JI Wei-Xiu , Lü Jia-Lin , MA Yi-Fan , ZHAO Yun-Gang
Online: April 17,2025
Abstract:Age-related sarcopenia is a progressive, systemic skeletal muscle disorder associated with aging. It is primarily characterized by a significant decline in muscle mass, strength, and physical function, rather than being an inevitable consequence of normal aging. Despite ongoing research, there is still no globally unified consensus among physicians regarding the diagnostic criteria and clinical indicators of this condition. Nonetheless, regardless of the diagnostic standards applied, the prevalence of age-related sarcopenia remains alarmingly high. With the global population aging at an accelerating rate, its incidence is expected to rise further, posing a significant public health challenge. Age-related sarcopenia not only markedly increases the risk of physical disability but also profoundly affects patients" quality of life, independence, and overall survival. As such, the development of effective prevention and treatment strategies to mitigate its dual burden on both societal and individual health has become an urgent and critical priority. Skeletal muscle regeneration, a vital physiological process for maintaining muscle health, is significantly impaired in age-related sarcopenia and is considered one of its primary underlying causes. Skeletal muscle satellite cells (MSCs), also known as muscle stem cells, play a pivotal role in generating new muscle fibers and maintaining muscle mass and function. A decline in both the number and functionality of MSCs is closely linked to the onset and progression of sarcopenia. This dysfunction is driven by alterations in intrinsic MSC mechanisms—such as Notch, Wnt/β-catenin, and mTOR signaling pathways—as well as changes in transcription factors and epigenetic modifications. Additionally, the MSC microenvironment, including both the direct niche formed by skeletal muscle fibers and their secreted cytokines, and the indirect niche composed of extracellular matrix proteins and various cell types, undergoes age-related changes. Mitochondrial dysfunction and chronic inflammation further contribute to MSC impairment, ultimately leading to the development of sarcopenia. Currently, there are no approved pharmacological treatments for age-related sarcopenia. Nutritional intervention and exercise remain the cornerstone of therapeutic strategies. Adequate protein intake, coupled with sufficient energy provision, is fundamental to both the prevention and treatment of this condition. Adjuvant therapies, such as dietary supplements and caloric restriction, offer additional therapeutic potential. Exercise promotes muscle regeneration and ameliorates sarcopenia by acting on MSCs through various mechanisms, including mechanical stress, myokine secretion, distant cytokine signaling, immune modulation, and epigenetic regulation. When combined with a structured exercise regimen, adequate protein intake has been shown to be particularly effective in preventing age-related sarcopenia. However, traditional interventions may be inadequate for patients with limited mobility, poor overall health, or advanced sarcopenia. Emerging therapeutic strategies—such as miRNA mimics or inhibitors, gut microbiota transplantation, and stem cell therapy—present promising new directions for MSC-based interventions. This review comprehensively examines recent advances in MSC-mediated muscle regeneration in age-related sarcopenia and systematically discusses therapeutic strategies targeting MSC regulation to enhance muscle mass and strength. The goal is to provide a theoretical foundation and identify future research directions for the prevention and treatment of this increasingly prevalent condition.
SHEN Ruo-Bing , SHEN Wen-Wen , GAO Shu-Gui
Online: April 16,2025 DOI: 10.16476/j.pibb.20240292CSTR:
Abstract:Modified electro-convulsive therapy (MECT) is one of the most potent treatments for major depressive disorder (MDD). However, it remains a second-line option due to significant side effects, such as transient memory loss. The relationship between therapeutic efficacy and cognitive impairment warrants further investigation to develop improved treatment regimens. In this review, we examine recent evidence from magnetic resonance imaging (MRI) studies aiming to identify structural and functional brain changes specifically associated with both the antidepressant effects and the amnesic outcomes of MECT. MECT induces widespread alterations across multiple brain systems. Increases in gray matter volume (GMV) have been observed in the prefrontal, temporal, and parietal cortices, as well as in subcortical regions such as the hippocampus (HP), amygdala, and striatum. Strengthening of myelination has also been reported along the dorsolateral prefrontal-limbic pathways. Functional changes include increased spontaneous neural activity in prefrontal areas, reorganization of intrinsic connectivity within the default mode network (DMN), and altered functional connectivity (FC) among the DMN, salience network (SN), and central executive network (CEN). Correlational studies have identified structural and functional alterations linked to antidepressant efficacy, including right hippocampal volume enlargement, prefrontal cortical thickening, reduced iron deposition in the striatum, decreased FC within certain DMN nodes, and enhanced effective connectivity from the dorsolateral prefrontal cortex (DLPFC) to the right angular gyrus. In contrast, the amnesic effects have been associated with increased volumes in the left hippocampus and bilateral dentate gyrus; enhanced FC in the left angular gyrus and left posterior cingulate cortex (PCC); increased FC between the right ventral anterior insula and DLPFC; and reduced FC in the left thalamus and bilateral precuneus. Changes in the hippocampus appear to correlate with both antidepressant efficacy and memory impairment. Clinical studies have found no significant correlation between the severity of memory impairment and the reduction in depressive symptoms, suggesting that the therapeutic and adverse effects may arise from distinct regional or subregional mechanisms. Supporting this hypothesis, recent findings show that increased right hippocampal volume is significantly associated with reduced depression scores, whereas increased volume in the left dentate gyrus correlates with declines in delayed recall performance. Additionally, enhanced connectivity between the anterior hippocampus and middle occipital gyrus (MOG) has been linked to mood improvement, while decreased FC between the mid-hippocampus and angular gyrus has been associated with impairments in memory integration. In conclusion, current evidence suggests that the antidepressant and memory-impairing effects of MECT may localize to distinct hippocampal subregions. These effects likely result from differential modulation of local neural activity and functional connectivity, leading to divergent behavioral outcomes. Given that both effects may originate in deep and spatially constrained structures such as the hippocampus, small-sample studies and conventional methodologies may fail to differentiate them effectively. Future research should employ large-scale, longitudinal designs utilizing high-field MRI and multimodal neuroimaging to characterize MECT-induced structure-function coupling in the hippocampus and its integration at the network level. Additionally, multiscale analyses spanning molecular, circuit, and network dimensions would be beneficial.
LI Fang , CHEN Bai , WU Yang , LIU Kai , ZHOU Tong , YAO Jia-Feng
Online: April 15,2025 DOI: 10.16476/j.pibb.20240452CSTR:
Abstract:Objective This paper proposes a novel real-time bedside pulmonary ventilation monitoring method for the diagnosis of chronic obstructive pulmonary disease (COPD), based on electrical impedance tomography (EIT). Four indicators—Center of Ventilation (CoV), Global Inhomogeneity Index (GI), Regional Ventilation Delay Inhomogeneity (RVDI), and the ratio of forced expiratory volume in one second to forced vital capacity (FEV1/FVC)—are calculated to enable the spatiotemporal assessment of COPD.Methods A simulation of the respiratory cycles of COPD patients was first conducted, revealing significant differences in certain indicators compared to healthy individuals. The effectiveness of these indicators was then validated through experiments. A total of 93 subjects underwent multiple pulmonary function tests (PFTs) alongside simultaneous EIT measurements. Ventilation heterogeneity under different breathing patterns—including forced exhalation, forced inhalation, and quiet tidal breathing—was compared. EIT images and related indicators were analyzed to distinguish healthy individuals across different age groups from COPD patients.Results Simulation results demonstrated significant differences in CoV, GI, FEV1/FVC, and RVDI between COPD patients and healthy individuals. Experimental findings indicated that, in terms of spatial heterogeneity, the GI values of COPD patients were significantly higher than those of the other two groups, while no significant differences were observed among healthy individuals. Regarding temporal heterogeneity, COPD patients exhibited significantly higher RVDI values than the other groups during both quiet breathing and forced inhalation. Moreover, during forced exhalation, the distribution of FEV1/FVC values further highlighted the temporal delay heterogeneity of regional lung function in COPD patients, distinguishing them from healthy individuals of various ages.Conclusion EIT technology effectively reveals the spatiotemporal heterogeneity of regional lung function, which holds great promise for the diagnosis and management of COPD.
ZHANG Chang-Jian , LI Yu-Fang , WU Feng-Yun , JIN Rui , NIU Chang , YE Qi-Nong , CHENG Long
Online: April 15,2025 DOI: 10.16476/j.pibb.2025.0005
Abstract:Objective This study investigates the regulatory role of pescadillo ribosomal biogenesis factor 1 (PES1) in cellular senescence and elucidates its underlying molecular mechanisms.Methods Using replicative senescence models of mouse embryonic fibroblasts (MEFs) and doxorubicin-induced senescence in human hepatocellular carcinoma HepG2 cells, we first quantified PES1 expression dynamics through immunoblotting. Subsequently, siRNA-mediated PES1 knockdown in HepG2 or other cells was employed to assess senescence phenotypes via β-galactosidase staining and immunodetection of senescence-associated markers. Mechanistic exploration involved Northern blot for pre-rRNA processing analysis and fluorescence microscopy for nucleolar morphology observation.Results PES1 expression was significantly downregulated in both replicatively senescent MEFs and doxorubicin-induced senescent HepG2 cells. siRNA-mediated PES1 depletion triggered premature senescence characterized by increased SA-β-gal positivity and upregulated p53/p21 signaling, while Rb pathway components remained unaltered. Notably, PES1 deficiency impaired 28S rRNA biogenesis and induced nucleolar fragmentation, indicative of nucleolar stress.Conclusion Inhibition of PES1 expression can induce nucleolar stress and activate p53-dependent rather than Rb-dependent senescence signals within cells.
SUN Ying-Ying , XING Zheng , LI Feng-Yi , ZHANG Jing
Online: April 11,2025
Abstract:Lactylation (Kla), a protein post-translational modification characterized by the covalent conjugation of lactyl groups to lysine residues in proteins, is widely present in living organisms. Since its discovery in 2019, it has attracted much attention for its role in regulating major pathological processes such as tumorigenesis, neurodegenerative diseases, and cardiovascular diseases. By mediating core biological processes such as signal transduction, epigenetic regulation, and metabolic homeostasis, lactylation contributes to disease progression. However, the lactylation donor lactyl-CoA has a low intracellular concentration, and the specific enzyme catalyzing lactylation is not yet clear, which has become an urgent issue in lactate research. A groundbreaking study in 2024 found that alanyl-transfer t-RNA synthetase 1/2 (AARS1/2), members of the aminoacyl-tRNA synthetase (aaRS) family, can act as protein lysine lactate transferases, modifying histones and metabolic enzymes directly with lactate as a substrate, without relying on the classical substrate lactyl-CoA, promoting a new stage in lactate research. Although exercise significantly increases lactate levels in the body and can induce changes in lactylation in multiple tissues and cells, the regulation of lactylation by exercise is not entirely consistent with lactate levels. Research has found that high-intensity exercise can induce upregulation of lactate at 37 lysine sites in 25 proteins of adipose tissue, while leading to downregulation of lactate at 27 lysine sites in 22 proteins. The level of lactate is not the only factor regulating lactylation through exercise. We speculate that the lactate transferase AARS1/2 play an important role in the process of lactylation regulated by exercise, and AARS1/2 should also be regulated by exercise. This review introduces the molecular biology characteristics, subcellular localization, and multifaceted biological functions of AARS, including its canonical roles in alanylation and editing, as well as its newly identified lactate transferase activity. We detail the discovery of AARS1/2 as lactylation catalysts and the specific process of them as lactate transferases catalyzing protein lactylation. Furthermore, we discuss the pathophysiological significance of AARS in tumorigenesis, immune dysregulation, and neuropathy, with a focus on exploring the expression regulation and possible mechanisms of AARS through exercise. The expression of AARS in skeletal muscle regulated by exercise is related to exercise time and muscle fiber type; the skeletal muscle AARS2 upregulated by long-term and high-intensity exercise catalyzes the lactylation of key metabolic enzymes such as pyruvate dehydrogenase E1 alpha subunit (PDHA1) and carnitine palmitoyltransferase 2 (CPT2), reducing exercise capacity and providing exercise protection; physiological hypoxia caused by exercise significantly reduces the ubiquitination degradation of AARS2 by inhibiting its hydroxylation, thereby maintaining high levels of AARS2 protein and exerting lactate transferase function; exercise induced lactate production can promote the translocation of AARS1 cytoplasm to the nucleus, exert lactate transferase function upon nuclear entry, regulate histone lactylation, and participate in gene expression regulation; exercise induced lactate production promotes direct interactions between AARS and star molecules such as p53 and cGAS, and is widely involved in the occurrence and development of tumors and immune diseases. Elucidate the regulatory mechanism of exercise on AARS, providing new ideas for improving metabolic diseases and promoting health through exercise.
CHEN Meng-Meng , HU Nan , BAO Shuang-Qing , LI Xiao-Hong
Online: April 11,2025
Abstract:Brain organoids are three-dimensional (3D) neural cultures that self-organize from pluripotent stem cells (PSCs) cultured in vitro. Compared with traditional two-dimensional (2D) neural cell culture systems, brain organoids demonstrate a significantly enhanced capacity to faithfully replicate key aspects of the human brain, including cellular diversity, 3D tissue architecture, and functional neural network activity. Importantly, they also overcome the inherent limitations of animal models, which often differ from human biology in terms of genetic background and brain structure. Owing to these advantages, brain organoids have emerged as a powerful tool for recapitulating human-specific developmental processes, disease mechanisms, and pharmacological responses, thereby providing an indispensable model for advancing our understanding of human brain development and neurological disorders. Despite their considerable potential, conventional brain organoids face a critical limitation: the absence of a functional vascular system. This deficiency results in inadequate oxygen and nutrient delivery to the core regions of the organoid, ultimately constraining long-term viability and functional maturation. Moreover, the lack of early neurovascular interactions prevents these models from fully recapitulating the human brain microenvironment. In recent years, the introduction of vascularization strategies has significantly enhanced the physiological relevance of brain organoid models. Researchers have successfully developed various vascularized brain organoid models through multiple innovative approaches. Biological methods, for example, involve co-culturing brain organoids with endothelial cells to induce the formation of static vascular networks. Alternatively, co-differentiation strategies direct both mesodermal and ectodermal lineages to generate vascularized tissues, while fusion techniques combine pre-formed vascular organoids with brain organoids. Beyond biological approaches, tissue engineering techniques have played a pivotal role in promoting vascularization. Microfluidic systems enable the creation of dynamic, perfusable vascular networks that mimic blood flow, while 3D printing technologies allow for the precise fabrication of artificial vascular scaffolds tailored to the organoid"s architecture. Additionally, in vivo transplantation strategies facilitate the formation of functional, blood-perfused vascular networks through host-derived vascular infiltration. The incorporation of vascularization has yielded multiple benefits for brain organoid models. It alleviates hypoxia within the organoid core, thereby improving cell survival and supporting long-term culture and maturation. Furthermore, vascularized organoids recapitulate critical features of the neurovascular unit, including the early structural and functional characteristics of the blood-brain barrier. These advancements have established vascularized brain organoids as a highly relevant platform for studying neurovascular disorders, drug screening, and other applications. However, achieving sustained, long-term functional perfusion while preserving vascular structural integrity and promoting vascular maturation remains a major challenge in the field. In this review, we systematically outline the key stages of human neurovascular development and provide a comprehensive analysis of the various strategies employed to construct vascularized brain organoids. We further present a detailed comparative assessment of different vascularization techniques, highlighting their respective strengths and limitations. Additionally, we summarize the principal challenges currently faced in brain organoid vascularization and discuss the specific technical obstacles that persist. Finally, in the outlook section, we elaborate on the promising applications of vascularized brain organoids in disease modeling and drug testing, address the main controversies and unresolved questions in the field, and propose potential directions for future research.
LIU Tao , SHI Shu-Sheng , LIU Jun-Feng , LIU Kai , YAO Jia-Feng
Online: April 11,2025
Abstract:Objective This study proposes a fatigue detection method for police extreme training based on electrical impedance imaging technology to prevent muscle damage caused by overstrain during intense physical training.Methods First, based on the mechanism of human anaerobic exercise, lactic acid was identified as a key indicator of muscle fatigue, demonstrating that measuring muscle lactic acid effectively reflects localized fatigue. Second, a numerical simulation model of the human calf was established, and the internal tissue structure of the calf was analyzed to determine the stages of lactic acid diffusion and change. Then, the reconstruction performance of electrical impedance tomography (EIT) in visualizing lactic acid diffusion was compared under three different regularization algorithms, and the most suitable regularization method for subsequent experiments was selected. Finally, a controlled experiment simulating lactate diffusion was conducted to verify the imaging capability of the TK-Noser regularization algorithm in complex imaging fields.Results Simulation results indicate that both the TK-Noser and TV regularization algorithms achieve superior imaging performance, effectively suppressing artifacts in the visualization of lactic acid diffusion inside muscle tissue. The average ICC/RMSE values reached 0.754/0.303 and 0.772/0.320, respectively, while the average SSIM/PSNR values were 0.677/61 dB and 0.488/60 dB, respectively. In the lactate diffusion experiment, the average ICC/SSIM of the EIT reconstruction results based on the TK-Noser regularization algorithm reached 0.701 and 0.572, respectively. Additionally, compared with the TV regularization algorithm, the TK-Noser algorithm better preserved the shape and structural integrity of the imaging target, with an SSIM value 21.2% higher than that of the TV regularization results. This enhancement ensures the stability of the experimental results and significantly improves the capability of electrical impedance imaging technology in monitoring lactate diffusion within complex fields.Conclusion The proposed method offers real-time convenience and non-invasiveness, making it a promising approach for dynamic monitoring of muscle lactate levels in police officers during extreme physical training.
SHEN Ji-Sheng , QI Li-Li , WANG Jin-Bo , KE Zhi-Jian , WANG Qi-Chao
Online: April 11,2025
Abstract:Quantum dots (QDs), nanoscale semiconductor crystals, have emerged as a revolutionary class of nanomaterials with unique optical and electrochemical properties, making them highly promising for applications in disease diagnosis and treatment. Their tunable emission spectra, long-term photostability, high quantum yield, and excellent charge carrier mobility enable precise control over light emission and efficient charge utilization, which are critical for biomedical applications. This article provides a comprehensive review of recent advancements in the use of quantum dots for disease diagnosis and therapy, highlighting their potential and the challenges involved in clinical translation. Quantum dots can be classified based on their elemental composition and structural configuration. For instance, IB-IIIA-VIA group quantum dots and core-shell structured quantum dots are among the most widely studied types. These classifications are essential for understanding their diverse functionalities and applications. In disease diagnosis, quantum dots have demonstrated remarkable potential due to their high brightness, photostability, and ability to provide precise biomarker detection. They are extensively used in bioimaging technologies, enabling high-resolution imaging of cells, tissues, and even individual biomolecules. As fluorescent markers, quantum dots facilitate cell tracking, biosensing, and the detection of diseases such as cancer, bacterial and viral infections, and immune-related disorders. Their ability to provide real-time, in vivo tracking of cellular processes has opened new avenues for early and accurate disease detection. In the realm of disease treatment, quantum dots serve as versatile nanocarriers for targeted drug delivery. Their nanoscale size and surface modifiability allow them to transport therapeutic agents to specific sites, improving drug bioavailability and reducing off-target effects. Additionally, quantum dots have shown promise as photosensitizers in photodynamic therapy (PDT). When exposed to specific wavelengths of light, quantum dots interact with oxygen molecules to generate reactive oxygen species (ROS), which can selectively destroy malignant cells, vascular lesions, and microbial infections. This targeted approach minimizes damage to healthy tissues, making PDT a promising strategy for treating complex diseases. Despite these advancements, the translation of quantum dots from research to clinical application faces significant challenges. Issues such as toxicity, stability, and scalability in industrial production remain major obstacles. The potential toxicity of quantum dots, particularly to vital organs, has raised concerns about their long-term safety. Researchers are actively exploring strategies to mitigate these risks, including surface modification, coating, and encapsulation techniques, which can enhance biocompatibility and reduce toxicity. Furthermore, improving the stability of quantum dots under physiological conditions is crucial for their effective use in biomedical applications. Advances in surface engineering and the development of novel encapsulation methods have shown promise in addressing these stability concerns. Industrial production of quantum dots also presents challenges, particularly in achieving consistent quality and scalability. Recent innovations in synthesis techniques and manufacturing processes are paving the way for large-scale production, which is essential for their widespread adoption in clinical settings. This article provides an in-depth analysis of the latest research progress in quantum dot applications, including drug delivery, bioimaging, biosensing, photodynamic therapy, and pathogen detection. It also discusses the multiple barriers hindering their clinical use and explores potential solutions to overcome these challenges. The review concludes with a forward-looking perspective on the future directions of quantum dot research, emphasizing the need for further studies on toxicity mitigation, stability enhancement, and scalable production. By addressing these critical issues, quantum dots can realize their full potential as transformative tools in disease diagnosis and treatment, ultimately improving patient outcomes and advancing biomedical science.
LI Jin-Ru , DUAN Yu , DAI Xin-Gui , YAO Yong-Ming
Online: April 10,2025
Abstract:Interferon stimulating factor (STING), a transmembrane protein residing in the endoplasmic reticulum, is extensively involved in the sensing and transduction of intracellular signals and serves as a crucial component of the innate immune system. STING is capable of directly or indirectly responding to abnormal DNA originating from diverse sources within the cytoplasm, thereby fulfilling its classical antiviral and antitumor functions. Structurally, STING is composed of 4 transmembrane helices, a cytoplasmic ligand binding domain (LBD), and a C terminal tail structure (CTT). The transmembrane domain (TM), which is formed by the transmembrane helical structures, anchors STING to the endoplasmic reticulum, while the LBD is in charge of binding to cyclic dinucleotides (CDNs). The classical second messenger, cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), represents a key upstream molecule for STING activation. Once cGAMP binds to LBD, STING experiences conformational alterations, which subsequently lead to the recruitment of Tank-binding kinase 1 (TBK1) via the CTT domain. This, in turn, mediates interferon secretion and promotes the activation and migration of dendritic cells, T cells, and natural killer cells. Additionally, STING is able to activate nuclear factor-κB (NF-κB), thereby initiating the synthesis and release of inflammatory factors and augmenting the body"s immune response. In recent years, an increasing number of studies have disclosed the non-classical functions of STING. It has been found that STING plays a significant role in organelle regulation. STING is not only implicated in the quality control systems of organelles such as mitochondria and endoplasmic reticulum but also modulates the functions of these organelles. For instance, STING can influence key aspects of organelle quality control, including mitochondrial fission and fusion, mitophagy, and endoplasmic reticulum stress. This regulatory effect is not unidirectional; rather, it is subject to organelle feedback regulation, thereby forming a complex interaction network. STING also exerts a monitoring function on the nucleus and ribosomes, which further enhances the role of the cGAS-STING pathway in infection-related immunity. The interaction mechanism between STING and organelles is highly intricate, which, within a certain range, enhances the cells" capacity to respond to external stimuli and survival pressure. However, once the balance of this interaction is disrupted, it may result in the occurrence and development of inflammatory diseases, such as aseptic inflammation and autoimmune diseases. Excessive activation or malfunction of STING may trigger an over-exuberant inflammatory response, which subsequently leads to tissue damage and pathological states. This review recapitulates the recent interactions between STING and diverse organelles, encompassing its multifarious functions in antiviral, antitumor, organelle regulation, and immune regulation. These investigations not only deepen the comprehension of molecular mechanisms underlying STING but also offer novel concepts for the exploration of human disease pathogenesis and the development of potential treatment strategies. In the future, with further probing into STING function and its regulatory mechanisms, it is anticipated to pioneer new approaches for the treatment of complex diseases such as inflammatory diseases and tumors.
PENG Can-Ming , WANG Juan-Ping , LIU Sen
Online: April 09,2025
Abstract:Eukaryotic translation initiation factor 5A (eIF5A) is the only known protein in eukaryotes that contains a hydroxyputrescine lysine modification. Only the modified form of eIF5A is biologically active and is widely involved in protein translation, mRNA degradation, autophagy, and other intracellular processes. Epithelial-mesenchymal transition (EMT) is a process in which epithelial cells transform into mesenchymal phenotype cells through a highly regulated program. It plays a key role in embryonic development, tissue regeneration, and wound healing. Based on its biological functions, EMT can be classified into three types: I, II, and III. Type III EMT is the core mechanism underlying malignant tumor cell invasion and metastasis. This EMT mechanism involves the canonical pathway induced by transforming growth factor-β (TGF-β) and is regulated by various growth factors (TRAF6, EGF, IGF, HGF, VEGF), transcription factors (Twist, Slug, NF-κB, E12/E47, SIP1, ZEB1, etc.), and signaling pathways such as Wnt/β-catenin and PEAK1. eIF5A can influence tumor cell proliferation, invasion, and metastasis by regulating EMT-related signaling pathways. The known signaling pathways through which eIF5A regulates EMT include the canonical Smad signaling pathway and non-canonical pathways such as Rho/Rac1, Twist, STAT3, and Mat1. Additionally, certain miRNA family members, such as miR-30b, miR-599, and miR-203, can bind to the 3"-UTR of eIF5A2, inhibiting its expression and subsequently suppressing the EMT process in cancer cells, including gastric cancer and colorectal cancer. GC7, an inhibitor targeting the key enzyme DHPS involved in eIF5A modification, has been shown to reverse the EMT mechanism in oral squamous cell carcinoma, lung cancer, and breast cancer by regulating cytokine-mediated signaling pathways, including HIF-1α, STAT3/c-Myc, and Twist. However, to date, no inhibitors directly targeting eIF5A have been developed. In recent years, the mechanism of eIF5A activation catalyzed by DHPS and DOHH has become increasingly clear. As the only protein involved in lysine deoxyhydroxymethylation, DHPS may play a more critical role than eIF5A in the overall signal transduction process. Through in-depth analysis of the DHPS protein structure and its active site, researchers have shifted their approach to DHPS inhibitor development from substrate analog inhibitors (such as GC7, CNI-1493, DHSI-15, etc.) to allosteric inhibitors (11g, 26d, 8m, GL-1, etc.). GC7 is not suitable for clinical trials due to its lack of specificity and low bioavailability, and the therapeutic potential of novel allosteric inhibitors has yet to be clarified. Therefore, there is a significant gap in the development of covalent drugs targeting DHPS for cancer treatment in clinical settings. This paper reviews the research progress on eIF5A in regulating EMT, focusing on the molecular mechanisms by which eIF5A influences tumor cell invasion and migration. It also discusses the characteristics and current limitations of inhibitors targeting the hypusine pathway, aiming to provide insights for studying tumor metastasis mechanisms and drug discovery.
® 2025 All Rights Reserved ICP:京ICP备05023138号-1 京公网安备 11010502031771号