocytes, and microglia, constituting 5%-8% of the total cell population. They exhibit widespread distribution throughout the central nervous system, including brain, spinal cord, and optic nerve. OPCs showcase distinct protein expression, featuring platelet-derived growth factor receptor alpha (PDGFRα), neural/glial antigen 2 (NG2), SRY-related HMG-box protein 10 (Sox10), and oligodendrocyte transcription factor 2 (Olig2), endowing them with robust proliferation and migration capabilities. This capacity persists into adulthood and even later stages, contributing to the maintenance of normal neurological functions such as learning, memory, and sleep, while playing crucial roles in various neurological disorders. OPCs also display significant heterogeneity, influenced by developmental programs, stimulus-specific cellular responses, CNS locations, cell-cell interactions, and other regulatory mechanisms. Dysregulation of OPC function has been observed in various diseases, including multiple sclerosis, Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, Pelizaeus-Merzbacher disease, as well as psychiatric disorders such as schizophrenia, depression, emotional disorders, and autism spectrum disorders. In addition to differentiating into oligodendrocytes to form myelin sheaths and supporting axonal protection, fast signal transmission, and metabolic support, OPCs actively participate in regulating neural development, circuit formation, and neural plasticity. They respond to environmental factors and are closely associated with neurological disorders. This comprehensive exploration of OPCs delves into their development, functional diversity, and associations with neurological disorders. Firstly, the article introduces the complex regulatory mechanisms of OPCs during embryonic development, encompassing transcription factors, chromatin regulatory factors, post-translational modifications of proteins, microRNA, and intercellular communication, emphasizing their significance in the nervous system. Subsequently, it reviews recent research findings on various functions of OPCs, not only in neuronal development, phagocytosis, and reshaping activities, but also involving their secretion of factors, interactions with surrounding blood vessels, and regulation of inflammatory responses. Furthermore, the review highlights the connections between OPCs and neurodegenerative diseases (such as Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis) and psychiatric disorders (such as schizophrenia and depression), indicating their potential roles in disease occurrence and progression. The review then explores emerging trends in OPC research, addressing the evolving understanding of their roles in neurological health and disease. Recent studies have unveiled novel aspects of OPC functionality, shedding light on their ability to modulate immune responses, interact with the extracellular matrix, and contribute to neurovascular coupling. Additionally, insights into the role of OPCs in neuroinflammation and the crosstalk between OPCs and neurons have expanded our comprehension of their impact on neural circuits and plasticity. In conclusion, the comprehensive review summarizes the current understanding of OPC functional impairments and discusses future research directions. Emphasizing the importance of in-depth analysis of OPC heterogeneity and their roles in the development, repair, and diseases of the nervous system, this review not only provides profound insights into the multifaceted functions of OPCs in the nervous system but also sets the stage for future investigations into the intricate interplay between OPCs and the broader neural environment. With an expanded scope encompassing recent advances and emerging research trends, this review contributes to the ongoing dialogue in the field of neuroscience, fostering a deeper understanding of OPC biology and its implications for therapeutic interventions in neurological disorders.
MENG Zi-Ye , JIANG Miao , GAO Min , ZHAO Zi-Gang , XU Xiu , ZHAO Zhen-Ao
2024, 51(8):1822-1833. DOI: 10.16476/j.pibb.2024.0019 CSTR: 32369.14.pibb.20240019
Abstract:Acute respiratory distress syndrome (ARDS) is severe respiratory failure in clinical practice, with a mortality rate as high as 40%. Injury of pulmonary endothelial cells and alveolar epithelial cells occurs during ARDS, and pulmonary endothelial injury results in endothelial barrier disruption, which usually occurs before epithelial injury. Especially, when harmful factors enter the blood, such as sepsis and hemorrhagic shock, the pulmonary endothelial cells are affected firstly. The injured endothelial cells may loss cell-to-cell connections and even die. After the endothelial barrier is disrupted, fluid and proteins cross the endothelial barrier, causing interstitial edema. The alveolar epithelium is more resistant to injury, and when the tight barrier of the epithelium is broken, fluids, proteins, neutrophils, and red blood cells in the interstitium enter the alveolar space. From this process, it is easy to find that the endothelium is the first barrier to prevent edema, therefore, the protection of endothelium is the key to the prevention and treatment of ARDS. In addition, the injured endothelial cells express selectin and cell adhesion molecules, promoting the recruitment of immune cells, which exacerbate the inflammatory response and pulmonary endothelial cell injury. Mesenchymal stem cells (MSCs) can be derived from umbilical cord, bone marrow, adipose and so on. Because of low immunogenicity, MSCs can be used for allogeneic transplantation and have great application potential in tissue repairing. Through paracrine effect, MSCs can promote cell survival and balance inflammatory response. MSCs infused intravenously can locate in lungs rapidly and interact with endothelial cells directly, thus MSCs have advantages in protecting pulmonary microvascular endothelial cells. Animal experiments and clinical trials have found that MSC transplantation can significantly improve the symptoms of ARDS and reduce inflammatory reactions and endothelial permeability. Mechanically, MSCs acts mainly through paracrine and immunomodulatory effects. Paracrine cytokines from MSCs can not only promote pulmonary endothelial proliferation, but also reduce inflammatory response and promote cell survival to maintain endothelial integrity. In addition to paracrine cytokines, extracellular vesicles of MSCs are rich in RNAs, proteins and bioactive substances, which can protect pulmonary endothelial cells by intercellular communication and substance transport. Furthermore, MSCs may protect pulmonary endothelial cells indirectly by regulating immune cells, such as reducing the formation of extracellular trapping network of neutrophils, regulating macrophage polarization and regulating Th17/Treg cell balance. Although the beneficial effects of MSCs are verified, much work still needs to be done. MSCs from different tissues have their own characteristics and the scope of application. Different lung diseases possess different endothelial injury mechanisms. Thus, determining the indications of MSCs derived from different tissues is the direction of pulmonary disease clinical trials. From the perspective of transplantation route, intravenous injection of MSCs may have better clinical application in pulmonary endothelial injury caused by endogenous harmful factors in blood. Previous reviews mostly focused on the protective effects of MSCs on alveolar epithelium. In this article, we focused on endothelial cells and reviewed the direct protective effects and mechanisms of MSCs on endothelium through paracrine cytokines and extracellular vesicles, and summarize the mechanisms by which MSCs may indirectly protect pulmonary endothelial cells by regulating immune cells.
CAO Xin , ZHANG Jin-Ping , TU Li-Ying , ZOU Yun-Lian
2024, 51(8):1834-1847. DOI: 10.16476/j.pibb.2023.0434 CSTR: 32369.14.pibb.20230434
Abstract:Programmed death-1 (PD-1) is an inhibitory immune checkpoint that binds to programmed death-ligand 1 (PD-L1) to regulate the immune response and maintain immune system homeostasis of the immune system. Through overexpression of PD-L1, tumor cells bind to PD-1 on the surface of immune cells, inhibiting the activity and function of immune cells, leading to immune escape of cancer cells and tumor progression. Gastrointestinal cancer is a common malignancy with a high mortality rate worldwide, and the effectiveness of current systematic treatment options is limited. In recent years, immune checkpoint inhibitors (ICIs) such as PD-1/PD-L1 inhibitors have attracted much attention in cancer therapy. Immunotherapy has been incorporated into the treatment of some gastrointestinal malignancies. Different from traditional treatment, it uses various means to stimulate and enhance the immune function of the body to achieve the therapeutic purpose of controlling and eliminating tumor cells. However, although PD-1/PD-L1 inhibitors have shown potential in the treatment of gastrointestinal tumors, the efficacy of single inhibitor therapy is limited, which may be due to the ability of tumors to escape immune attack through other pathways after inhibitor treatment, or the presence of other immunosuppressive factors. For example, PD-1 and PD-L1 inhibitors can be combined with other immune checkpoint drugs, molecularly targeted drugs, or chemotherapy drugs to simultaneously act on different immune pathways and improve the comprehensive effect of immunotherapy. However, to achieve an effective combination therapy, we need to delve into the specific mechanisms of action of the PD-1/PD-L1 axis in the development and progression of gastrointestinal tumors, which can help to develop the best treatment strategy and provide individualized treatment options for the appropriate patient population. Therefore, future studies should focus on the regulatory mechanisms of PD-1/PD-L1 axis and evaluate the therapeutic effects of different treatment combinations on gastrointestinal tumors. In this paper, we review the research progress of PD-1/PD-L1 axis in tumorigenicity and its mechanism, and review the single and combined treatment strategies of PD-1 and PD-L1 inhibitors in gastrointestinal tumors.
2024, 51(8):1848-1859. DOI: 10.16476/j.pibb.2024.0028 CSTR: 32369.14.pibb.20240028
Abstract:Mitochondria, as the center of energy metabolism within the cell, play a crucial role in maintaining cell homeostasis. The regulation of its morphology and function is essential for the normal functioning of cells. In this complex regulatory network, the small ubiquitin-like modifier (SUMO) and dynamin-related protein 1 (DRP1) have become the focus of research, especially their close association with mitochondrial dynamics. SUMOylation is an important form of protein modification that regulates the function of target proteins by binding them to SUMO. This modification also plays a significant role in mitochondrial dynamics. The complex network of interactions between SUMOylation and DRP1 plays a key role in mitochondrial division, fusion and autophagy. DRP1, as a mitochondrial fission protein, regulates the morphology and function of mitochondria with the participation of the endoplasmic reticulum (ER). Recent studies have revealed the complex relationship between DRP1 and SUMOylation. DRP1 completes SUMOylation under the action of mitochondrial-anchored protein ligase (MAPL). SUMOylation mainly occurs in the variable domain of DRP1, and eight lysine residues have been identified as its targets. DRP1 serves as the target protein of SUMO1 and SUMO2/3, which play different regulatory roles in mitochondrial fission. SUMO1 modification can enrich DRP1 into mitochondria, thus promoting mitochondrial fission. However, SUMO2/3 modification can transfer DRP1 to cytoplasm and reduce mitochondrial fission. This dynamic regulatory mechanism allows the cell to flexibly adjust the state of the mitochondria according to energy requirements. Correspondingly, there is also deSUMOylation. SUMO-specific proteases (SENPs) is responsible for the deSUMOylation of proteins, with seven subtypes identified so far. Among them, SENP3/5 is a SUMO2/3 specific deSUMOylation protease. In actual cellular processes, the SUMO1 and SUMO2/3 modifications of DRP1 occur simultaneously, which can be regarded as a competitive relationship between the them. So, the SUMOylation of DRP1 in cells is often determined by SENPs. By increasing the level of SENP3/5, the SUMO2/3 modification level of DRP1 can be reduced, and the SUMO1 modification level can be indirectly increased, thus promoting the division of mitochondria. This dual regulatory mechanism enables cells to more finely control the state of mitochondria and adapt to different cellular environments and physiological needs. In addition, as an important energy supply organelle in the cell, the abnormal dynamic level of mitochondria often leads to the occurrence of a variety of diseases. In some diseases, the increase of the SUMO1 modification level of DRP1 leads to the increase of DRP1 activity, which leads to the increase of mitochondrial fission and mitophagy. For example, it can cause myocardial ischemia-reperfusion injury, ischemic stroke and retinopathy.According to current research progress, the interaction between SUMOylation and DRP1 plays a key role in the regulation of mitochondrial dynamics. The in-depth study of this regulatory mechanism not only helps to reveal the basic principle of cell regulation, but also provides an important reference for the treatment strategy of related diseases. In addition, it also could help identify new therapeutic targets and provide additional tools for disease prevention and treatment. In this review, we review the advances in the study of the interaction between SUMOylation and DRP1 on the regulation of mitochondrial dynamics, and further explore the potential of inhibiting DRP1-SUMOylation as a target for the treatment of related diseases in the future.
LI Duo , LI Si-Hui , LI Qiang , ZHANG Rui
2024, 51(8):1860-1872. DOI: 10.16476/j.pibb.2024.0052 CSTR: 32369.14.pibb.20240052
Abstract:Epilepsy is a common chronic neurological disorder caused by hypersynchronous abnormal discharges of neurons in the brain. Extensive physiological experiments and neural computational modeling studies have found that abnormal neuronal discharges are the electrophysiological basis of epileptic seizures. In addition, alterations in neuronal microenvironment dynamics are potential causes of neuronal structural and functional changes that stimulate abnormal neuronal discharges, which in turn lead to the generation and development of epileptic seizures. Based on this point, this review paper first systematically elaborates and analyzes the four main factors influencing the alteration of neuronal microenvironment, including ion concentration, energy metabolism, neurotransmitters and cell volume, in terms of the neural mechanisms and modeling methods of their dynamics modeling. The main methods and processes of microenvironmental dynamics modeling for epilepsy are employing mathematical and biophysical expressions to model the dynamics of neuronal microenvironment alterations associated with epileptic seizures found in physiological experiments, and then analyzing and exploring the dynamic nature of neuronal epileptic discharges generation and transition through numerical simulations and bifurcation analysis. Among the epileptic discharge patterns mainly include epileptic seizure/bursting (SZ), spreading depolarizations (SD), hypoxic spreading depolarization (HSD), tonic firing (TF), and depolarization block (DB), etc. Existing works have revealed and verified that disruption of neuronal microenvironment homeostasis caused by loss of ionic homeostasis (e.g., excessive accumulation of intracellular Na+ and Cl- as well as extracellular K+), imbalance of excitatory and inhibitory neurotransmitters (e.g., excessively high concentration of Glu and low concentration of GABA in the extracellular space or synaptic clefts), depletion of energy metabolism substances (e.g., insufficient supply of O2 and ATP or excessive energy consumption due to abnormal neuronal discharges), cytotoxic swelling, etc., which can induce the generation and development of seizures. In combination with related works on the neuronal microenvironment dynamics modeling methods, we finally discuss and summarize the future research directions. It is expected to give a comprehensive perspective on the development trends and research progress in this field, and provide the favorable theoretical foundations for further research on the dynamic nature of epileptic discharge patterns and the neural mechanisms of epilepsy.
HUANG Kai-Ling , YANG Xin-Cheng , LI Liang-Ming , YANG Wen-Qi
2024, 51(8):1873-1882. DOI: 10.16476/j.pibb.2023.0359 CSTR: 32369.14.pibb.20230359
Abstract:Nonalcoholic fatty liver disease (NAFLD) does great harm to human health, and the incidence is increasing year by year. The liver serves an important role in lipid metabolism. Hepatic steatosis develops as a consequence of lipid metabolic dysregulation, namely the imbalance among fatty acid uptake, de novo lipogenesis (DNL), fatty acid oxidation (FAO) and very low density lipoprotein-mediated lipid export. With diverse health-promoting effects, exercise is a cheap and effective intervention for the prevention and treatment of NAFLD. Amelioration of impaired lipid metabolism acts as an important mechanism by which exercise protects against NAFLD. However, how exercise ameliorates lipid metabolic dysregulation is still unclear. Skeletal muscle is not only a vital organ of motion, but also has an endocrine function, it secretes numerous myokines which mediates exercise-induced benefits on our body. Irisin is a small peptide derived from proteolytic cleavage of fibronectin type III domain containing protein 5 (FNDC5). As a myokine, its production is regulated by exercise and it play an important role in exercise-induced protection against obesity-related chronic diseases, such as NAFLD. A growing body of research has demonstrated that Irisin ameliorates lipid metabolic dysregulation in NAFLD. Irisin mediated inhibition of hepatic DNL and FAO has been reported. However, the effect of Irisin on fatty acid uptake and lipid export is still unknown. In the present review, we summarized the researches focusing on how exercise regulated irisin production and the effect of Irisin on lipid metabolism on NAFLD. To clarify the above problems will help us to better understand the role of irisin on exercise-mediated protection against NAFLD.
WANG Si-Qi , YAN Xiang-Yun , LI Yan-Qiu , LUO Fang-Li , YAO Jun-Peng , MA Pei-Tao , HOU Yu-Jun , QIN Hai-Yan , SHI Yun-Zhou , LI Ying
2024, 51(8):1883-1894. DOI: 10.16476/j.pibb.2023.0470 CSTR: 32369.14.pibb.20230470
Abstract:The Piezo protein is a non-selective mechanosensitive cation channel that exhibits sensitivity to mechanical stimuli such as pressure and shear stress. It converts mechanical signals into bioelectric activity within cells, thus triggering specific biological responses. In the digestive system, Piezo protein plays a crucial role in maintaining normal physiological activities, including digestion, absorption, metabolic regulation, and immune modulation. However, dysregulation in Piezo protein expression may lead to the occurrence of several pathological conditions, including visceral hypersensitivity, impairment of intestinal mucosal barrier function, and immune inflammation.Therefore, conducting a comprehensive review of the physiological functions and pathological roles of Piezo protein in the digestive system is of paramount importance. In this review, we systematically summarize the structural and dynamic characteristics of Piezo protein, its expression patterns, and physiological functions in the digestive system. We particularly focus on elucidating the mechanisms of action of Piezo protein in digestive system tumor diseases, inflammatory diseases, fibrotic diseases, and functional disorders. Through the integration of the latest research findings, we have observed that Piezo protein plays a crucial role in the pathogenesis of various digestive system diseases. There exist intricate interactions between Piezo protein and multiple phenotypes of digestive system tumors such as proliferation, apoptosis, and metastasis. In inflammatory diseases, Piezo protein promotes intestinal immune responses and pancreatic trypsinogen activation, contributing to the development of ulcerative colitis, Crohn’s disease, and pancreatitis. Additionally, Piezo1, through pathways involving co-action with the TRPV4 ion channel, facilitates neutrophil recruitment and suppresses HIF-1α ubiquitination, thereby mediating organ fibrosis in organs like the liver and pancreas. Moreover, Piezo protein regulation by gut microbiota or factors like age and gender can result in increased or decreased visceral sensitivity, and alterations in intestinal mucosal barrier structure and permeability, which are closely associated with functional disorders like irritable bowel sydrome (IBS) and functional consitipaction (FC). A thorough exploration of Piezo protein as a potential therapeutic target in digestive system diseases can provide a scientific basis and theoretical support for future clinical diagnosis and treatment strategies.
FAN Jia , GU Peng-Cheng , CHENG Xi-Ting , JIANG Qiang , ZHAO Ya , PAN Xiao-Fang , BAI Yan
2024, 51(8):1895-1903. DOI: 10.16476/j.pibb.2023.0473 CSTR: 32369.14.pibb.20230473
Abstract:Objective To simulate the microstructure and mechanical properties of tendon tissue and promote its regeneration and repair, electrospinning technology was used to prepare L-polylactic acid (PLLA) fiber membranes loaded with different nano zinc oxide contents and with oriented structures. Physical and chemical characterization and biological performance evaluation were carried out to explore their effects on tendon cell proliferation and differentiation.Methods Preparation of PLLA fiber scaffolds and PLLA/ZnO fiber scaffolds containing different mass fractions of nano ZnO was performed using electrospinning technology. The physicochemical properties of the scaffold were characterized by scanning electron microscopy, mechanical stretching, and EDS spectroscopy. The scaffold was co-cultured with mouse tendon cells to detect its biocompatibility and regulatory effects on cell differentiation behavior.Results The fiber scaffolds were arranged in an oriented manner, and zinc elements were uniformly distributed in the fibers. The tensile strength and Young’s modulus of PLLA/0.1%ZnO fiber scaffolds were significantly higher than PLLA fiber scaffolds. The number of cells on the surface of PLLA/0.1%ZnO fiber scaffold was significantly higher than that of the PLLA group, and the activity was better; mouse tendon cells exhibit directional adhesion and growth along the fiber arrangement direction.Conclusion The oriented PLLA/0.1%ZnO fiber scaffold had excellent physicochemical properties, which can significantly promote the oriented growth, proliferation differentiation of tendon cells. It is expected to be used for tendon tissue regeneration and repair in the future.
LIU Cong-Cong , WANG Ya-Qi , WANG Pei-Chang
2024, 51(8):1904-1919. DOI: 10.16476/j.pibb.2023.0298 CSTR: 32369.14.pibb.20230298
Abstract:Objective β-Site APP cleaving enzyme 1 (BACE1) is a rate-limiting enzyme involved in the formation of amyloid plaques in Alzheimer’s disease (AD), and its expression and activity play a crucial role in the development of AD. The interacting protein of BACE1 can directly or indirectly regulate BACE1 in the transcription, translation, modification, intracellular transport and other links of BACE1 by directly binding, indirectly binding, and participating in various cell signal transduction pathways, so as to participate in the occurrence of AD and the process of disease. This study aimed to screen and validate the interacting proteins of BACE1, providing new insights into the mechanisms of amyloid plaque formation.Methods Co-immunoprecipitation (Co-IP) and mass spectrometry (MS) were used to enrich and identify BACE1 interacting proteins in the hippocampus of wild type (WT) mice and AD model mice. For candidate BACE1 interacting proteins, GO enrichment analysis and KEGG pathway enrichment analysis were used to explore the subcellular localization, molecular function, participating biological processes and participating signaling pathways of BACE1 interacting proteins. The protein-protein interaction (PPI) network of BACE1 was further constructed to explore the potential proteins interacting with BACE1. By searching the mouse genomeinformation (MGI) website and NCBI database, the more reliable proteins among the potential BACE1 interacting proteins were screened. Co-IP assay and immunofluorescence confocal technology were used to preliminarily verify the interaction between the proteins, and the changes in protein expression levels of the interacting proteins in AD cell models were explored.Results A total of 614 differentially expressed proteins interacting with BACE1 were identified in AD group. GO enrichment analysis showed that the BACE1 interacting proteins in the AD group were mainly located in membrane organelles such as Golgi apparatus, endoplasmic reticulum, endosome, lysosome and vesicles, which had molecular functions such as ion channel regulation, protein kinase activity, transcription factor binding and passive transmembrane transporter activity. It is mainly involved in the biological processes of immune response regulation cell surface receptor signaling pathway, targeting Golgi vesicles transport, circadian rhythm regulation, Purkinje cell layer development, etc. KEGG analysis showed that BACE1 interacting proteins in AD were mainly involved in the PI3K-Akt signaling pathway, mTOR signaling pathway and other neurodegenerative disease-related pathways. The PPI network of BACE1 showed that a total of 12 proteins were identified as high confidence binding proteins, including PRNP, APOE, SYP, NSF, NUMB, SNAP91, HSP90aa1, UCHL1, BIN1, SNX27, Rheb, Ap2m1, of which, NSF, NUMB, SNAP91, HSP90aa1 were newly identified candidate proteins. After further verification, we found that NSF not only interacts with BACE1, but also interacts with amyloid precursor protein (APP), the substrate of BACE1, and the expression level of NSF is up-regulated in the AD cell model constructed by Aβ42 induction.Conclusion BACE1 binding proteins participate in multiple AD-associated biological processes and signal pathways. NSF is a newly identified BACE1 binding protein that interacts with BACE1, and the protein expression level of NSF is up-regulated in the AD cell model. It is predicted that the interaction between NSF and BACE1 is involved in regulating the course of AD, providing a new target and direction for the study of the mechanism of AD.
CHEN Jiang , LUO Hao , ZHANG Zhi-Ming , SONG Xu , WANG Gang-Gang
2024, 51(8):1920-1934. DOI: 10.16476/j.pibb.2023.0445 CSTR: 32369.14.pibb.20230445
Abstract:Objective DnaG primase in Mycobacterium tuberculosis (MtuDnaG) plays a vital role in DNA replication, making it a target for novel antituberculosis drug discovery. However, the mechanism of MtuDnaG priming is not fully understood, which hinders the screening of MtuDnaG inhibitors. In this work, the specific recognition sites (SRS) in ssDNA for MtuDnaG binding was investigated and the interactions between MtuDnaG and ssDNA template was discussed.Methods By biochemical and biophysical methods, the binding of the didomain of MtuDnaG (MtuP49, containing the zinc-binding domain and RNA polymerase domain) to ssDNA template with various trinucleotide sites was evaluated, the affinity of MtuP49 to ssDNA template was measured.Results The present study suggested the 5"-GCG/C-3" as the potential SRS in ssDNA for specific binding to MtuDnaG. Besides, 5"-GCG/C-3" sites were further identified within the oriC region of M. tuberculosis genome. Importantly, the 3" sequence flanking the 5"-GCG/C-3" site markedly affected the binding affinity of ssDNA to MtuP49. Mutagenesis studies showed that substitution of residue Arg31 in the zinc-binding domain affected the binding activity of MtuP49 to template ssDNA. Combined with the predicted structure of MtuP49, an intramolecular rearrangement of zinc-binding domain relative to the RNA polymerase domain was implied to be essential in the binding of MtuP49 to template ssDNA.Conclusion This study firstly identified the SRS in ssDNA for MtuDnaG binding, the key factors affecting MtuDnaG binding to ssDNA was revealed. The above results provide evidence to shed light on the mechanism of MtuDnaG priming, and pave the way for development of novel DnaG-targeted antituberculosis drugs.
LI Jia-Min , SU Rui-Bing , YU Xiao-Jun , ZHENG Yong-Xia
2024, 51(8):1935-1949. DOI: 10.16476/j.pibb.2023.0370 CSTR: 32369.14.pibb.20230370
Abstract:Objective Karoshi, death from overwork, is a serious problem with unclear identification standards and mechanisms. This study aims to establish a karoshi rat model by integrating weight-bearing swimming and sleep deprivation. This model will enable us to investigate the adverse effects of acute physical and mental fatigue on cardiac functions and explore the response mechanisms to overwork using integrated omics approaches, specifically metabonomics and proteomics.Methods The experimental design involved healthy male sprague-dawley (SD) rats subjected to weight-bearing swimming and sleep deprivation for 7 d. The rats were monitored for changes in physiological function indexes, including electrocardiogram and respiration. Protein digestion, iTRAQ labeling, and quantitative data analyses were performed to determine differentially expressed proteins (DEPs). Additionally, GC-MS analysis was conducted to identify differential metabolites. The integration analysis of differential metabolites and proteins shared by the fatigue group and the overwork group was performed to construct a relevant metabolic pathway network and integrate the proteomics and metabolomics data. Statistical analysis was carried out using one-way ANOVA and Duncan’s multiple range t-tests.Results The rats subjected to weight-bearing swimming and sleep deprivation showed various physical and behavioral changes associated with fatigue, including hair disorder, decreased muscle tension, reduced food intake, and weight loss. Analysis of cardiac functions revealed cardiac hypertrophy and heart failure in the fatigue and karoshi groups, as evidenced by changes in heart color, myocardial fiber structure, heart rate, respiratory rate, and cardiac ultrasound measurements. Metabolomics analysis using GC-MS identified several differential metabolites in response to overwork, including amino acids involved in various metabolic pathways. Proteomic analysis using iTRAQ technology identified DEPs in the fatigue and karoshi groups, with a subset of DEPs shared by both groups. The GO analysis revealed that the up-regulated DEPs were primarily associated with mitochondria and peroxisomes in the cellular component category. The Reactome analysis further highlighted the enrichment of DEPs in the transfer of ferriheme from methemoglobin to hemopexin pathway. Integration analysis of the DEPs and differential metabolites revealed the activation of autophagy, increased mitochondrial oxidative phosphorylation, enhanced branched-chain amino acid degradation, and altered peroxisomal β-oxidation. These findings suggested complex metabolic adaptations to meet the increased energy demands during overwork while also dealing with oxidative stress. Furthermore, the reprogramming of energy metabolism was observed, with upregulation of fatty acid β-oxidation enzymes and glycolysis-related enzymes in the fatigue group, indicating a shift towards glucose metabolism. In contrast, the karoshi group showed a decreased dependence on fatty acids as an energy source and increased utilization of glucose. The model proposed in this study highlights the interconnected metabolic changes involving mitochondria, peroxisomes, and lysosomes in response to overwork. The findings contribute to our understanding of the mechanisms involved in overwork-related pathologies and provide a basis for further research in the field of karoshi.Conclusion Overall, metabolic reprogramming might provide sufficient energy to the heart, alleviate oxidative stress and damage to cardiac cells in response to excessive exertion and fatigue. Our findings provide an insight into response mechanism to overwork death and lay a foundation for further research on overwork death.
ZHANG Xiao-Yue , WANG Xiao-Na , JIANG Min , HAN Ting-Ting , GONG Jin-Song , LI Qing-Na , YANG Su-Zhen , SHI Jin-Song
2024, 51(8):1950-1962. DOI: 10.16476/j.pibb.2023.0413 CSTR: 32369.14.pibb.20230413
Abstract:Objective Sodium hyaluronate (HA) was used as the research object to modify it with phenolic acid in order to obtain the molecular structure with better antioxidant activity or even new activity.Methods In this study, 5 kinds of phenolic acid-sodium hyaluronate was prepared by free radical-mediated grafting method, and the grafts with the highest grafting degree were selected to optimize the synthesis conditions. Then, grafts structure and physicochemical properties were analyzed. The grafts were characterized by IR, UV, 1H NMR, FESEM and TGA spectra. The in vitro antioxidant capacity of grafts was determined by the scavenging ability of DPPH·, ABTS+· and O2-·.Results Among 5 kinds of phenolic acid-sodium hyaluronate, the grafting rate of ferulic acid-sodium hyaluronate copolymer (FA-HA) was highest , which was chosen as experimental sample in the following tests. Firstly, the reaction conditions were investigated and the highest grafting rate was (16.59±0.31) mg/g at the optimal preparation conditions. Then, FA-HA structure and physicochemical properties were analyzed. Data from UV, IR, 1H NMR analyses, TGA showed that FA were successfully grafted to HA. Compared with HA, the results of gel permeation chrematography (GPC) showed that the molecular mass distribution of FA-HA copolymer decreased from 34.4 to 31.5 ku, but the uniformity of molecular distribution was improved. FESEM results showed that the structure of copolymer exhibited a closely connected lamellar structure with a relatively smooth surface. TGA results showed that thermal stability of FA-HA had a little decline. The antioxidant performance in vitro results showed that, during 0.25-10 g/L, FA-HA can eliminate (83.76±4.86)% DPPH·, (76.95±5.06)% ABTS+· and (83.08±2.51)% O2-· respectively at 10 g/L. which were higher than that of native HA and FA.Conclusion FA and HA were successfully grafted together by free radical grafting, and the grafted FA-HA had better antioxidant activity in vitro, which provided a theoretical basis for further research and development of phenolic acid-HA grafts.
XIE Shi-Meng , TANG Yong-Hui , HUANG Lin
2024, 51(8):1963-1970. DOI: 10.16476/j.pibb.2024.0055 CSTR: 32369.14.pibb.20240055
Abstract:Objective The distribution of water content in plant leaves is an important indicator for measuring plant physiology and biochemistry, and it is also an important basis for formulating drought resistance strategies in the field of agricultural science. Microwave imaging has high contrast and sensitivity in the distribution and variation of water content, while ultrasound imaging has high resolution. Based on this, this paper proposes a non-destructive microwave thermoacoustic imaging (TAI) technology that combines the advantages of microwave and ultrasound imaging, and uses this technology to carry out non-destructive testing research on the distribution of plant leaf water content, which is of great significance for achieving precise irrigation, developing water-saving agriculture, and improving water resource utilization.Methods This study constructs a two-dimensional transmissive TAI system with an excitation frequency of 3.0 GHz and a lateral resolution of 0.406 μm. Based on active heating technology (150°C hot air, 90 s), 3 sets of mandala leaf moisture loss processes were simulated, and their TAI images were quantitatively analyzed.Results The results showed that heating caused local moisture loss and reduced thermoacoustic signals, verifying the feasibility of non-destructive detection of plant leaf water content changes based on TAI, which achieves non-destructive detection of water content distribution in leaves of Datura, Crassocephalum crepidioides and Perilla. The results are consistent with magnetic resonance imaging (MRI).Conclusion This study contributes to achieve precise irrigation and provides technical support for studying the response characteristics of plants to the environment under normal and stress environments. Especially when combined with non-contact ultrasound detection technology, remote sensing of plant leaf water content can be achieved, which has more practical value.
YAO Qian-Wei , HE Hong-Xia , HU Sheng , ZHAO Yi-Xia , LUO Yu , JI An-Quan , SUN Qi-Fan
2024, 51(8):1971-1982. DOI: 10.16476/j.pibb.2023.0494 CSTR: 32369.14.pibb.20230494
Abstract:Objective Rapid and accurate identification of body fluid traces at crime scenes is crucial for case investigation. Leveraging the speed and sensitivity of nucleic acid detection technology based on SHERLOCK, our research focuses on developing a peripheral blood SHERLOCK-HBA detection system to detect mRNA in forensic practice.Methods Short crRNA fragments targeting the blood-specific mRNA gene HBA were designed and screened, alongside RPA primers. Optimal RPA primers were selected based on specificity and amplification efficiency, leading to the establishment of the RPA system. The most efficient crRNA was chosen based on relative fluorescence units (RFU) generated by the Cas protein reaction, and the Cas protein reaction system was constructed to establish the SHERLOCK-HBA detection method. The RPA and Cas protein reaction systems in the SHERLOCK detection system were then individually optimized. A total of 79 samples of five body fluids were tested to evaluate the method’s ability to identify blood, with further verification through species-specific tests, sensitivity tests, mixed spots detection, aged samples, UV-irradiated samples, and actual casework samples.Results The SHERLOCK reaction system for the peripheral blood-specific marker HBA was successfully established and optimized, enabling detection within 30 min. The method demonstrated a detection limit of 0.001 ng total RNA, better than FOB strip method and comparable to RT-PCR capillary electrophoresis. The system could detect target body fluids in mixed samples and identify blood in samples stored at room temperature for three years and exposed to UV radiation for 32 h. Detection of 11 casework samples showed performance comparable to RT-PCR capillary electrophoresis.Conclusion This study presents a CRISPR/Cas-based SHERLOCK-HBA detection system capable of accurately, sensitively, and rapidly identifying blood samples. Introducing CRISPR/Cas technology to forensic body fluid identification represents a significant advancement in applying cutting-edge molecular biology techniques to forensic science.The method’s simplicity, shorter detection time, and independence from specialized equipment make it promising for rapid blood sample identification in forensic cases.
® 2025 All Rights Reserved ICP:京ICP备05023138号-1 京公网安备 11010502031771号